Analisa algoritma pada interpolasi spline kubik dan implementasinya dalam turbo pascal 7.0

Susilowati , Ety (2001) Analisa algoritma pada interpolasi spline kubik dan implementasinya dalam turbo pascal 7.0. Undergraduate thesis, FMIPA UNDIP.

[img]
Preview
PDF
15Kb
[img]
Preview
PDF
392Kb
[img]
Preview
PDF
230Kb
[img]
Preview
PDF
257Kb
[img]
Preview
PDF
764Kb
[img]
Preview
PDF
879Kb
[img]PDF
Restricted to Repository staff only

307Kb
[img]
Preview
PDF
218Kb
[img]
Preview
PDF
241Kb
[img]
Preview
PDF
1429Kb
[img]PDF
Restricted to Repository staff only

3407Kb

Abstract

Interpolasi spline kubik merupakan tehnik alternatif untuk menginterpolasi titik¬titik data dalam bentuk sepotong-sepotong (piecewise). Interpolasi spline kubik digunakan pada pasangan titik data (x,y) yang memperlihatkan perubahan lokal secara mencladak. Dalam penyusunan polinom spline kubik melibatkan sistem tridiagonal sehingga penyelesaiannya menggunakan suatu algoritma khusus. Ada tiga algoritma yang terlibat dalam interpolasi spline kubik yaitu algoritma mencari koefisien sistem persamaan linear, algoritma eliminasi untuk sistem tridiagonal dan algoritma mencari koefisien spline kubik. Total running time yang diperlukan oleh masing-masing algoritma sebesar 000. Interpolasi spline kubik melibatkan perhitungan yang tidak mudah sehingga diimplementasikan dalam Turbo Pascal 7.0. The cubic spline interpolation is an alternative technic that use to interpolate data points in piecewise term. Cubic spline interpolation used at data points (x,y) that shows a local change dramatically. At contraction cubic spline polynom include tridiagonal system, so the solution is used a specially algorithms. There are three algorithms that used to find a coeffisient of linear equation system, that is a algorithm that used to find a coeffisient of linier equation system, a elimination algorithm for tridiagonal system and algorithm that used to find coeffisient of cubic spline. The total of running time that need by each algorithm is 0(n). Cubic spline interpolation include a difficult computational, so it implemented in Turbo Pascal 7.0.

Item Type:Thesis (Undergraduate)
Subjects:Q Science > QA Mathematics
Divisions:Faculty of Science and Mathematics > Department of Mathematics
ID Code:31740
Deposited By:Ms upt perpus3
Deposited On:24 Nov 2011 13:41
Last Modified:11 Jan 2012 05:47

Repository Staff Only: item control page