
Hydraulic Machinery

Pumps, Turbines...



Hydraulic Machinery Overview

➢Types of Pumps

➢Dimensionless Parameters for Turbomachines

➢ Power requirements

➢Head-discharge curves

➢ Pump Issues

➢Cavitation

➢NPSH

➢Priming

➢ Pump selection



Types of Pumps

➢Positive 
displacement
➢piston pump

➢Diaphragm pump

➢peristaltic pump

➢Rotary pumps
➢gear pump

➢two-lobe rotary 
pump

➢screw pump

➢ Jet pumps

➢Turbomachines

➢ axial-flow (propeller 

pump)

➢ radial-flow (centrifugal 

pump)

➢mixed-flow (both axial 

and radial flow)



Reciprocating action pumps

➢ Piston pump

➢ can produce very high pressures

➢ hydraulic fluid pump

➢ high pressure water washers

diaphragm pump



Peristaltic Pump

➢ Fluid only contacts tubing

➢Tubing ___ and roller 

_______ with respect to the 

tubing determine flow rate

➢Tubing eventually fails from 

fatigue and abrasion

➢ Fluid may leak past roller at 

high pressures

➢Viscous fluids may be 

pumped more slowly

ID

velocity



Rotary Pumps

➢Gear Pump

➢fluid is trapped between gear teeth and the 

housing

➢Two-lobe Rotary Pump 

➢(gear pump with two “teeth” on each gear)

➢same principle as gear pump

➢fewer chambers - more extreme pulsation

trapped fluid

http://www.koboldusa.com/onlinecatalog/flow/zdm/zdm1.html


Rotary Pumps

➢Disadvantages

➢precise machining

➢ abrasives wear surfaces rapidly

➢pulsating output

➢Uses

➢vacuum pumps

➢ air compressors

➢hydraulic fluid pumps

➢ food handling



Screw Pump

➢Can handle debris

➢Used to raise the 
level of wastewater

➢Abrasive material 
will damage the 
seal between screw 
and the housing

➢Grain augers use 
the same principle



Positive Displacement Pumps

➢What happens if you close a valve on the 

effluent side of a positive displacement pump?

➢What does flow rate vs. time look like for a 

piston pump?
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Jet Pump

“eductor”

➢A high pressure, high velocity jet discharge is 
used to pump a larger volume of fluid.

➢Advantages

➢no moving parts

➢ self priming

➢handles solids easily

➢Disadvantage

➢ inefficient

➢Uses

➢deep well pumping

➢pumping water mixed with solids

http://spaceflight.nasa.gov/shuttle/upgrades/ojp.html

http://spaceflight.nasa.gov/shuttle/upgrades/ojp.html


(inefficient process)

Turbomachines

impeller

casing housing

( ) ( )
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➢Demour’s centrifugal pump - 1730

➢Theory

➢ conservation of angular momentum

➢ conversion of kinetic energy to potential energy in flow 

expansion ___________ ________

➢ Pump components

➢ rotating element - ___________

➢ encloses the rotating element and seals the pressurized 

liquid inside - ________ or _________



Pressure Developed by 

Centrifugal Pumps
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➢ Centrifugal pumps accelerate a liquid

➢ The maximum velocity reached is the velocity of the 

periphery of the impeller

➢ The kinetic energy is converted into potential energy 

as the fluid leaves the pump

➢ The potential energy developed is approximately 

equal to the ________ ____ at the periphery of the 

impeller

➢ A given pump with a given impeller diameter and 

speed will raise a fluid to a certain height regardless 

of the fluid density



Radial Pumps

Impeller

Vanes

Casing

Suction Eye Impeller

Discharge

centrifugal

Flow Expansion

diameter rotational speed

➢ also called _________ pumps

➢ broad range of applicable flows and heads

➢ higher heads can be achieved by increasing the 

_______ or the ________ ______ of the impeller
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Axial Flow

propeller

➢also known as 

__________ pumps

➢low head (less than 12 

m)

➢high flows (above 20 

L/s)



Dimensionless Parameters for 

Turbomachines

➢We would like to be able to compare pumps 
with similar geometry. Dimensional analysis to 
the rescue...

➢To use the laws of similitude to compare 
performance of two pumps we need

➢ exact geometric similitude

➢all linear dimensions must be scaled identically

➢ roughness must scale

➢homologous - streamlines are similar 

➢ constant ratio of dynamic pressures at 
corresponding points

➢also known as kinematic similitude 
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Kinematic Similitude:

Constant Force Ratio
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viscous

gravity

surface-tension

elastic

➢Reynolds

➢ ratio of inertial to _______ forces

➢ Froude

➢ ratio of inertial to ________ force

➢Weber

➢ ratio of inertial to _______ ______ forces

➢Mach

➢ ratio of inertial to _______ forces



Turbomachinery Parameters
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Shape Factor

➢Related to the ratio of flow passage 

diameter to impeller diameter 

➢Defined for the point of best efficiency

➢What determines the ideal shape for a 

pump?

)                   (fS =  ,,, pQ 

Exercise



Impeller Geometry:

Shape Factor
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Use of Shape Factor:

Specific Speed

➢The maximum efficiencies for all pumps occurs 
when the Shape Factor is close to 1!
➢Flow passage dimension is close to impeller diameter!

➢Low expansion losses!

➢There must be an optimal shape factor given a 
discharge and a head.

➢ Shape factor defined for specific cases
➢Double suction 

➢Treat like two pumps in parallel

➢Multistage (pumps in series)
➢Use Q and H for each stage
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Why multistage?



Additional Dimensionless 

Parameters
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Head-Discharge Curve

Theoretical head-

discharge curve

Actual head-

discharge curve

Q

➢ circulatory flow -

inability of finite 

number of blades to 

guide flow

➢ friction - ____

➢ shock - incorrect angle 

of blade inlet ___

➢ other losses

➢ bearing friction

➢ packing friction

➢ disk friction

➢ internal leakage
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Pump Power Requirements
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Subscripts

w = _______

p = _______

s = _______

m = _______



Impeller Shape vs. Power Curves
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Affinity Laws

➢With speed, , held constant:

3

2

1

2

1














=





P

P
2

11

22

p

p

h

h

w

w

æ ö
= ç ÷è ø

2

1

2

1




=

Q

Q

With diameter, D, held constant:

5

1 1

2 2

P D

P D

æ ö
= ç ÷è ø

2

11

22

p

p

h D

h D

æ ö
= ç ÷è ø

3

1 1

2 2

Q D

Q D

æ ö
= ç ÷è ø

2 2

p

H

h g
C

Dw
=3Q

Q
C

D
=

HQP = 

53D

P
CP


=

homologous

QC = held constant



0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 0.02 0.04 0.06 0.08 0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D=0.366 m

Dimensionless Performance 

Curves

2 2

p

H

h g
C

Dw
=

3D

Q
CQ


=

Efficiency

(defined at max efficiency)
43

21

H

Q

C

C
S =  Curves for a particular pump

 ____________ of the fluid!Independent

( )

( )

0.5

0.75

0.087
4.57

0.026
=

shape



Pump Example

➢Given a pump with shape factor of 4.57, a 

diameter of 366 mm, a 2-m head, a speed of 

600 rpm, and dimensionless performance 

curves (previous slide).

➢What will the discharge be?

➢How large a motor will be needed if motor 

efficiency is 95%?

Exercise
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Pumps in Parallel or in Series

➢Parallel

➢Flow ________

➢Head ________

➢Series

➢Flow ________

➢Head ________

➢Multistage

adds

same

same

adds



Cavitation in Water Pumps

➢water vapor bubbles 

form when the pressure 

is less than the vapor 

pressure of water

➢ very high pressures 

(800 MPa or 115,000 

psi) develop when the 

vapor bubbles collapse 0
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Net Positive Suction Head

➢NPSHR - absolute pressure in excess of vapor 
pressure required at pump inlet to prevent 
cavitation

➢given by pump manufacturer

➢determined by the water velocity at the entrance to the 
pump impeller

➢NPSHA - pressure in excess of vapor pressure 
available at pump inlet

➢determined by pump installation (elevation above 
reservoir, frictional losses, water temperature)

➢ If NPSHA is less than NPSHR cavitation will occur



Net Positive Suction Head
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NPSHA
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NPSHr Illustrated

Pv

Pressure in excess of 

vapor pressure required 

to prevent cavitationNPSHr

NPSHr can exceed atmospheric pressure!



NPSH problem

Determine the minimum 

reservoir level relative to the 

pump centerline that will be 

acceptable. The NPSHr for 

the pump is 2.5 m. Assume 

you have applied the energy 

equation and found a head 

loss of 0.5 m.

18°C

?

Exercise



Pumps in Pipe Systems

60 m

1 km

Pipe diameter is 0.4 m 
and friction factor is 
0.015. What is the pump 
discharge?

    
hp = z2 − z1 + hl

    
hp = f(Q)

1 m1 m
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Pumps in Pipe Systems
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Priming

    
CH =

p

 2
D

2

    p = CH  2
D

2

2 2

p

H

h g
C

Dw
=

density

1.225 kg/m3

➢The pressure increase created is 

proportional to the _______ of the fluid 

being pumped.

➢A pump designed for water will be 

unable to produce much pressure 

increase when pumping air

➢Density of air at sea level is __________

➢Change in pressure produced by pump is 

about 0.1% of design when pumping air 

rather than water!



Priming Solutions

➢Applications with water at less than 

atmospheric pressure on the suction side of the 

pump require a method to remove the air from 

the pump and the inlet piping

➢ Solutions

➢ foot valve

➢priming tank

➢vacuum source

➢ self priming

foot valve

to vacuum pumppriming tank



Self-Priming Centrifugal Pumps

➢Require a small volume of liquid in the 

pump

➢Recirculate this liquid and entrain air from 

the suction side of the pump

➢The entrained air is separated from the 

liquid and discharged in the pressure side of 

the pump

http://www.gouldspumps.com/download_files/3796/3796_priming.stm


Variable Flows?

➢How can you obtain a wide range of flows?

➢__________________________

➢__________________________

➢__________________________

➢__________________________

➢__________________________

➢Why is the flow from two identical pumps 

usually less than the 2x the flow from one 

pump?

Valve

Multiple pumps (same size)

Multiple pumps (different sizes)

Variable speed motor

Storage tank



RPM for Pumps

➢60 cycle

➢Other options

➢variable speed

➢belt drive

number of 

poles sync full load rad/sec

2 3600 3500 367

4 1800 1750 183

6 1200 1167 122

8 900 875 92

10 720 700 73

12 600 583 61

14 514 500 52

16 450 438 46

18 400 389 41

20 360 350 37

22 327 318 33

24 300 292 31

26 277 269 28

28 257 250 26

30 240 233 24



Estimate of Pump rpm

➢The best efficiency is obtained when S=1

➢Given a desired flow and head the 

approximate pump rpm can be estimated!
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Pump for flume in DeFrees Teaching Lab…

Q = 0.1 m3/s, hp = 4 m.

Therefore  = 50 rads/s = 470 rpm

Actual maximum rpm is 600!



Pump Selection

➢Material Compatibility

➢ Solids

➢ Flow

➢Head

➢NPSHa

➢ Pump Selection software

➢A finite number of pumps will come close to 

meeting the specifications!



Pump Selection Chart

Model X

Model M

http://www.pricepump.com/

http://www.pricepump.com/
http://www.pricepump.com/


End of Curve Operation

➢Right of the BEP (Best Efficiency Point)

➢ is sufficient NPSH available for the pump to operate 
properly? 

➢ fluid velocities through the suction and discharge 
nozzles of the pump could be extremely high, resulting 
in increased pump and system noise (and wear)

➢Left of BEP operation 

➢high thrust loads on the pump bearings and mechanical 
face seals result in premature failure. 

➢The pump is oversized, resulting in lower efficiency 
and higher operating and capital costs.



Gould’s Pump Curves

BEP = 1836 L/s

( )
3 4

p

Q
S

gh

w
=
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890 rpm = 93.2 rad/s

S=0.787

Check the Power!



Pump Installation Design

➢Why not use one big pump?

➢Can the system handle a power failure?

➢Can the pump be shut down for 

maintenance?

➢How is the pump primed?

➢Are there enough valves so the pump can be 

removed for service without disabling the 

system?



Pump Summary

➢ Positive displacement vs. turbomachines

➢Dimensional analysis

➢Useful for scaling

➢Useful for characterizing full range of pump 
performance from relatively few data points

➢Turbomachines convert shaft work into increased 
pressure (or vice versa for turbines)

➢The operating point is determined by where the 
pump and system curves intersect

➢NPSH



Water problem?

Early in my college days I took a break and spent 17 months in Salvadoran refugee 

camps in Honduras. The refugee camps were located high in the mountains and for 

several of the camps the only sources of water large enough to sustain the population of 

6-10,000 were located at much lower elevations. So it was necessary to lift water to the 

camps using pumps. 

When I arrived at the camps the pumps were failing frequently and the pipes were 

bursting frequently. Piston pumps were used. The refugees were complaining because 

they needed water. The Honduran army battalion was nervous because they didn’t want 

any refugees leaving the camp. There was only one set of spare parts (valve springs and 

valves) for the pump and the last set of parts only lasted a few days. The pump repair 

crew didn’t want to start using the pump until the real cause of the problem was fixed 

because spare parts have to be flown in from Miami.



Water in Colomoncagua



Waiting for water



Water problem: 

proposed solutions?

piston pump (80 L/min)

2 km pipeline (2” 

galvanized and then 3” 

PVC) with rise of 100 m



Shape Factor Solution

➢Create a dimensionless grouping 
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Pump Curve Solution

2 2

p

H

h g
C

Dw
=

    
CQ =

Q

D
3

s
revs

rev
/8.62

2

60

min1

min

600
=











































=




( )( )
( ) ( )

037.0
366.0/8.62

/8.92

22

2

==
ms

smm
CH

068.0=QC

3DCQ Q= ( )( )( ) smmsQ /21.0366.0/8.62068.0 33
==

( )( )( )

( )( )

3 39800 / 0.21 / 2
5.55

0.78 0.95

N m m s m
P kW= =p

m

P m

Qh
P

e e

g
=



Pump Curve Solution
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NPSH solution

18°C
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Implications of Power Curves

➢You are going to start a radial flow pump 
powered by an electric motor. You want to 
reduce the starting load on the motor. What 
can you do?

➢What would you do if you were starting an 
axial flow pump?

➢How could reducing the head on a radial 
flow pump result in motor failure?

Close the effluent valve

Open the effluent valve

An effluent pipe break would increase the flow and 

increase the power requirement



Find Q
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