Sudrajat, Dadang (1999) Aplikasi graf berarah pada rantai markov berhingga parameter diskrit. Undergraduate thesis, FMIPA Undip.
| PDF 27Kb | |
| PDF 418Kb | |
| PDF 241Kb | |
| PDF 303Kb | |
| PDF 1437Kb | |
PDF Restricted to Repository staff only 2040Kb | ||
| PDF 250Kb | |
| PDF 249Kb | |
PDF Restricted to Repository staff only 4034Kb |
Abstract
ABSTRAK • Pandang rantai Markoy : t = 0,1,2, ...; dengan tiang state Rantai Markov tersebut dapat digambarkan dalam scbuah:graf berarah terhubung dan bcrbobot yang .disebut graf transisi: Dalam graf transisi, titik-titik.berkorespondensi satu-situ dengan state-state dalam dan garis berarah (xj,xi) dengan bobot tak nol • p(xi, k) mcnggambarkan pelting transisi dari state xi kc State xj. Ternyata sifat-sifat dari graf transisi scbagai graf" berarah dapat ditcrapp(an dalam menganalisis permasalahan pada rantai Markoy, baik dalam hal petigklasifikasian state-state maupUn idalam perhitungan vektor keadaan tetap n suatu.:itantai Markov reguler dan perhitUngan matrik transisi k-langkah Pk sebagai fungsi dari k. 1 • i. ABSTRACT Consider the Markov chains {X, : t = 0,1,2, ...) with state space t = x„). It can be represented by weighted, Connected directed graph is called Transition Graph. In a transition graph, the vertices one-one coresponding to states in and a directed edge (x, x) with a non zero weight p(xi,xj) represents the transition of probability from state xi to :x1. The fact, the directed graph properties of transition graph can be applied in analyzed the Markov chains pr?biems, as well as states elasifiCation or in computing steady-state vector 71 any regular Markov chains and in computing k-step transition matrix Pk, as function of k. ' I
Item Type: | Thesis (Undergraduate) |
---|---|
Subjects: | Q Science > QA Mathematics |
Divisions: | Faculty of Science and Mathematics > Department of Mathematics |
ID Code: | 31642 |
Deposited By: | Mr UPT Perpus 2 |
Deposited On: | 24 Nov 2011 07:44 |
Last Modified: | 24 Nov 2011 07:44 |
Repository Staff Only: item control page