BABI

PENDAHULUAN

1.1. Latar Belakang

Sungai ialah salah satu bagian lingkungan yang memiliki fungsi penting bagi keberlanjutan hidup manusia dan makhluk hidup lainnya. Dengan berjalannya waktu meningkatnya pembangunan diberbagai bidang turut memberikan dampak bagi lingkungan termasuk adanya pencemaran terhadap sungai yang bersumber dari meningkatnya kegiatan domestik maupun non domestik seperti kegiatan industri, pertanian, peternakan dan lainnya. Kegiatan industri memegang peran dalam penurunan kualitas air di sungai dengan tingkat pencemaran rendah hingga tinggi yang menyebabkan penggunaan air sungai menjadi terbatas (Rahmawati, 2011).

Besarnya sebuah industri mempengaruhi besarnya pencemaran lingkungan dikarenakan semakin besar sebuah industri maka limbah dan polusi yang dihasilkan semakin besar, produksi pulp dan kertas menjadi salah satu jenis industri terbesar di dunia yang secara bersamaan menjadi industri paling terkait dengan air dan salah satu jenis industri yang banyak menggunakan energi (Toczyłowska-Mamińska, 2017). Meski telah memasuki era digital, permintaan kertas di dunia masih terus mengalami peningkatan yang dibuktikan dengan produksi pulp dan kertas pada tahun 2017 mencapai 813 juta ton di seluruh dunia yang mana pada tahun sebelumnya hanya mencapai 803 juta ton saja (FAOSTAT, 2019).

Berbagai penelitian telah dilakukan dengan berbagai jenis metode untuk mengurangi bahkan menghilangkan berbagai senyawa yang tidak dikehendaki berada pada air akibat pencemaran oleh limbah kertas seperti dengan cara koagulasi, adsorpsi, oksidasi, pengolahan biologis dan dengan cara elektrokimia.

Metode koagulasi merupakan metode klasik dalam pembersihan air limbah industri yang telah banyak diaplikasikan (Ahmad *et al.*, 2008). Proses koagulasi sangat efektif untuk mengolah limbah yang mengandung banyak padatan,

berwarna dan kandungan polutan organik pada tahap awal pengolahan untuk dilanjutkan dengan proses selanjutnya. Pada proses koagulasi partikel padat dan beberapa senyawa organik diaglomerasi oleh koagulan dan kemudian diflokulasi dan akhirnya diendapkan (Yazdanbakhsh *et al.*, 2015). Dikarenakan air limbah dari industri pulp dan kertas memiliki kandungan suspended solid (SS) serta intensitas warna yang tinggi, proses koagulasi dianggap kurang tepat jika dijadikan sebagai metode pengolahan tunggal pembersihan air limbah karena tidak dapat membersihkan polutan secara menyeluruh maka proses koagulasi perlu dikombinasikan dengan proses pengolahan lainnya (Jaafarzadeh *et al.*, 2017b).

Metode pengolahan limbah dengan proses biologi seperti dilaporkan oleh Chen et al., (2018) mampu mereduksi COD pada air limbah industri kertas dari 5627 mg/L menjadi 361 mg/L dengan metode lumpur aktif. Selain pengolahan dengan metode lumpur aktif, terdapat pengolahan biologi lainnya yang sedang banyak diteliti yakni pengolahan aerobik granular yang mana pengolahan ini dianggap sebagai metode pengolahan yang mampu menggantikan pengolahan biologis konvensional karena memiliki kemampuan pengendapan yang baik, retensi biomassa yang tinggi, tahan terhadap toksisitas, tahan terhadap shock loading serta mampu bertahan dalam kondisi nutrien yang rendah sehingga dianggap cocok untuk mengolah air limbah industri kertas (Vashi et al., 2018).

Teknologi pengolahan membran juga pernah digunakan untuk mengolah limbah industri kertas. Hasil pengolahan limbah industri kertas dengan menambahkan H₂O₂ (0,8 ml/L) dan katalis CuO₂ (2 gr/L) pada membran keramik mampu meningkatkan efisiensi pembersihan COD pada limbah hingga 77% selama 60 menit (Zhou *et al.*, 2018).

Pengolahan limbah industri kertas lainnya pernah dilakukan oleh Brink *et al.*, (2018) dengan mengkombinasikan proses biologis *moving bed biofilm reactor* (MBBR) dengan proses kimia yakni *advance oxidation processes* (AOPs), proses biologi mampu menyisihkan 55% COD dengan waktu 24 jam yang selanjutnya dilakukan pengolahan kimia yang mampu menyisihkan COD 53 % pada pH 3.33, Fe (III) 1.000 mg/L dan dosis H₂O₂ 14.55 mM dengan waktu proses 60 menit.

Pengolahan dengan metode AOPs dianggap sangat efektif dalam menyisihkan molekul organik dan polutan mikro pada limbah karena pada proses ini dihasilkan radikal hidroksil yang sangat reaktif sehingga sangat cocok untu dikombinasikan dengan metode pengolahan lainnya (Brink *et al.*, 2018).

Metode pembersihan limbah lain yang berkombinasi dengan AOPs adalah elektrokimia yang selanjutnya dikenal dengan EAOPs. Terdapat berbagai jenis metode dari EAOPs diantaranya adalah *anodic oxidation* (AO), *anodic oxidation* dengan regenerasi elektro H₂O₂ (AO-H₂O₂), elektro-Fenton (EF), fotoelektro-Fenton (PEF) dan solar fotoelektro-Fenton (SPEF) metode tersebut dapat digunakan sendiri maupun dikombinasikan dengan metode pengolahan lainnya seperti proses biologi, elektrokoagulasi, koagulasi dan filter membran (Moreira *et al.*, 2017).

Dari berbagai jenis EAOPs yang sedang banyak diperbincangkan adalah EAOPs yang menggunakan reagen Fenton. Teknologi EAOPs digunakan untuk menghilangkan polutan organik persisten. Terdapat dua jenis pengolahan yang sangat terkenal yakni elektro-Fenton dan fotoelektro-Fenton (Ganiyu *et al.*, 2018).

Teknologi elektro-Fenton telah banyak digunakan untuk membersihkan air limbah industri kertas, efisiensi pembersihan total organik hingga 91% pada volume limbah 50 mL, katoda yang digunakan adalah karbon yang dimodifikasi dan anoda Ti/IrO₂-Ta₂O₅, ditambahkan NaCl 1 gr/L, pH 3, kecepatan pengadukan 600 rpm, penambahan [Fe³⁺] 0,5 mM, serta pada tekanan 1 bar (Klidi *et al.*, 2019).

Pengolahan lain yang pernah dilakukan adalah pembersihan warna oleh Panizza & Oturan (2011), Alizarin Red 200 mg/L mampu disisihkan secara sempurna serta total organik mencapai 95% setelah 210 menit pengolahan dengan menambahkan katalis Fe²⁺ sebanyak 0,2 mM, arus 300 mA, pH 3, menggunakan elektroda grafit yang ditempatkan 1,6 cm antar satu sama lain. Senyawa fenol sebanyak 250 mg/L juga dapat dihilangkan secara optimal oleh elektro-Fenton yang menggunakan elektroda besi pada pH 3, 500 mg/L H₂O₂ dengan efisiensi degradasi fenol mencapai 93,3% dan COD hingga 87,5% (Gümüş dan Akbal, 2016).

Surfaktan anionik mampu terdegradasi menggunakan katoda karbon dan anoda batang silinder pada jarak antar elektroda adalah 1,6 cm yang mana H₂O₂ dihasilkan dari reduksi O₂ melalui injeksi udara dari luar dengan laju 1L/menit selama 10 menit sebelum elektrolisis dimulai, dan dilakukan pengadukan dengan kecepatan 700 rpm, hasil percobaan ini menghasilkan surfaktan LAS tersisihkan akibat adanya OH radikal, pada kondisi tegangan 200 mA, katalis Fe²⁺ 0,3 mM dan pH 3 selama 180 menit 50 mg/L, LAS mampu tersisihkan dengan sempurna (Panizza *et al.*, 2013).

Proses elektro-Fenton menggunakan katalis *iron-manganese binary oxide loaded zeolite* (IMZ) pada 1000 mL glass beaker dengan 400 mL lindi dilakukan oleh Sruthi *et al.*, (2018), limbah diaduk pada suhu ruang menggunakan grafit sebagai elektroda pada pH 3, 700 mg/L katalis IMZ, 0,033M H₂O₂ mampu menyisihkan COD 88,6%.

Teknologi elehtro-Fenton juga digunakan oleh Yatmaz & Uzman, (2009) untuk menyisihkan senyawa insektisida dan akarisida organofosfat, monocrotophos (MCP), dari percobaan tersebut 65% MCP tersisihkan secara signifikan kurang dari 5 menit waktu pengolahan dengan konsentrasi awal adalah 300 mg/L. Waktu degradasi yang singkat dapat dikaitkan dengan adanya OH radikal yang membantu proses oksidasi menjadi lebih cepat sehingga senyawa kontaminan dapat disisihkan secara singkat.

Guna mengatasi permasalahan lingkungan akibat air limbah industri kertas maka perlu dilakukan pengelolaan air limbah salah satunya dengan mengolah air limbah agar memuhi kualitas yang dipersyaratkan. Teknologi elektro-Fenton dianggap mampu untuk membersihkan air limbah industri kertas hingga memenuhi kualitas yang dipersyaratkan sehingga tidak merusak lingkungan disekitar industri kertas.

1.2. Perumusan Masalah

Kegiatan industri memegang peran dalam penurunan kualitas air di sungai dengan tingkat pencemaran rendah hingga tinggi yang menyebabkan penggunaan air sungai menjadi terbatas (Rahmawati, 2011). Produksi pulp dan kertas menjadi salah satu jenis industri terbesar di dunia yang secara bersamaan menjadi industri paling terkait dengan air dan salah satu jenis industri yang banyak menggunakan energi (Toczyłowska-Mamińska, 2017). Meski telah memasuki era digital, permintaan kertas di dunia masih terus mengalami peningkatan yang dibuktikan dengan produksi pulp dan kertas pada tahun 2017 mencapai 813 juta ton di seluruh dunia yang mana pada tahun sebelumnya hanya mencapai 803 juta ton saja (FAOSTAT, 2019).

Pengolahan limbah dengan metode AOPs dianggap sangat efektif dalam menyisihkan molekul organik dan polutan mikro pada limbah karena pada proses ini dihasilkan radikal hidroksil yang sangat reaktif sehingga sangat cocok untuk dikombinasikan dengan metode pengolahan lainnya (Brink et al., 2018). Metode pembersihan limbah lain yang berkombinasi dengan AOPs adalah elektrokimia yang selanjutnya dikenal dengan EAOPs yang mana terdapat teknologi yang sedang banyak diperbincangkan adalah EAOPs yang menggunakan reagen Fenton atau sering disebut elektro-Fenton, teknologi ini digunakan untuk menghilangkan polutan organik persisten (Ganiyu et al., 2018). Teknologi elektro-Fenton telah digunakan untuk membersihkan berbagai jenis air limbah industri dengan efisiensi pembersihan total organik hingga 91% (Klidi et al., 2019), warna tersisihkan 100% (Panizza dan Oturan, 2011), senyawa fenol mampu disisihkan hingga 93,3% dan COD mampu disisihkan hingga 87,5% (Gümüş dan Akbal, 2016), Surfaktan anionik mampu terdegradasi sempurna dengan metode elektro-Fenton (Panizza et al., 2013), senyawa insektisida dan akarisida organofosfat, monocrotophos (MCP) tersisihkan hingga 65% kurang dari 5 menit (Yatmaz dan Uzman, 2009). Maka dari itu penyusun mengangkat masalah pada penelitian ini adalah sebagai berikut:

- 1. Bagaimana pengaruh pH larutan pada proses elektro-Fenton (*electrochemical peroxidation* dan fered-Fenton).
- 2. Bagaimana pengaruh arus terhadap hasil pengolahan dengan proses elektro-Fenton (*electrochemical peroxidation* dan fered-Fenton).

- 3. Bagaimana pengaruh penambahan H₂O₂ pada proses elektro-Fenton (*electrochemical peroxidation* dan fered-Fenton).
- 4. Seberapa banyak senyawa Fe²⁺ yang harus ditambahkan pada proses fered-Fenton.
- 5. Apakah waktu berpengaruh signifikan terhadap hasil membersihkan air limbah industri kertas dengan elektro-Fenton.
- 6. Bagaimana kinetika penyisihan warna dan COD pada proses elektro-Fenton (*electrochemical peroxidation* dan fered-Fenton).
- 7. Seberapa banyak energi yang diperlukan pada proses elektro-Fenton (*electrochemical peroxidation* dan fered-Fenton).

1.3. Tujuan Penelitian

Adapun tujuan dari penelitian ini adalah sebagai berikut:

- Menganalisis kecenderungan pengaruh nilai pH, arus, konsentrasi reagen Fenton (H₂O₂ dan Fe²⁺), dan waktu pada proses *electrochemical peroxidation* dan fered-Fenton terhadap penurunan warna dan COD.
- 2. Menghitung kinetik reaksi penyisihan warna dan COD pada *electrochemical peroxidation* dan fered-Fenton.
- 3. Menghitung kebutuhan energi proses *electrochemical peroxidation* dan fered-Fenton.

1.4. Manfaat Penelitian

- 1. Memberikan informasi mengenai kondisi optimal elektro-Fenton untuk membersihkan air limbah industri kertas.
- 2. Memberikan alternatif pengolahan air limbah industri kertas.
- 3. Dengan melakukan pengolahan air limbah industri kertas akan mereduksi volume cemaran pada air yang dapat menyebabkan menurunnya kualitas air.

1.5. Penelitian Terkait dan Keaslian Penelitian

Tabel 1.1. Penelitian Terkait

Penulis	Judul	Metode	Hasil Penelitian
Panizza dan	Degradation of Alizarin	Penyisihan warna Alizarin Red (AR),	Kondisi optimal operasional penelitian
Oturan,	Red by electro-Fenton	menggunakan atoda grafit-felt untuk	Arus 300 mA(maksimal), konsentrasi Fe ²⁺
(2011)	process using a graphite-felt	menghasilkan OH radikal dari proses,	0,2 mM, konsentrasi AR 200 mg/L.
	cathode	menambahkan katalis Fe, memvariasikan	Dari kondisi optimal tersebut warna
		arus, konsentrasi katalis, konsentrasi awal	mampu disisihkan secara sempurna namun
		warna pada limbah sintetik, melakukan	bukan berarti semua senyawa organik
		injeksi O2 selama 10 menit sebelum proses,	dihilangkan, dilakukan penujian
		pH larutan 3, waktu pengolahan 210 menit	kandungan TOC dan didapat hasil 95%
			TOC hilang dalam waktu pengolahan 210
			menit yang berarti hampir semua bahan
			organik teroksidasi (senyawa aromatik dan
			asam karboksil sebagai senyawa organik
			teroksidasi) yang berhasil dimineralisasi
			menjadi CO2 dan air.

Penulis	Judul	Metode	Hasil Penelitian
Panizza et	Electro-Fenton degradation	Proses elektro-Fenton untuk menyisihkan	Hasil dari percobaan ini adalah surfaktan
al., (2013)	of anionic surfactants	surfaktan menggunakan katoda karbon dan	LAS mampu tersisihkan dengan adanya
		anoda batang silinder dengan jarak antar	OH radikal, dengan kondisi tegangan 200
		elektroda adalah 1,6 cm.	mA, katalis Fe ²⁺ 0,3 mM dan pH 3 selama
		H ₂ O ₂ dihasilkan dari reduksi O ₂ yang	180 menit 50 mg/L LAS mampu
		dihasilkan dari injeksi dari luar dengan laju	tersisihkan dengan sempurna.
		1L/menit selama 10 menit sebelum	
		elektrolisis dimulai, dan dilakukan	
		pengadukan dengan kecepatan 700 rpm. Fe	
		ditambah dari katalis	
Atmaca,	Treatment of landfill	Pengolahan lindi dengan menggunakan	Hasil pengolahan dengan EF didapat
(2009)	leachate by using electro-	cast-iron sebagai anoda dan katoda dengan	kondisi optimal dengan pH awal 3,
	Fenton method	dimensi 4x5 cm sebanyak 1 pasang.	konsentrasi H ₂ O ₂ awal = 2.000mg/L, arus
		Sampel sebelumnya disaring dulu, lalu 500	DC konstan = 2A dan waktu perawatan =
		mL dimasukkan ke EF reaktor, dilakukan	20 menit. Pada kondisi ini, sekitar, 72%
		penurunan pH dan pengadukan 200rpm,	COD, 90% warna, 87% PO4-P dan 26%
			NH4-N penyisihan dapat dicapai.

Penulis	Judul	Metode	Hasil Penelitian
		pengambilan sampel per 5 menit selama 45	Perubahan jarak antara elektroda tidak
		menit	terlalu berdampak signifikan, namun jarak
			semakin jauh menyebabkan penggunaan
			energi semakin besari. Karakteristik
			sedimennya bagus, namun sulit untuk
			mengurangi jumlah flok sehingga jadi
			masalah karena harus dilakukan
			pengelolaan lanjutan.
Khatri et	Performance of electro-	Penyisihan senyawa phenol pada limbah	Kondisi optimal stokiometri pH 5,2; H ₂ O ₂
al., (2018)	Fenton process for phenol	sintetik Konsentrasi phenol 250 mg/L,	37,2 mM, konduktivitas 125 μS/cm, 100
	removal using Iron	elektroda besi, waktu 30 menit, konsentrasi	rpm, elektrolit NaCl, CD 0,8 mA/cm ² ,
	electrodes and activated	H ₂ O ₂ 14,9, 29,8, 37,2, 44,6, dan 55,8 mM,	jarak antar elektroda 4 cm.
	carbon	elektrolit KCl, Na ₂ SO ₄ , NaCl. Jarak antar	Phenol mampu didisihkan secara optimal
		elektroda 2 – 6, pengadukan 100 – 800	pada waktu 5 menit dengan total
		rpm, konduktivitas 125 – 2000 μS/cm, CD	penyisihan TOC 52,2% namun setelah
		0,1-2 mA/cm ² , penambahan karbon aktif	ditambahkan karbon aktif penyisihan TOC
			menjadi 75%

Penulis	Judul	Metode	Hasil Penelitian
Gümüş dan	Comparison of Fenton and	Membandingkan proses Fenton dan	Proses dengan elektro-Fenton
Akbal,	electro-Fenton processes	elektro Fenton untuk menyisihkan fenol.	menghasilkan pengolahan fenol yang lebih
(2016)	for oxidation of phenol	pH (pH 3.0-7.0), current density (1-5	baik dengan efisiensi 93,3% namun sangat
		mA/cm2), konsentrasi phenol (50-500	bergantung pada kondisi pH, arus,
		mg/L) dan konsetrasi hydrogen peroxide	kandugan H ₂ O ₂ dan fenol.
		(0-1000 mg/L). 500 mL limbah sintetik	
		phenol 0.05 M Na ₂ SO ₄ elektrolit	
Iglesias et	Heterogeneous electro-	Elektro-Fenton dengan sistem batch dan	Dari hasi penelitian menggunakan katalis
al., (2015)	Fenton treatment:	menggunakan katoda graphite dan Boron-	Al-Fe-Y dapat digunakan untuk
	Preparation,	Doped Diamond (BDD) sebagai anoda	menyisihkan pestisida pada air dengan
	characterization and		waktu yang singkat, sehingga elektro-
	performance in		Fenton dianggap cocok untuk proses
	groundwater pesticide		pengolahan air tanah.
	removal		
Yatmaz	Degradation of pesticide	Berbagai jenis proses elektrokimia	Penyisihan senyawa pestisida
dan	monochrotophos from	digunakan seperti direct elektro oksidasi,	monochrotophos mampu disisihkan secara
			efisien oleh proses elektro-Fenton dengan

Penulis	Judul	Metode	Hasil Penelitian
Uzman,	aqueous solutions by	indirect elektro oksidasi, elektrokoagulasi	waktu kontak 5 menit hampir semua
(2009)	electrochemical methods	dan elektro-Fenton	senyawa teroksidasi dan terdetoksifikasi
			sempurna.
Zhou et al.,	Electrogeneration of	Modifikasi katoda grafit dengan hysrazine	Dengan menggunakan reaktor yang terdiri
(2013)	hydrogen peroxide for	hydrate sebagai reagen utama, platinum	dari 3 elektroda, didapat hasil penyisihan
	electro-Fenton system by	sebagai elektroda counter, dan SCE	p-nitrophenol dengan kondisi optimal
	oxygen reduction using	sebagai elektroda referensi.	konsentrasi hydrazine hydrate 10%,
	chemically modified	Menggunakan Na ₂ SO ₄ sebagai elektrolit	potensial -0,75 V, pH = 3, debit $O_2 = 0,4$
	graphite felt cathode	0,05 M, konsentrasi hydrazine hydrate	L/menit, Na ₂ SO ₄ 0,05 M hanya dengan
		5,10,15,20%, tegangan -0,35;-0,85 V, pH	waktu 20 menit, sedangkan untuk TOC
		$= 3; 4,6; 6,4; 8,1, debit O_2 = 0 - 0,6 L/menit$	dibutuhkan waktu 120 menit.
Cruz-	Optimization of electro-	Optimalisasi penyisihan pewarna tekstil	Penyisihan dengan kondisi optimal
González et	Fenton/BDD process for	Acid Yellow 36. Elektroda BDD. CD 8 -	mampu menyisihkan 95,9% warna dengan
al., (2012)	decolorization of a model	23 mA/cm ² . Konsentrasi warna 60-80	konsentrsi awal limbah 80 mg/L, CD 15
	azo dye wastewater by	mg/L. Konsentrasi Fe ²⁺ 0,1-0,3. Waktu 10-	mA/cm^2 , $Fe^{2+}=0.3$ dengan waktu 50
	means of response surface	50 menit	menit.
	methodology		

Penulis	Judul	Metode	Hasil Penelitian
Loaiza-	Electro-Fenton degradation	Penyisihan kandungan hidroorganik dari	Penelitian ini menghasilkan kondisi
Ambuludi	of anti-inflammatory drug	ibuprofen dengan EF	optimal proses dengan menambahkan
et al.,	ibuprofen in hydroorganic	Menggunakan anoda Pt dan BDD dengan	katalis 0,2 mM, anoda yang digunakan
(2013)	medium	katoda grafit	adalah Pt
		Faktor lain yang divariasikan adalah	Karena penggunaan Pt dianggap lebih baik
		kerapatan arus 50-500, penambahan	karena laju oksidasi yang dihasilkan lebih
		elektrolit NaCl dan Na ₂ SO ₄ , penambahan	baik dibandingkan BDD karena generasi
		katalis Fe 0,05-0,2, pH sudah ditentukan	oksidan sekunder (ion persulfat) yang
		pada nilai 3, H ₂ O ₂ disediakan oleh proses	mengoksidasi besi menjadi ion besi
		dengan memecah O2 yang bersumber dari	sehingga mampu memecah konsentrasi
		aerasi dengan laju 1L/menit 10 menit	katalis. Elektrolit NaCl dianggap mampu
		sebelum proses	mendukung proses karena elektrogenerasi
			klorin aktif dari ion – ion klorida
			mengurangi produksi OH radikal dari
			reaksi Fenton.