BOILING

Nazaruddin Sinaga

Efficiency and Energy Conservation Laboratory Diponegoro University

General Considerations

• Boiling is associated with transformation of liquid to vapor at a solid/liquid interface due to convection heat transfer from the solid.

• Agitation of fluid by vapor bubbles provides for large convection coefficients and hence large heat fluxes at low-to-moderate surface-to-fluid temperature differences.

• Special form of Newton's law of cooling:

$$q_s'' = h(T_s - T_{sat}) = h \ \varDelta \ T_e$$

T_{sat} → saturation temperature of liquid
 Δ T_e ≡ (*T_s* − *T_{sat}) → excess temperature*

• Special Cases

Pool Boiling:

Liquid motion is due to natural convection and bubble-induced mixing.

Forced Convection Boiling:

Fluid motion is induced by external means, as well as by bubble-induced mixing.

Saturated Boiling:

Liquid temperature is slightly larger than saturation temperature.

Subcooled Boiling:

Liquid temperature is less than saturation temperature.

The Boiling Curve

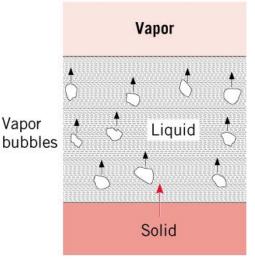
Reveals range of conditions associated with saturated pool boiling on a $q_s'' - \Delta T_e$ plot.

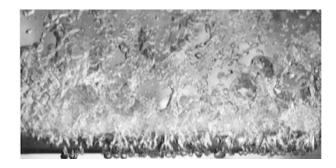
Heating curve with nichrome and Burnout of $q_{\max}^{"}$ platinum wires nichrome wire $q_{\max}^{"}$ 10^{6} Absent in powercontrolled mode $q_{s}^{"}(W/m^{2})$ $q_{\min}^{"}$ Cooling curve with $q_{\min}^{"}$ platinum wire C 5 10 30 100 1000 ΔT_e (°C)

Water at Atmospheric Pressure

- Free Convection Boiling $\left(\Delta T_e < 5^{\circ}C \right)$
 - ➢ Little vapor formation.
 - ➤ Liquid motion is due principally to single-phase natural convection.
- Onset of Nucleate Boiling $ONB(\Delta T_e \approx 5^{\circ}C)$

- Nucleate Boiling $(5 < \Delta T_e < 30^{\circ}C)$
 - ➤ Isolated Vapor Bubbles $(5 < \Delta T_e < 10^\circ C)$
 - Liquid motion is strongly influenced by nucleation of bubbles at the surface.
 - h and q''_s increase sharply with increasing ΔT_e .
 - Heat transfer is principally due to contact of liquid with the surface (single-phase convection) and not to vaporization.
 - ▶ Jets and Columns $(10 < \Delta T_e < 30^\circ C)$
 - Increasing number of nucleation sites causes bubble interactions and coalescence into jets and slugs.
 - Liquid/surface contact is impaired.
 - q_s'' continues to increase with ΔT_e while h begins to decrease.

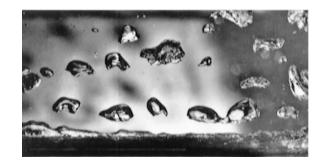




- Critical Heat Flux CHF, $q''_{\text{max}} \left(\Delta T_e \approx 30^{\circ} C \right)$
 - > Maximum attainable heat flux in nucleate boiling.
 - > $q''_{\text{max}} \approx 1 \text{ MW/m}^2$ for water at atmospheric pressure.
- Potential Burnout for Power-Controlled Heating
 - An increase in q''_s beyond q''_{max} causes the surface to be blanketed by vapor, and the surface temperature can spontaneously achieve a value that potentially exceeds its melting point $(\Delta T_s > 1000^\circ C)$.
 - If the surface survives the temperature shock, conditions are characterized by *film boiling*.

• Film Boiling

- Heat transfer is by conduction and radiation across the vapor blanket.
- A reduction in q''_s follows the cooling curve continuously to the Leidenfrost point corresponding to the minimum heat flux q''_{min} for film boiling.



- A reduction in q''_s below q''_{min} causes an abrupt reduction in surface temperature to the nucleate boiling regime.
- Transition Boiling for Temperature-Controlled Heating
 - ▷ Characterized by a continuous decay of q''_s (from q''_{max} to q''_{min}) with increasing ΔT_e .
 - Surface conditions oscillate between nucleate and film boiling, but portion of surface experiencing film boiling increases with ΔT_e .
 - > Also termed unstable or partial film boiling.

Correleations

Pool Boiling Correlations

- Nucleate Boiling
 - Rohsenow Correlation

$$\boldsymbol{q}_{s}^{\prime\prime} = \mu_{l} h_{fg} \left[\frac{g \left(\rho_{l} - \rho_{v} \right)}{\sigma} \right]^{1/2} \left(\frac{c_{p,l} \Delta T_{e}}{C_{s,f} h_{fg} \operatorname{Pr}_{l}^{n}} \right)^{3}$$

 $C_{s,f}$, $n \rightarrow$ Surface/Fluid Combination (Table 10.1)

• Critical Heat Flux

$$q''_{\max} = 0.149 h_{fg} \rho_{v} \left[\frac{\sigma g (\rho_{l} - \rho_{v})}{\rho_{v}^{2}} \right]^{1/4}$$

Correleations

• Film Boiling

The cumulative (and coupled effects) of convection and radiation across the vapor layer _____

$$\overline{h}^{4/3} \approx \overline{h}^{4/3}_{conv} + \overline{h}_{rad} \overline{h}^{1/3}$$

$$\overline{Nu}_D = \frac{\overline{h}_{conv} D}{k_v} = C \left[\frac{g(\rho_l - \rho_v) h'_{fg} D^3}{\nu_v k_v (T_s - T_{sat})} \right]^{1/4}$$
Geometry

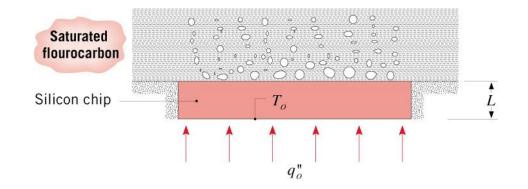
Geometry	_ <i>C</i>
Cylinder(Hor.)	0.62
Sphere	0.67

$$\begin{split} h_{fg}' &= h_{fg} + 0.80 \ c_{p,v} \left(T_s - T_{sat} \right) \\ \overline{h}_{rad} &= \frac{\varepsilon \sigma \left(T_s^4 - T_{sat}^4 \right)}{T_s - T_{sat}} \end{split}$$

If $\overline{h}_{conv} > \overline{h}_{rad}$,

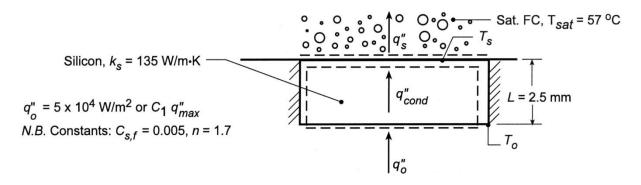
$$\overline{h} \approx \overline{h}_{conv} + 0.75 \ \overline{h}_{rad}$$

Problem 10.23: Chip thermal conditions associated with cooling by immersion in a fluorocarbon.



KNOWN: Thickness and thermal conductivity of a silicon chip. Properties of saturated fluorocarbon liquid

FIND: (a) Temperature at bottom surface of chip for a prescribed heat flux and for a flux that is 90% of CHF, (b) Effect of heat flux on chip surface temperatures; maximum allowable heat flux for a surface temperature of 80° C.



ASSUMPTIONS: (1) Steady-state conditions, (2) Uniform heat flux and adiabatic sides, hence one-dimensional conduction in chip, (3) Constant properties, (4) Nucleate boiling in liquid.

PROPERTIES: Saturated fluorocarbon (given): $c_{p,\ell} = 1100 \text{ J/kg} \cdot \text{K}$, $h_{fg} = 84,400 \text{ J/kg}$, $\rho_{\ell} = 1619.2 \text{ kg/m}^3$, $\rho_v = 13.4 \text{ kg/m}^3$, $\sigma = 8.1 \times 10^{-3} \text{ kg/s}^2$, $\mu_{\ell} = 440 \times 10^{-6} \text{ kg/m} \cdot \text{s}$, $Pr_{\ell} = 9.01$.

ANALYSIS: (a) Energy balances at the top and bottom surfaces yield $q''_{o} = q''_{cond} = k_{s} (T_{o} - T_{s})/L = q''_{s}$; where T_{s} and q''_{s} are related by the Rohsenow correlation,

$$T_{s} - T_{sat} = \frac{C_{s,f} h_{fg} \operatorname{Pr}_{\ell}^{n}}{c_{p,\ell}} \left(\frac{q_{s}''}{\mu_{\ell} h_{fg}}\right)^{1/3} \left[\frac{\sigma}{g(\rho_{\ell} - \rho_{v})}\right]^{1/6}$$

Hence, for $q_8'' = 5 \times 10^4 \text{ W/m}^2$,

$$\begin{split} T_{\rm s} - T_{\rm sat} &= \frac{0.005 \left(84,400\,J/kg\right) 9.01^{1.7}}{1100\,J/kg\cdot K} \left(\frac{5 \times 10^4\,W/m^2}{440 \times 10^{-6}\,kg/m\cdot s \times 84,400\,J/kg}\right)^{1/3} \\ &\times \left[\frac{8.1 \times 10^{-3}\,kg/s^2}{9.807\,m/s^2 \left(1619.2 - 13.4\right)kg/m^3}\right]^{1/6} = 15.9^{\circ} {\rm C} \\ T_{\rm s} &= \left(15.9 + 57\right)^{\circ} {\rm C} = 72.9^{\circ} {\rm C} \end{split}$$

Problem: Electronic Chip Cooling (cont)

From the rate equation,

$$T_{o} = T_{s} + \frac{q_{o}''L}{k_{s}} = 72.9^{\circ}C + \frac{5 \times 10^{4} \text{ W/m}^{2} \times 0.0025 \text{ m}}{135 \text{ W/m} \cdot \text{K}} = 73.8^{\circ}C$$

For a heat flux which is 90% of the critical heat flux ($C_1 = 0.9$),

$$q_{0}'' = 0.9q_{\text{max}}'' = 0.9 \times 0.149 h_{\text{fg}} \rho_{\text{v}} \left[\frac{\sigma g (\rho_{\ell} - \rho_{\text{v}})}{\rho_{\text{v}}^{2}} \right]^{1/4} = 0.9 \times 0.149 \times 84,400 \,\text{J/kg} \times 13.4 \,\text{kg/m}^{3}$$

$$\times \left[\frac{8.1 \times 10^{-3} \, \text{kg/s}^2 \times 9.807 \, \text{m/s}^2 \, (1619.2 - 13.4) \, \text{kg/m}^3}{\left(13.4 \, \text{kg/m}^3\right)^2}\right]^{1/4}$$

$$q_0'' = 0.9 \times 15.5 \times 10^4 \text{ W/m}^2 = 13.9 \times 10^4 \text{ W/m}^2$$

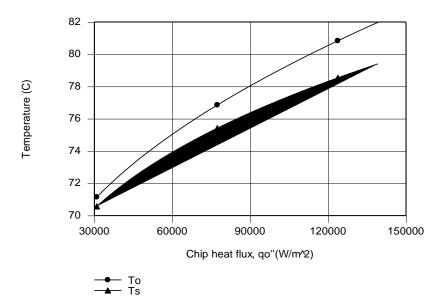
From the results of the previous calculation and the Rohsenow correlation, it follows that

$$\Delta T_{e} = 15.9^{\circ} C \left(q_{o}'' / 5 \times 10^{4} W / m^{2} \right)^{1/3} = 15.9^{\circ} C \left(13.9 / 5 \right)^{1/3} = 22.4^{\circ} C$$

Hence, $T_s = 79.4$ °C and

$$T_{o} = 79.4^{\circ}C + \frac{13.9 \times 10^{4} \text{ W/m}^{2} \times 0.0025 \text{ m}}{135 \text{ W/m} \text{ K}} = 82^{\circ}C$$

(b) Parametric calculations for $0.2 \le C_1 \le 0.9$ yield the following variations of T_s and T_o with q_o'' .



The chip surface temperatures, as well as the difference between temperatures, increase with increasing heat flux. The maximum chip temperature is associated with the bottom surface, and $T_0 = 80^{\circ}C$ corresponds to

$$q_{0,max}'' = 11.3 \times 10^4 \text{ W/m}^2$$

which is 73% of CHF ($q''_{max} = 15.5 \times 10^4 \text{ W/m}^2$).

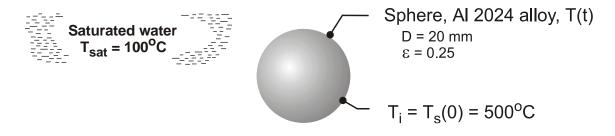
COMMENTS: Many of today's VLSI chip designs involve heat fluxes well in excess of 15 W/cm^2 , in which case pool boiling in a fluorocarbon would not be an appropriate means of heat dissipation.

Problem 10.26: Initial heat transfer coefficient for immersion of an aluminum sphere in a saturated water bath at atmospheric pressure and its temperature after immersion for 30 seconds.

KNOWN: A sphere (aluminum alloy 2024) with a uniform temperature of 500°C and emissivity of 0.25 is suddenly immersed in a saturated water bath maintained at atmospheric pressure.

FIND: (a) The total heat transfer coefficient for the initial condition; fraction of the total coefficient contributed by radiation; and (b) Estimate the temperature of the sphere 30 s after it has been immersed in the bath.

SCHEMATIC



Problem: Quenching of Aluminum Sphere (cont.)

ASSUMPTIONS: (1) Water is at atmospheric pressure and uniform temperature, T_{sat} , and (2) Lumped capacitance method is valid.

PROPERTIES:

Vapor Blanket
$$(T_{f,i} = 573 \text{K})$$
: $h_{fg} = 1.41 \times 10^6 \text{ J/kg}$, $k_v = 0.0767 \text{ W/m} \cdot \text{K}$, $c_{p,v} = 5889 \text{ J/kg} \cdot \text{K}$,
 $Pr_v = 1.617$, $\rho_v = 46.0 \text{ kg/m}^3$, $v_v = 4.33 \times 10^{-7} \text{ m}^2/\text{s}$, $\rho_l = 712 \text{ kg/m}^3$.
Aluminum Alloy: $\rho_s = 2700 \text{ kg/m}^3$, $c_{p,s} = 875 \text{ J/kg} \cdot \text{K}$, $k_s = 186 \text{ W/m} \cdot \text{K}$.

ANALYSIS: (a) For the initial condition with $T_s = 500^{\circ}$ C, *film boiling* will occur and the coefficients due to convection and radiation are estimated using Eqs. 10.9 and 10.11, respectively,

$$\overline{\mathrm{Nu}}_{\mathrm{D}} = \frac{\overline{\mathrm{h}}_{\mathrm{conv}}\mathrm{D}}{\mathrm{k}_{\mathrm{v}}} = \mathrm{C} \left[\frac{\mathrm{g} (\rho_{\ell} - \rho_{\mathrm{v}}) \mathrm{h}_{\mathrm{fg}}^{\prime} \mathrm{D}^{3}}{\nu_{\mathrm{v}} \mathrm{k}_{\mathrm{v}} (\mathrm{T}_{\mathrm{s}} - \mathrm{T}_{\mathrm{sat}})} \right]^{1/4}$$
(1)
$$\overline{\mathrm{h}}_{\mathrm{rad}} = \frac{\varepsilon \sigma \left(\mathrm{T}_{\mathrm{s}}^{4} - \mathrm{T}_{\mathrm{sat}}^{4} \right)}{\mathrm{T}_{\mathrm{s}} - \mathrm{T}_{\mathrm{sat}}}$$
(2)

where C = 0.67 for spheres and $\sigma = 5.67 \times 10^{-8} \text{ W/m}^2 \cdot \text{K}^4$. The corrected latent heat is $h'_{fg} = h_{fg} + 0.8 c_{p,v} (T_s - T_{sat})$ (3) Problem: Quenching of Aluminum Sphere (cont.)

The total heat transfer coefficient is given by Eq. 10.10a as

$$\overline{\mathbf{h}}^{4/3} = \overline{\mathbf{h}}_{\mathrm{conv}}^{4/3} + \overline{\mathbf{h}}_{\mathrm{rad}} \cdot \overline{\mathbf{h}}^{1/3} \tag{4}$$

Using the foregoing relations, the following results are obtained.

$$\overline{\text{Nu}}_{\text{D}} = \overline{\text{h}}_{\text{cnv}} \left(W/\text{m}^2 \cdot \text{K} \right) = \overline{\text{h}}_{\text{rad}} \left(W/\text{m}^2 \cdot \text{K} \right) = \overline{\text{h}} \left(W/\text{m}^2 \cdot \text{K} \right)$$
226 867 12.0 876

(b) For the lumped-capacitance method, from Section 5.3, the energy balance is

$$-\overline{h}A_{s}\left(T_{s}-T_{sat}\right) = \rho_{s}Vc_{s}\frac{dT_{s}}{dt}$$
(5)

where ρ_s and c_s are properties of the sphere. Numerically integrating Eq. (5) and evaluating \overline{h} as a function of T_s, the following result is obtained for the sphere temperature after 30s. T_s (30s) = 333°C.

COMMENTS: (1) The Biot number associated with the aluminum alloy sphere cooling process for the initial condition is Bi = 0.09. Hence, the lumped-capacitance method is valid.

(2) Radiation makes a negligible contribution to the heat rate throughout the process.