Metode Fungsi Penalti

Warso , Tri (2002) Metode Fungsi Penalti. Undergraduate thesis, FMIPA Undip.

[img]PDF
Restricted to Repository staff only

1468Kb
[img]
Preview
PDF
14Kb
[img]
Preview
PDF
140Kb
[img]
Preview
PDF
33Kb
[img]
Preview
PDF
92Kb
[img]
Preview
PDF
491Kb
[img]PDF
Restricted to Repository staff only

684Kb
[img]
Preview
PDF
29Kb
[img]
Preview
PDF
19Kb

Abstract

Dalam Tugas Akhir ini dibabas masalah optimasi, menentukan X* = (4 , ,..., 4 ) yang meminimalkan f (X), X e dengan kendala gi(X) < 0, i = 1,Z...,m Masalah optimasi ini diubah menjadi suatu barisan masalah optimasi tanpa kendala kemudian barisan solusi dari masalah optimasi tanpa kendala ini ditunjukkan konvergen kesolusi dari masalah optimasi berkenciala. Solusi dari masalah optimasi tanpa kendala yang mernenuhi kriteria konvergensi akan merupakan solusi dari masalah optimasi dengan kendala. Masalab optimasi tanpa kendala ini diselesaikan dengan menggunakan metode fungsi penalti baik fungsi penalti interior maupun fungsi penalti eksterior. This final task discussed about an optimization problem, * find X* = (xi ,x2,...,xj which minimizes f (X), X E R" subject to g, (X) 0, i = 1,Z...,m The optimization problem is converted into the sequence of unconstrained optimization problem. And then, the solution sequence from unconstrained optimization problem is shown by convergence to solution from constrained optimization problem. The solution of unconstrained optimization problem, which fill the convergence criteria, will be a solution from constrained optimization problem. The unconstrained optimization problem is finished by using of penalty function method. It will be both interior penalty function method and exterior penalty function method.

Item Type:Thesis (Undergraduate)
Subjects:Q Science > QA Mathematics
Divisions:Faculty of Science and Mathematics > Department of Mathematics
ID Code:32233
Deposited By:Mr UPT Perpus 1
Deposited On:04 Jan 2012 06:50
Last Modified:04 Jan 2012 06:50

Repository Staff Only: item control page