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General Considerations

• Computational Features/Limitations of the LMTD Method:

➢The LMTD method may be applied to design problems for which the fluid

flow rates and inlet temperatures, as well as a desired outlet temperature,

are prescribed.

➢For a specified HX type, the required size (surface area), as well as the

other outlet temperature, are readily determined.

➢ If the LMTD method is used in performance calculations for which both

outlet temperatures must be determined from knowledge of the inlet

temperatures, the solution procedure is iterative.

➢For both design and performance calculations, the effectiveness-NTU

method may be used without iteration.



LMTD Method

Q = U As Tlm

1. Select the type of heat exchanger suitable for the application.

2. Determine any unknown inlet or outlet temperature and the heat transfer rate 

using an energy balance.

3. Calculate the log mean temperature difference Tlm and the correction factor F, if 

necessary.

4. Obtain (select or calculate) the value of the overall heat transfer coefficient U.

5. Calculate the heat transfer surface area As .

The procedure to be followed by the selection process is:



❑ In an attempt to eliminate the iterations from the solution of such 

problems, Kays and London came up with a method in 1955 

called the effectiveness–NTU method, which greatly simplified 

heat exchanger analysis.

❑ This method is based on a dimensionless parameter called the 

heat transfer effectiveness, defined as

The Effectiveness – NTU Method



The actual heat transfer rate in a heat exchanger can be determined 

from an energy balance on the hot or cold fluids and can be 

expressed as



Definitions
• Heat exchanger effectiveness  : 
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q

q
 =

0 1 

• Maximum possible heat rate :
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h h cC C C
C
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= 
  if c c hC C C

➢Will the fluid characterized by Cmin or Cmax experience the largest 

possible temperature change in transit through the HX?

➢ Why is Cmin and not Cmax used in the definition of qmax?



For a parallel-flow heat exchanger can be rearranged as





Effectiveness relations of the heat exchangers typically involve the 

dimensionless group UAs /Cmin. 

This quantity is called the number of transfer units NTU and is 

expressed as

In heat exchanger analysis, it is also convenient to define another 

dimensionless quantity called the capacity ratio c as



















Example

A counter-flow double-pipe heat exchanger is to heat water from 20°C 

to 80°C at a rate of 1.2 kg/s. The heating is to be accomplished by 

geothermal water available at 160°C at a mass flow rate of 2 kg/s. The 

inner tube is thin-walled and has a diameter of 1.5 cm. If the overall 

heat transfer coefficient of the heat exchanger is 640 W/m2 .°C, 

determine the length of the heat exchanger required to achieve the 

desired heating.



Assumptions

1. Steady operating conditions exist. 

2. The heat exchanger is well insulated so that heat loss to the 

surroundings is negligible and thus heat transfer from the hot fluid is 

equal to the heat transfer to the cold fluid. 

3. Changes in the kinetic and potential energies of fluid streams are 

negligible. 

4. There is no fouling. 

5. Fluid properties are constant.







Compact Heat Exchangers

• Analysis based on                        method NTU −

• Convection (and friction) coefficients have been determined for selected  

HX cores by Kays and London. Proprietary data have been obtained by 

manufacturers of many other core configurations.

• Results for a circular tube-continuous fin HX core:
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Results for a circular tube-continuous fin HX core
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Problem 11.28:   Use of twin-tube (brazed) heat exchanger to heat air

by extracting energy from a hot water supply.

KNOWN:  Counterflow heat exchanger formed by two brazed tubes with prescribed hot and 

cold fluid inlet temperatures and flow rates. 

FIND:  Outlet temperature of the air. 

SCHEMATIC:   

 



Problem:   Twin-Tube Heat Exchanger (cont.)

ASSUMPTIONS:  (1) Negligible loss/gain from tubes to surroundings, (2) Negligible 

changes in kinetic and potential energy, (3) Flow in tubes is fully developed since L/Dh = 40 

m/0.030m = 1333. 

PROPERTIES:  Table A-6, Water ( hT  = 335 K): ch = cp,h = 4186 J/kgK,  = 453  10
-6

 

Ns/m
2
, k = 0.656 W/mK, Pr = 2.88; Table A-4, Air (300 K): cc = cp,c = 1007 J/kgK,  = 

184.6  10
-7

 Ns/m
2
, k = 0.0263 W/mK, Pr = 0.707; Table A-1, Nickel ( T  = (23 + 85)C/2 = 

327 K): k = 88 W/mK. 

ANALYSIS:  Using the NTU -  method, from Eq. 11.30a, 
 

( )

( ) r min max

r
min C C / C .

r r

1 exp NTU 1 C
NTU UA / C

1 C exp NTU 1 C
 =

 − − − 
= =

 − − − 

 (1,2,3) 

and the outlet temperature is determined from the expression 
 

 ( ) ( )c c,o c,i min h,i c,iC T T / C T T . = − −       (4) 

From Eq. 11.1, the overall heat transfer coefficient is 

 

 
( ) ( )o t oh c

1 1 1 1

UA hA K L hA 
= + +


                                   (5) 

 
Since circumferential conduction may be significant in the tube walls, o needs to be evaluated for each of the tubes. 



Problem:   Twin-Tube Heat Exchanger (cont.)

The convection coefficients are obtained as follows: 

Water-side: h
D 6 2

4m 4 0.04 kg / s
Re 11,243.

D 0.010m 453 10 N s / m   −


= = =

   
 

The flow is turbulent, and since fully developed, the Dittus-Boelter correlation may be used, 
 

 ( ) ( )h
0.8 0.30.8 0.3

h DNu h D / k 0.023Re Pr 0.023 11,243 2.88 54.99= = = =  
 

 
2

hh 54.99 0.656 W / m K / 0.01m 3,607 W / m K.=   =   

Air-side: c
D 7 2

4m 4 0.120 kg / s
Re 275,890.

D 0.030m 184.6 10 N s / m   −


= = =

   
 

The flow is turbulent and, since fully developed,  

 ( ) ( )c
0.8 0.40.8 0.4

c DNu h D / K 0.023Re Pr 0.023 275,890 0.707 450.9= = = =  
 

 
2

ch 450.9 0.0263 W / m K / 0.030m 395.3 W / m K.=   =   

Water-side temperature effectiveness: ( ) 2
h hA D L 0.010m 40m 1.257 m = = =  

 ( ) ( ) ( )
1/ 2 1/ 2

o,h f ,h h h h htanh mL / mL m h P / kA h / kt = = = =  

 ( )
1/ 2

2 1m 3607 W / m K /88 W / m K 0.002m 143.2m−=    =  



Problem:   Twin-Tube Heat Exchanger (cont.)

 With Lh = 0.5 Dh, o,h = tanh(143.2 m
-1

  0.5   0.010m)/143.2 m
-1

  0.5   0.010 m = 

0.435. 

Air-side temperature effectiveness: Ac = DcL = (0.030m)40m = 3.770 m
2
 

 

( ) ( )
1/ 2

2 1
o,c f ,c c ctanh mL / mL m 395.3 W / m K / 88 W / m K 0.002m 47.39 m  −

= = =    =  

 
With Lc = 0.5Dc, o,c = tanh(47.39 m

-1
  0.5   0.030m)/47.39 m

-1
  0.5   0.030m = 

0.438. 

Hence, from Eq. (5)  the UA product is 
 

( )2 2 2 2

1 1 1 1

UA 100 W / m K 40m0.435 3607 W / m K 1.257 m 0.438 395.3 W / m K 3.770 m

= + +
     

 

 

 
1

4 4 3UA 5.070 10 2.50 10 1.533 10 W / K 437 W / K.
−

− − − =  +  +  =
  

 

With 
 

h h h max
r min max

c c c min

C m c 0.040kg / s 4186 J / kg K 167.4 W / K C
C C / C 0.722

C m c 0.120kg / s 1007 J / kg K 120.8 W / K C
= =   = 

= =
= =   = 

 

 

 
min

437 W / KUA
NTU 3.62

C 120.8 W / K
= = =  



Problem:   Twin-Tube Heat Exchanger (cont.)

( )

( )

1 exp 3.62 1 0.722
0.862

1 0.722 exp 3.62 1 0.722


 − − − 
= =

 − − − 

Hence, from Eq. (4), with Cmin = Cc, 
 

 
( )
( )

c c,o
c,o

c

C T 23 C
0.862 T 76.4 C

C 85 23 C

− 
= = 

− 
    < 

COMMENTS:  (1) Using the overall energy balance, the water outlet temperature is 
 

 ( )( ) ( )h,o h,i c h c,o c,iT T C / C T T 85 C 0.722 76.4 23 C 46.4 C.= + − =  − −  =   

(2) To initially evaluate the properties, we assumed that hT   335 K and cT   300 K.  From 

the calculated values of Th,o and Tc,o, more appropriate estimates of hT  and cT  are 338 K and 

322 K, respectively.  We conclude that proper thermophysical properties were used for water 

but that the estimates could be improved for air. 

and from Eq. (1) the effectiveness is



Problem:  Heat Transfer Enhancement

Problem 11.65:   Use of fluted spheres and solid spheres to enhance the performance

of a concentric tube, water/glycol heat exchanger.

KNOWN:  Flow rates and inlet temperatures of water and glycol in counterflow heat 

exchanger.  Desired glycol outlet temperature.  Heat exchanger diameter and overall heat 

transfer coefficient without and with spherical inserts. 

FIND:  (a) Required length without spheres, (b) Required length with spheres, (c) 

Explanation for reduction in fouling and pump power associated with using spheres. 

SCHEMATIC:   

L

  T = 40 Ch,o 
o

  T = 15 Cc,i 
o

  T = 100 Ch,i 
o

.
mh = 0.5 kg/s  

.
mc = 0.5 kg/s    D  = 0.075 mi  



Problem:  Heat Transfer Enhancement (cont.)

ASSUMPTIONS:  (1) Negligible kinetic energy, potential energy and flow work changes, 

(2) Negligible heat loss to surroundings, (3) Constant properties, (4) Negligible tube wall 

thickness. 

PROPERTIES:  Table A-5, Ethylene glycol ( )hT 70 C :=    cp,h = 2606 J/kgK; Table A-6, 

Water ( )cT 35 C :   cp,c = 4178 J/kgK. 

ANALYSIS:  (a) With Ch = Cmin = 1303 W/K and Cc = Cmax = 2089 W/K, Cr = 0.624.  With 

actual and maximum possible heat rates of 

 ( ) ( )h h,i h,oq C T T 1303 W / K 100 40 C 78,180 W= − = −  =  

 ( ) ( )max min h,i c,iq C T T 1303 W / K 100 15 C 110,755 W= − = −  =  

the effectiveness is  = q/qmax = 0.706.  From Eq. 11.30b, 

 
r r

1 1 0.294
NTU ln 2.66 ln 1.71

C 1 C 1 0.559





 −  
= = − =   

− −   
 

Hence, with A = DL and NTU = UA/Cmin, 
 

 
( )

min
2

i

C NTU 1303 W / K 1.71
L 9.46m

D U 0.075m 1000 W / m K 


= = =


 

(b) Since c, h, h,i, h,o c,im m T T and T  are unchanged, Cr,  and NTU are unchanged.  Hence, 

with U = 2000 W/m
2
K, 

 L 4.73m=           < 



Problem:  Heat Transfer Enhancement (cont.)

(c) Because the spheres induce mixing of the flows, the potential for contaminant build-up on 

the surfaces, and hence fouling, is reduced.  Although the obstruction to flow imposed by the 

spheres acts to increase the pressure drop, the reduction in the heat exchanger length reduces 

the pressure drop.  The second effect may exceed that of the first, thereby reducing pump 

power requirements. 

COMMENTS:  The water outlet temperature is Tc,o = Tc,i + q/Cc = 15C + 78,180 W/2089 

W/K = 52.4C.  The mean temperature ( )cT 33.7 C=   is close to that used to evaluate the 

specific heat of water. 
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