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Figure 10-5 Complete operation of a shell-and-tube chiller. (Courtesy of Carrier.)
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Table . Systems and Sensors

System to be Evaluated

Whole Building

Chillers

Pumps

Cooling Tower

Local Micro-Climate

Measurement

Power

Differential Pressure (water)
Water Temperatures

Flows (water)

Power (to chillers)

Differential Pressure (water)
Power

Dry Bulb Temperature
Wet Bulb Temperature
Water Temperatures
Power

Flow

Dry Bulb Temperature
Wet Bulb Temperature

Accuracy

+/- 1.50%

+/-0.25% FS
+/-0.01°F
+/- 0.50%
+/-0.50 %

+/-0.25% FS
+/-0.20%

+/-0.01°F
+/-0.01°F
+/-0.01°F
+/- 0.50%
+/- 0.50%

+/-0.01°F
+/-0.01°F
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Understanding Water-Chiller Efficiency Ratings

A clear understanding of two measures of chiller efficiency—the design-
efficiency rating and the Non-standard Part Load Value (NPLV) rating—can
help organizations obtain the best capital cost and energy efficiency when
acquiring new chillers. It also may help facility managers understand why they
may not be getting the level of energy efficiency they expect from existing
chillers.

Table 1 shows what the ARI found. Specifically, 99% of chiller operating hours are spent at off-design

conditions.
Table 1 — NPLV Operating-Condition Assumptions
Load Head Operating Hours
. Air-cooled | Water-cooled
100% | 95°F ECAT | 85°F ECWT 1%
75% | 80°F ECAT | 75°F ECWT 42%
950% | 65°F ECAT | 65°F ECWT | 45%
25% | 95°F ECAT | 65°F ECWT | 12%
0% | 55°F ECAT | 65°F ECWT 0%

ECAT = entering-condenser-air temperature
ECWT = entering-condenser-water temperature

A second misconception is that a chiller with good efficiency at design conditions will
automatically have a good NPLV rating. In fact, chillers can have the same design efficiency but
have NPLV ratings that vary widely, depending on capital cost. That's because chillers can have
different off-design efficiencies.



Comparing NPLV and Design Efficiency in Two Different Chillers

Consider an example of what happens when both the design-efficiency and NPLV ratings are applied by
comparing two 1,000 TR chillers (see Table 2).

Table 2 —1,000 TR Chiller Comparisons

Specified Option A
Chiller Chiller
NPLV 0466 KW/TR | 0466 KW/TR
Rating
Design | 0562 kW/TR | 0.576 KW/TR
Efficiency
Annual Base Base
Energy
Capital $250,000 $240,000
Cost

Option A Chiller, which costs less than the Specified Chiller, has the same NPLV rating, but a higher design
efficiency. Because both chillers have equal NPLV ratings, they will have equal annual energy consumption.



If the specification contained only the NPLV rating, Option A Chiller might be an attractive choice. However, if
the specification requires that a chiller meet both the NPLV rating and the design-efficiency rating, Option A
Chiller can't meet both ratings and, therefore, can't be bid. The manufacturer of Option A Chiller will usually
need to modify it by adding more heat-exchanger surface to meet the design-efficiency rating. The
performance of this new chiller is shown in Table 3 as Option B Chiller.

Table 3 — Impact of Specifying Both NPLV and Design Efficiency

Specified Option B
Chiller Chiller
NPLV | 0466 kW/TR | 0.448 kW/TR
Rating
Design | 0.562 kW/TR | 0.562 kW/TR
Efficiency
Annual Base -4%
Energy
Capital $250,000 $271,000
Cost

The additional heat-exchanger surface improves the NPLV rating of Option B Chiller, resulting in Annual
Energy that is four percent better than the Specified Chiller. But, it has also become more expensive, costing
$31,000 more than Option A Chiller. This demonstrates how specifying a chiller's design efficiency in addition
to its NPLV may complicate matters. Instead of equalizing energy consumption as a basis for comparing
costs, now both annual energy consumption and pricing are unequal.



Does a chiller's design-efficiency rating impact electric-demand charges?

Consider the aforementioned Option A Chiller, which has a design efficiency of 0.576 kW/TR. At first glance, that
chiller would appear to cause higher electric-demand charges than the Specified Chiller, which has a design
efficiency of 0.562 kW/TR. But is that really the case?

Chiller peak kW usually has little impact on building demand because of heat-load timing. The building's kW and the
chiller's kW typically peak at different times of the day. This phenomenon is illustrated in Figure 1.
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Figure 1: This curve shows building demand vs. chiller demand and the typical time-of-day offset between the two
Most air-conditioned buildings reach their peak electric demand between 10 a.m. and 3 p.m. when occupancy is
usually at its highest. Higher occupancy also translates into more heat generated by lights, elevators, cafeterias,
office equipment, etc.

Surprisingly, most chillers reach peak electric demand between 3 p.m. and 7 p.m. Why so late? At about 12 p.m.,
the sun's rays strike the ground at the most direct angle. Through convection, the ground then heats the ambient air
to its highest dry-bulb temperature at about 2 p.m. Once the air temperature is at its maximum, the heat is slowly
conducted through the building skin, a process that peaks building heat load around 4 p.m. In parallel, the wet-bulb
temperature of the ambient air also reaches its maximum later in the day.

The higher wet-bulb temperature raises the entering-condenser-water temperature, which raises the head pressure
against which chillers must work, hurting energy efficiency. When these factors combine, the chiller sees its peak
load, peak head, and, therefore, peak kW in late afternoon.
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Chiller Plant
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® Chilled water pump * Cooling tower
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