Program linier inter "Over Cones"

Utami , Nadya Retno (2002) Program linier inter "Over Cones". Undergraduate thesis, FMIPA UNDIP.

[img]PDF
Restricted to Repository staff only

2374Kb
[img]
Preview
PDF
19Kb
[img]
Preview
PDF
231Kb
[img]
Preview
PDF
363Kb
[img]
Preview
PDF
277Kb
[img]
Preview
PDF
797Kb
[img]PDF
Restricted to Repository staff only

1004Kb
[img]
Preview
PDF
217Kb
[img]
Preview
PDF
220Kb

Abstract

Program Linear Integer "Over Cones" merupakan suatu metode yang, digunakan untuk memperoleh solusi optimal dalam Program Linear yang membatasi selunth variabel keputusannya pada nilai integer. Pembatas pada Program Linear Integer "Over Cones" , yaitu : B xE b — NxN , xB integer. direduksi menjadi : Ay = R ( b NxN ) , y integer. Grup Knapsack adalah persoalan grup dengan pembatas tunggal dan diperoleh dari bentuk ekuivalen pembatas Program Linear Integer "Over Cones" dimana - penyelesaiannya dilakukan secara Integer Linear Programming "Over Cones", known as a method that used to get an optimal solution of Linear Programming in which all the variable are restricted in integer value. Consider the constraints of Integer Linear Programming "Over Cones", B xi3 = b NxN xB integer It is reduced into, Ay = R ( b NxN ) , y integer. Group Knapsack is a group representation, which only has one constraint and formulated by equivalent representation of Integer Linear Programming "Over Cones" . Group Knapsack is solved by recursive equation. rekursif This document is Undip Institutional Repository Collection. The author(s) or-Wright owner(s) agree that UNDIP-IR may, without changing the content, translate the submission to any medium or format for the purpose of preservation. The author(s) or copyright owner(s) also agree that UNDIP-IR may keep more than one copy of this submission for purpose of security, back-up and preservation: http://eprints.undip.acid )

Item Type:Thesis (Undergraduate)
Subjects:Q Science > QA Mathematics
Divisions:Faculty of Science and Mathematics > Department of Mathematics
ID Code:31692
Deposited By:Mr UPT Perpus 1
Deposited On:24 Nov 2011 10:01
Last Modified:24 Nov 2011 10:01

Repository Staff Only: item control page