Aini, Hikmatul (2003) Subruang Invarian Oleh Transformasi Linier Khusus. Undergraduate thesis, FMIPA Undip.
PDF Restricted to Repository staff only 1147Kb | ||
| PDF 13Kb | |
| PDF 127Kb | |
| PDF 32Kb | |
| PDF 53Kb | |
| PDF 468Kb | |
PDF Restricted to Repository staff only 453Kb | ||
| PDF 23Kb | |
| PDF 16Kb |
Abstract
Misalkan C" adalah ruang vektor kompleks berdimensi berhingga (dengan dim (C") = dan T: —> adalah suatu transformasi liner. Suatu subruang M c dikatakan invarian untuk transformasi linier T atau disingkat T¬invarian jika untuk setiap XE M berlaku T(x) E M. Dengan kata lain, M invarian untuk T jika peta dart M atas T tennuat di M, yaitu T(M) c M. Dapat diperlihatkan bahwa subruang yang direntang oleh vektor-vektor eigen dan rantai jordan oleh transformasi tinier T adalah subruang T-invarian. Dan suatu subruang dart ruang vektor kompleks oleh beberapa transformasi linier khusus seperti transformasi similar, transformasi adjoint, dan transformasi self adjoint merupakan subruang invarian. Let C" is a complex vector spaces with finite dimensional (dim (C") = and T: C" C" be a linear transformation. A subspace Mc C" is called invariant for the linear transformation T, or T-invariant T(x) e NI for eve!), vector xE M. In other words, M is invariant for T means that the image of M under T is contained in M; ?7M) c M. It can be shown that a subspace which spanned by eigen vectors and Jordan chains is a T-invariant subspaces. And the subspaces of complex vector space by some special linear transformation such as similar transformation, adjoint transformation, and self adjoin! transformation is an invariant subspace
Item Type: | Thesis (Undergraduate) |
---|---|
Subjects: | Q Science > QA Mathematics |
Divisions: | Faculty of Science and Mathematics > Department of Mathematics |
ID Code: | 32244 |
Deposited By: | Mr UPT Perpus 1 |
Deposited On: | 04 Jan 2012 09:27 |
Last Modified: | 04 Jan 2012 09:27 |
Repository Staff Only: item control page