Implementasi algoritma branch and bound oleh horowitz-sahni untuk penyelesaian masalah knapsack

Rawmawati , Santy (2003) Implementasi algoritma branch and bound oleh horowitz-sahni untuk penyelesaian masalah knapsack. Undergraduate thesis, FMIPA UNDIP.

[img]PDF
Restricted to Repository staff only

2585Kb
[img]
Preview
PDF
19Kb
[img]
Preview
PDF
228Kb
[img]
Preview
PDF
364Kb
[img]
Preview
PDF
277Kb
[img]
Preview
PDF
490Kb
[img]PDF
Restricted to Repository staff only

1200Kb
[img]
Preview
PDF
212Kb
[img]
Preview
PDF
214Kb
[img]
Preview
PDF
713Kb

Abstract

Masalah knapsack merupakan masalah muatan barang yang mempunyai fungsi tujuan memaksimalkan nilai keuntungan dengan kendala total berat barang yang dimasukkan lebih kecil berat maksimum knapsack. Salah satu contoh adalah masalah knapsack 0/1 dimana hanya satu dari dua alternatif yaitu barang boleh dimasukkan atau tidak. Untuk menyelesaikan masalah knapsack dapat digunakan Algoritma Branch and Bound oleh Horowitz¬Sahni. Metode ini melakukan pencabangan terhadap barang yang dimasukkan karena barang tersebut rnempunyai peluang solusi sehingga diperoleh nilai keuntungan yang lebih besar (Ian total berat tidak melebihi berat maksirnum knapsack. Knapsack problem means cargo loading problem which has objective function to maximize profit value with the objects's total weight must be less than the maximum weight of the knapsack as its constraint. One of the example is knapsack 0/1 problem there's only one of two alternatives that is wether the object may included into the knapsack or not. In order to solve the knapsack problem we can use the Branch and Bound Algorithm by Horowitz-Sahni. At this method we do branching to the object which is included into the knapsack because it has solution opportunity so that we can get bigger profit value and the total weight doesn't exceed the maximum weight of the This document- is Unclip Institutional Repository Collection. The al • or copyright owner(s) agree that UNDIP-IR may, without changing the content, translate the submission to any medium or lat for the purpose of preservation. The author(s) or copyright owner(S) also agree that UNDIP-IR may keep more than one copy of this submission for purpose of security, back-up and preservation: http://eprints.undip.acid )

Item Type:Thesis (Undergraduate)
Subjects:Q Science > QA Mathematics
Divisions:Faculty of Science and Mathematics > Department of Mathematics
ID Code:31676
Deposited By:Mr UPT Perpus 1
Deposited On:24 Nov 2011 09:14
Last Modified:24 Nov 2011 09:14

Repository Staff Only: item control page