Hatanti , Yeni Dwi (2002) Metode uji likelihood semiempirik maksimum pada model semiparametrik. Undergraduate thesis, FMIPA UNDIP.
PDF Restricted to Repository staff only 2636Kb | ||
| PDF 17Kb | |
| PDF 239Kb | |
| PDF 388Kb | |
| PDF 295Kb | |
| PDF 633Kb | |
PDF Restricted to Repository staff only 1204Kb | ||
| PDF 225Kb | |
| PDF 539Kb |
Abstract
Metode likelihood adalah suatu teknik yang sering digunakan pada model parametrik baik untuk meneari penduga parameter maupun kontruksi statistik uji. Metode ini pada. perkembangannya dapat digunakan pula pads model nonparametrik dengan pendekatan secara. empiris pada fungsi distribusinya, sehingga dinamakan metode empirical Likelihood. Dare dua metode tersebut, dapat digunakan untuk mengkontruksi statistik uj i kesamaan dua mean pada model semiparametrik (situ Model parametrik dan model yang lain nonparametrik), yaitu dengan metode Maximum Semi — empirical Likelihood Ratio (IvISELR) test (kombinasi dari metode Likelihood clan metode empirical Likelihood ) . Dengan pendekatan pengembangan Theorema Limit Pusat (T12) , statistik uji yang diperoleh adalah dibandingkan dengan tabel Chi — Kuadrat dengan derajat bebas 1 (x2i) untuk mendapatkan kesimpulan Likelihood method is a technic which. is often used on parametric model to reach parameter and the contuiction Of the test statistic. In development, this method can also be used on nonparametrik model by the empiric approximation on the function of its distribution, and called empirical Likelihood method. The two metod can be used to coniruct the ratio test statistic of equality of two mean on semiparametric model (the one is parametric model and the other is nonparametric model). That can be obtained by Maximum. Semi-Empirical Likelihood Ratio (MSELR) test method (combination of Likelihood method and empirical Likelihood method). By development Central Limit Theorem (CELT) approximation, the test statistic obtained is compared with Chi Square table with the free degree i (ii) to get the result.
Item Type: | Thesis (Undergraduate) |
---|---|
Subjects: | Q Science > QA Mathematics |
Divisions: | Faculty of Science and Mathematics > Department of Mathematics |
ID Code: | 31687 |
Deposited By: | Mr UPT Perpus 1 |
Deposited On: | 24 Nov 2011 09:46 |
Last Modified: | 24 Nov 2011 09:46 |
Repository Staff Only: item control page