Ismawati , Anik (2001) Ideal-ideal dalam matriks atas ring komutatif. Undergraduate thesis, FAKULTAS MIPA.
| PDF 19Kb | |
| PDF 347Kb | |
| PDF 231Kb | |
| PDF 265Kb | |
| PDF 540Kb | |
PDF Restricted to Repository staff only 1133Kb | ||
| PDF 236Kb | |
| PDF 213Kb | |
PDF Restricted to Repository staff only 2044Kb |
Abstract
ABSTRAK -Dalarn matriks atas ring R, M,„1(R) adalah himpunan semua matriks berukuran nxn dengan entri-entri dari ring R. Jika R ring komutatif dengan elemen satuan maka M, ,,„(R) merupakan ring dengan elemen satuan tetapi belum tenni komutatif Dalam ring komutatif R dengan eletnen satuan, ada korespondensi satu-satu antara ideal dari ring R dan ideal dari Selanjutnya sifat-sifat ideal dari R berlaku dalam ideal dari M„).(R). Karena di dalam ring R terdapat radikal Jacobson dari R ditulis J(R), maka di dalam matriks atas ring R ada radikal Jacobson dari M,„„(R) ditulis J(M,,,(R)). Selanjutnya radikal Jacobson dari matriks atas ring R sama dengan matriks atas radikal Jacobson J(R) ditulis J(Mit,i(R)) = M„(J(R)). ABSTRACT If R is a commutative ring with identity 1, then M,,,,(R), i.e. the set of all nxn matrices with entries from R, is a ring with unit elemen but not necessary commutative. For R be a commutative ring with unity, there is a one to one correspondence between the ideals of R and the ideals of M,,,(R). Hence, properties of ideal of R also work for the ideals of M --nxn(R). Since there is Jacobson radical of R in the ring R, written by J(R), then there is Jacobson radical of Mn,„(R) in M,„(R), written by J(K,(R)). The Jacobson radical of matrices over ring R is equal with matrices over Jacobson radical of R.
Item Type: | Thesis (Undergraduate) |
---|---|
Subjects: | Q Science > QA Mathematics |
Divisions: | Faculty of Science and Mathematics > Department of Mathematics |
ID Code: | 31837 |
Deposited By: | Mr UPT Perpus 2 |
Deposited On: | 25 Nov 2011 10:40 |
Last Modified: | 25 Nov 2011 10:40 |
Repository Staff Only: item control page