Rahayu , Etin Setiyawati Puji (2001) Penyelesaian masalah pole placement pada sistem kontrol lup tertutup. Undergraduate thesis, FMIPA UNDIP.
PDF Restricted to Repository staff only 3105Kb | ||
| PDF 24Kb | |
| PDF 241Kb | |
| PDF 452Kb | |
| PDF 311Kb | |
| PDF 669Kb | |
| PDF 674Kb | |
PDF Restricted to Repository staff only 1061Kb | ||
| PDF 223Kb | |
| PDF 225Kb | |
| PDF 555Kb |
Abstract
Pengontrolan pada nilai eigen (pole placement) pada suatu sistem kontrol dapat untuk rnenunjukkan kestabilan sistem. Dasar untuk penyelesaian masalah pole placement adalah konsep tentang keterkontrolan. Jika sistem terkontrol secara lengkap maka pole-pole lup tertutup pada bidang z dapat diseleksi (didesain). Pandang sistem kontrol waktu diskrit sebagai x(k+1) = G x(k) + H u(k) y(k) = C x(k) + D u(c) Didefinisikan u(k) = -Kx(k), dimana K adalah gain matriks. Dengan menentukan Gain matriks K, maka sistem kontrol lup tertutup dapat didesain. The control of eigenvalues (pole placement) in a control system be able to show stability of system. The concept of controllability is the basis for the solutions of the pole placement problem. If the system is completely state controllable, then the desired closed-loop poles in the z plane can be selected (designed). C_onsider the_discrete-time-control-system- defined by x(k+l-) = G x(k) + H u(k). and output defined by y(k) = C x(k) + D u(k) defined u(k) = -Kx(k), where K = Gain matrix. By determining Gain Matrix K, the closed-loop control system can be designed.
Item Type: | Thesis (Undergraduate) |
---|---|
Subjects: | Q Science > QA Mathematics |
Divisions: | Faculty of Science and Mathematics > Department of Mathematics |
ID Code: | 31818 |
Deposited By: | Mr UPT Perpus 1 |
Deposited On: | 25 Nov 2011 09:44 |
Last Modified: | 25 Nov 2011 09:44 |
Repository Staff Only: item control page