Penentuan kestabilan sistem kontrol lup tertutup waktu diskret dengan teknik penempatan pole: untuk kasus kontrol vektor

Kurniawan , Budi (2003) Penentuan kestabilan sistem kontrol lup tertutup waktu diskret dengan teknik penempatan pole: untuk kasus kontrol vektor. Undergraduate thesis, FMIPA UNDIP.

[img]PDF
Restricted to Repository staff only

2280Kb
[img]
Preview
PDF
25Kb
[img]
Preview
PDF
244Kb
[img]
Preview
PDF
427Kb
[img]
Preview
PDF
288Kb
[img]
Preview
PDF
919Kb
[img]PDF
Restricted to Repository staff only

827Kb
[img]
Preview
PDF
214Kb
[img]
Preview
PDF
233Kb
[img]
Preview
PDF
236Kb

Abstract

Penentuan kestabilan sistem kontrol hip tertutup dengan teknik penempatan pole untuk kasus kontrol vektor merupakan perluasan dart kasus kontrol skalar. Hal ini terlihat dari bentuk matriks transformasi T, bentuk kanonik terkontrol, bentuk matriks keterkontrolan dan bentuk matriks K. Didefinisikan suatu sistem linear waktu diskrit tidak bergantung terhadap waktu sebagai berikut: x(k +1) = Gx(k) + Hu(k) Diasumsikan sistem persamaan diatas adalah keadaan terkontrol lengkap. Bila vektor kontrol u(k) dipilih sebagai u(k) = - K x(k), dimana K adalah matriks umpan batik keadaan, maka persamaan keadaan menjadi x(k+1) = (G — HK) x(k) Dipilih matriks K sehingga nilai eigen G — HK adalah pole lup tertutup yang diinginkan, yaitu 1-11,112,—,11. • Dengan memilih elemen-elemen 0 sebagai elemen-elemen dalam A, keadaan stabil dicapai dalam nrnin langkah, dimana nmin = mak (it/ , n2 ,,,.,n1), a- adalah bentuk kanonik terkontrol dan A suatu matriks r x n. The determination of the stability of the closed-loop control system with the pole placement technique for the case of the vector control is an extension from the case of the scalar control. It can be showen from the form of transformation matrix T, the form of controllable canonical, the form of controllability matrix and the form of matrix K. Consider a linear time-invariant discrete-time system as follows: x(k + 1) = Gx(k) + Hu(k) Let us assume that the system above is completely state controllable. If the control vector u(k) is chosen as u(k) = K x(k), where K is the state feedback gain matrix then its state equation becomes x(k+1) = (G HK) x(k) It is chosen matrix K, so that the eigen values of G — BK are the desired closed-loop poles 11141.2,...,1in. By choosing the elements of 6- as the elements of A , the stability can be achieved in /link, steps, where limin = mak (ni , G is the controllable canonical form and A is a r x n xiv

Item Type:Thesis (Undergraduate)
Subjects:Q Science > QA Mathematics
Divisions:Faculty of Science and Mathematics > Department of Mathematics
ID Code:31639
Deposited By:Mr UPT Perpus 1
Deposited On:24 Nov 2011 07:35
Last Modified:24 Nov 2011 08:24

Repository Staff Only: item control page