ZAINAH, SITI (2000) JUMLAH MINIMAL DAM TRANSFORMASI ELEMENTER D-INVARIAN (P,S) PADA DIGRAPH (P,S). Undergraduate thesis, FMIPA UNDIP.
PDF Restricted to Repository staff only 1209Kb | ||
| PDF 14Kb | |
| PDF 35Kb | |
| PDF 125Kb | |
| PDF 50Kb | |
| PDF 280Kb | |
PDF Restricted to Repository staff only 703Kb | ||
| PDF 24Kb | |
| PDF 15Kb |
Abstract
Salah satu eksistensi dari graph berarah yang mempunyai derajat masuk dan derajat keluar pada masing-masing titiknya adalah eksistensinya sebagai digraph (p,$) dengan p adalah jumlah maksimum garis paralel dan s adalah jtunlah maksimum loop dari graph berarah . Transformasi Elementer d-invarian (p,$) merupakan pergantian garis (ii,i2) dan (j1,j2) menjadi garis dan (jj,i2) dengan ii j dan i2 j2. Dua digraph (p,$) yang d-invarian dapat ditransformasi satu sama lainnya dengan barisan terbatas dad Transformasi Elementer d-invarian (p,$). Jumlah minimal dari Transformasi Elementer d-invarian (p,$) diartikan sebagai jumlah transformasi yang diperlukan untuk mentransformasikan dua digraph (p,$) satu sama lainnya jika jumlah transformasi tersebut minimal. One of the existence of directed graph which possess incoming and out coming degrees in each their nodes is their existence as (p,$) digraph with p is the maximum number of arc parallel arcs and s is the maximum number of self-loops of directed graph. Elementary (p,$) d-invariant Transformation is the replacing of the arcs (i1,i,) and (ji,j2) by the arcs (i1,j2) and (ji,i2) with ji and i2 ~.i2. Two (p,$) digraphs which d-invariant are transformable from each other by a finite sequence of Elementary (p,$) d-invariant Transformation . The Minimal number of Elementary (p,$) d-invariant Transformation is meant as the Transformation number which required to transfonn two (p,$) digraphs from each other if the Transformation number is minimal.
Item Type: | Thesis (Undergraduate) |
---|---|
Subjects: | Q Science > QA Mathematics |
Divisions: | Faculty of Science and Mathematics > Department of Mathematics |
ID Code: | 32207 |
Deposited By: | Mr UPT Perpus 2 |
Deposited On: | 03 Jan 2012 13:21 |
Last Modified: | 03 Jan 2012 13:21 |
Repository Staff Only: item control page