Penyelesaian masalah pole placement pada sistem kontrol lup tertutup

Rahayu , Etin Setiyawati Puji (2001) Penyelesaian masalah pole placement pada sistem kontrol lup tertutup. Undergraduate thesis, FMIPA UNDIP.

[img]PDF
Restricted to Repository staff only

3105Kb
[img]
Preview
PDF
24Kb
[img]
Preview
PDF
241Kb
[img]
Preview
PDF
452Kb
[img]
Preview
PDF
311Kb
[img]
Preview
PDF
669Kb
[img]
Preview
PDF
674Kb
[img]PDF
Restricted to Repository staff only

1061Kb
[img]
Preview
PDF
223Kb
[img]
Preview
PDF
225Kb
[img]
Preview
PDF
555Kb

Abstract

Pengontrolan pada nilai eigen (pole placement) pada suatu sistem kontrol dapat untuk rnenunjukkan kestabilan sistem. Dasar untuk penyelesaian masalah pole placement adalah konsep tentang keterkontrolan. Jika sistem terkontrol secara lengkap maka pole-pole lup tertutup pada bidang z dapat diseleksi (didesain). Pandang sistem kontrol waktu diskrit sebagai x(k+1) = G x(k) + H u(k) y(k) = C x(k) + D u(c) Didefinisikan u(k) = -Kx(k), dimana K adalah gain matriks. Dengan menentukan Gain matriks K, maka sistem kontrol lup tertutup dapat didesain. The control of eigenvalues (pole placement) in a control system be able to show stability of system. The concept of controllability is the basis for the solutions of the pole placement problem. If the system is completely state controllable, then the desired closed-loop poles in the z plane can be selected (designed). C_onsider the_discrete-time-control-system- defined by x(k+l-) = G x(k) + H u(k). and output defined by y(k) = C x(k) + D u(k) defined u(k) = -Kx(k), where K = Gain matrix. By determining Gain Matrix K, the closed-loop control system can be designed.

Item Type:Thesis (Undergraduate)
Subjects:Q Science > QA Mathematics
Divisions:Faculty of Science and Mathematics > Department of Mathematics
ID Code:31818
Deposited By:Mr UPT Perpus 1
Deposited On:25 Nov 2011 09:44
Last Modified:25 Nov 2011 09:44

Repository Staff Only: item control page