Meminimalkan fungsi pseudo boolean non linear dengan kendala persamaan non liner homogen

Widodo, Aris Puji (1997) Meminimalkan fungsi pseudo boolean non linear dengan kendala persamaan non liner homogen. Undergraduate thesis, FMIPA Undip.

 Preview
PDF
20Kb
 Preview
PDF
335Kb
 Preview
PDF
235Kb
 Preview
PDF
274Kb
 Preview
PDF
843Kb
PDF
Restricted to Repository staff only

1090Kb
 Preview
PDF
213Kb
 Preview
PDF
215Kb
PDF
Restricted to Repository staff only

2304Kb

Abstract

ABSTRAKS Fungsi pseudo boolean nonlinier dalarn penyelesaiaanya kalau secara langsung akan mengalami suatu kesulitan. Sehingga untuk mengurangai kesulitan tersebut, fungsi pseudo boolean nonlinier dibawa ke bentuk fungsi pseudo boolea.n linier 14x1,...,xn), clan dalarn penyelesaiaanya digunakan suatu fungsi karakteristik . Meminimalkan fungsi pseudo boolean nonlinier dilakukan dengan suatu proses iterasi, kemudian akan didapatkan balsa minimum fungsi pseudo boolean nonlinier Dalam meminimalkan fungsi pseudo boolean nonlinier dikelompokkan menjadi dua, yaitu : 1. Meminimalkan fungsi pseudo boolean nonlinier f(xi ,...,xn) tanpa kendala, yaitu dengan algoritma dasar. 2. Meminimalkan fungsi pseudo boolean nonlinier f(xl,...,xn) dengan kendala, yaitu dengan penggandaan lagra.ngean. ABSTRACTS Nonlinier pseudo boolean functions f(x ,...,xn) could be found difficulties if it use a direct solving. In order to reduce the difficulties, the nonlinier pseudo boolean functions f(x , xn) bring to the linier pseudo boolean function xn), which use a characteristic functions (p(xi ,...,xn) in its solving. The minimizing of nonlinier pseudo boolean functions done by an iteration process, and then it will got minimum value of nonlinier pseudo boolean functions f(x 1, , x j . The minimizing of nonlinier pseudo boolean functions f(xi,...,xn) could by two groups, i.e : 1. Minimizing of nonlinier pseudo boolean functions f( x , , xn) without constraints, it use the basic algorithma. 2. Minimizing of nonlinier pseudo boolean functions f(x ,...,xn) with constraints, it use lagrangean multipliers.

Item Type: Thesis (Undergraduate) Q Science > QA Mathematics Faculty of Science and Mathematics > Department of Mathematics 31618 Mr UPT Perpus 2 23 Nov 2011 14:41 23 Nov 2011 14:41

Repository Staff Only: item control page