Akmal , Doni (2001) Estimasi model vektor autoregresi dengan metode kuadrat terkecil. Undergraduate thesis, FMIPA UNDIP.
PDF Restricted to Repository staff only 2127Kb | ||
| PDF 20Kb | |
| PDF 233Kb | |
| PDF 257Kb | |
| PDF 545Kb | |
PDF Restricted to Repository staff only 858Kb | ||
| PDF 214Kb | |
| PDF 215Kb | |
| PDF 521Kb |
Abstract
Model Vektor Autoregesi adalah model regresi terhadap dirinya sendiri, artinya nilai yang sekarang merupakan kombinasi limier dari nilai-nilai dari masa lalu ditambah vektor white noise. Dalam pembentukan model terlebih dahulu ditentukan vektor rata-rata p. matriks kovarian r(1) dan matriks korelasi p(1) untuk mengestimasi model vektor autoregresinya. Kemudian untuk memperoleh matriks parameter regresi 4=0 , j =1,2,...,m digunakan metode kuadrat terkecil dan dilakukan pengujian rasio likelihood terhadap 1 untuk mendapatkan orde yang tepat dalam mengestimasi model vektor autoregresi dengan menggunakan statistik uji Mm , dimana Mm bealistribusi ;set2 Vector Autoregressive Models is a regression models by itself, it mean the value at time-t on its own past value• plus a vector of white noise. In Model building is to obtain sample estimates of mean vector p, covariance matrices IV and correlation matrices p(1) for estimates vector autoregressive models. Thus, to obtain matrix parameter regression cifj , j = 1,2,...,m by use least square methods and do likelihood ratio testing for 4)j to obtain order of the vector autoregressive models with statistic Mm , where Mm is distributed as
Item Type: | Thesis (Undergraduate) |
---|---|
Subjects: | Q Science > QA Mathematics |
Divisions: | Faculty of Science and Mathematics > Department of Mathematics |
ID Code: | 31816 |
Deposited By: | Mr UPT Perpus 1 |
Deposited On: | 25 Nov 2011 09:37 |
Last Modified: | 25 Nov 2011 09:37 |
Repository Staff Only: item control page