# Penyelesaian masalah pole placement pada sistem kontrol lup tertutup

Rahayu , Etin Setiyawati Puji (2001) Penyelesaian masalah pole placement pada sistem kontrol lup tertutup. Undergraduate thesis, FMIPA UNDIP.

PDF
Restricted to Repository staff only

3105Kb
 Preview
PDF
24Kb
 Preview
PDF
241Kb
 Preview
PDF
452Kb
 Preview
PDF
311Kb
 Preview
PDF
669Kb
 Preview
PDF
674Kb
PDF
Restricted to Repository staff only

1061Kb
 Preview
PDF
223Kb
 Preview
PDF
225Kb
 Preview
PDF
555Kb

## Abstract

Pengontrolan pada nilai eigen (pole placement) pada suatu sistem kontrol dapat untuk rnenunjukkan kestabilan sistem. Dasar untuk penyelesaian masalah pole placement adalah konsep tentang keterkontrolan. Jika sistem terkontrol secara lengkap maka pole-pole lup tertutup pada bidang z dapat diseleksi (didesain). Pandang sistem kontrol waktu diskrit sebagai x(k+1) = G x(k) + H u(k) y(k) = C x(k) + D u(c) Didefinisikan u(k) = -Kx(k), dimana K adalah gain matriks. Dengan menentukan Gain matriks K, maka sistem kontrol lup tertutup dapat didesain. The control of eigenvalues (pole placement) in a control system be able to show stability of system. The concept of controllability is the basis for the solutions of the pole placement problem. If the system is completely state controllable, then the desired closed-loop poles in the z plane can be selected (designed). C_onsider the_discrete-time-control-system- defined by x(k+l-) = G x(k) + H u(k). and output defined by y(k) = C x(k) + D u(k) defined u(k) = -Kx(k), where K = Gain matrix. By determining Gain Matrix K, the closed-loop control system can be designed.

Item Type: Thesis (Undergraduate) Q Science > QA Mathematics Faculty of Science and Mathematics > Department of Mathematics 31818 Mr UPT Perpus 1 25 Nov 2011 09:44 25 Nov 2011 09:44

Repository Staff Only: item control page