Implementasi strategi bilangan biner pada permainan NIM dengan basa pemrograman pascal

Setyawati , Erna (2000) Implementasi strategi bilangan biner pada permainan NIM dengan basa pemrograman pascal. Undergraduate thesis, FMIPA UNDIP.

[img]PDF
Restricted to Repository staff only

2066Kb
[img]
Preview
PDF
20Kb
[img]
Preview
PDF
235Kb
[img]
Preview
PDF
364Kb
[img]
Preview
PDF
272Kb
[img]
Preview
PDF
808Kb
[img]PDF
Restricted to Repository staff only

873Kb
[img]
Preview
PDF
215Kb
[img]
Preview
PDF
218Kb

Abstract

Metode Jackknife dapat digunakan untuk mereduksi bias suatu estimator. Untuk mengetahui keefektifan dari estimator Jackknife order satu dan estimator Jackknife order dua sebagai pereduksi bias dapat dilihat dari sifat-sifatnya. Ciri-ciri bias estimator terfetak pada suku-suku bias dari estimator yang asli. Kemudian bias dari Jackknife order dua dibandingkan dengan bias estimator yang asli dan juga dibandingkan dengan bias Jackknife order satu. Dari perbandingan ini dapat dilihat untuk keadaan tertentu Jackknife order dua lebih efektif daripada Jackknife order satu maupun terhadap estimator aslinya. Jackknife method can be used to bias reduction. To investigates the effectiveness of the first and second order Jackknife estimators,as tools for bias reduction, we must look from the characterized. The biases of estimators are characterized in terms of the bias original estimator. Then biases of the two estimators are compared, biases second order Jackknife are compared with biases first order Jackknife and biases second order Jackknife compared with bias of the original estimator. From this comparison we can see that second order Jackknife more effectif than first order Jackknife or the original estimator. L. This document is Undip Institutional Repository Collection. The author(s) or copyright owner(s) agree that UNDIP-IR may, without changing the content, translate the submission to any medium or kormat for the purpose of preservation. The author(s) or copyright owner(s) also agree that UNDIP-IR may keep more than one copy of this submission for purpose of security, back-up and preservation: ( http://eprints.undip.ac.id )

Item Type:Thesis (Undergraduate)
Subjects:Q Science > QA Mathematics
Divisions:Faculty of Science and Mathematics > Department of Mathematics
ID Code:31814
Deposited By:Mr UPT Perpus 1
Deposited On:25 Nov 2011 09:31
Last Modified:25 Nov 2011 09:31

Repository Staff Only: item control page