```
FORM A
```


Faculty of Animal Science Building, Bogor Agricultural University Jln. Agatis, Kampus IPB Darmaga, Bogor Indonesia 16680 Phone/Fax: +62 251 8421692 E-mail: mediapeternakan@apps.ipb.ac.id; mediapeternakan@yahoo.co.id Website: http://journal.ipb.ac.id/index.php/tasj

Author Statement Form

To: Editorial Board of Tropical Animal Science Journal

Herewith we submit a manuscript,

Title	: The Regional Analysis of Beef Cattle Farm Development in Semarang Regency
Corresponding author name	: Bambang Waluyo Hadi Eko Prasetiyono
Phone/e-mail	: 085200971963 / <u>bambangwhep63@gmail.com</u>
Address	: Fac.of Animal & Agricultural Sciences, Diponegoro University,
	Jl. Prof. Soedarto, Kampus Tembalang, Semarang 50275,
	Indonesia.

To be published in Tropical Animal Science Journal. We declare that the content of this manuscript or a major portion there of has not been published, that it is not being submitted for publication elsewhere, and it will not be submitted to any media during the review process, unless we have officially withdrawn the manuscript from Tropical Animal Science Journal on a letter containing relevan reasons signed by all of authors.

We agree to follow the entire process of manuscript selection in accord to Tropical Animal Science Journal procedures, including revising the manuscripts by following the Editor and Reviewers comments in a specified time. We understand and agree that if does not follow the rules will be disqualified for publishing manuscript in Tropical Animal Science Journal for 2 consecutive years since the letter issued.

We certify that there is no conflict of interest with any financial, personal, or other relationships with other people or organization related to the material discussed in the manuscript.

We declare that all listed names are entitled to become an author and all have agreed the final form of submitted manuscripts.

We agree to release to the Tropical Animal Science Journal the copyright of the manuscript.

Thank you for your attention and collaboration.

FORM A

Tropical Animal Science

Faculty of Animal Science Building, Bogor Agricultural University Jln. Agatis, Kampus IPB Darmaga, Bogor Indonesia 16680 Phone/Fax: +62 251 8421692 E-mail: mediapeternakan@apps.ipb.ac.id; mediapeternakan@yahoo.co.id Website: http://journal.ipb.ac.id/index.php/tasj

Date: 10 June 2019

Author: Budi Santoso	E-mail: <u>budibudisan8@gmail.com</u>
Author: <u>Bambang Waluyo Hadi Eko. P</u>	E-mail: <u>bambangwhep63@gmail.com</u>
Author	E-mail
Author	E-mail
Author	E-mail

Authorship confirmation

Inbox

Tropical Animal Science Journal <mediapeternakan@apps.ipbgaclud>1, 8:44 AM

Subject: Authorship confirmation

Dear Authors:

Thank you for submitting manuscript, "The Regional Analysis of Beef Cattle Farm Development in Semarang Regency" to Tropical Animal Science Journal (previously Media Peternakan). I would like to confirm about your approval as a co-author of the attached manuscript. If you disagree with the authorship, please send your confirmation in three days. Otherwise, manuscript will be further processed according to the journal system.

Your prompt cooperation would be greatly appreciated.

Prof. Dr. Komang G Wiryawan Chief Editor

Faculty of Animal Science Building, IPB University (Bogor Agricultural University) Jln. Agatis, Kampus IPB Darmaga, Bogor Indonesia 16680 Phone/Fax: +62 251 8421692 E-mail: mediapeternakan@apps.ipb.ac.id; mediapeternakan@yahoo.co.id Website: http://journal.ipb.ac.id/index.php/tasj

PAPER EVALUATION

Paper Title: The Regional Analysis of Beef Cattle Farm Development in Semarang Regency

No	Comments	Author's response			
Α	Reviewer I	Thank you for the review. Comments are			
		very worthwhile.			
1	There is a basic wrong in this article in	I have made correction to all the numbers			
	regards with writing the numbers, i.e., the	contained in the article.			
	land area suitable reaches 5.760,141 Ha				
	(the right number is 5,760.141 Ha). All				
	numbers are wrong written				
2	There is overlapping between results	Okay, I have revised it as recommended.			
	and discussion. The author puts a lot of	The discussion has shown the relevance of			
	discussion in the result section., while the	the results and the field of investigation and /			
	discussion is shorter than the results.	or hypothesis			
	Please check the journal's guidelines and				
	other published articles on how to write				
	Results, Discussion.				
3	The author did not mention, discuss, and	I have added and clarified the concept of			
	conclude the sustainability aspect, while	sustainability for beef cattle farm in the			
	the objectives of the study is to determine	method section.			
	the priority areas for developing beef cattle	The objectives of this study is to determine			
	farm in Semarang Regency based on the	priority areas for beef cattle development			
	concept of sustainability.	based on sustainability analysis.			
		Sustainability assessed are economic factors			
		(determination of leading commodity through			
		LQ and SS) and environmental factors			
		(determination of carrying capacity and			
		carrying capacity index of forage, assessment			
		of suitability ecological environment of beef			
		cattle)			
4	The author also used un-usual terms for	I have fixed it according to the comments in			
	animal, for example cultivation (keeping),	the text.			
	cages (housing, barn. Cage is used for				
	poultry)				
5	The author mention that the study also	Economic sustainability in this study was			
	would like to evaluate the economic	determined by the assessment of leading			

Comments (please use additional paper if more space is needed)

	sustainability, however, I did not find the economic sustainability aspect either on the result or Discussion	commodity (through LQ and SS analysis). In the research results, precisely in the first section related to leading commodity, an interpretation of LQ and SS values has been			
		regional analysis of beef cattle farm development in Semarang Regency.			
6	The author did not explain detailed in Material and methods, how can they categorized the value of suitable indicator into S1;S2, etc (Table 6)	Okay, I have revised it as recommended. In the material and method section, the value of suitability ecological environment of beef cattle farm has been added			
7	The Result of the study are mostly in PRESENT TENSE form, it should be PASTE TENSE	Okay, I have revised it as recommended.			
8	Inconsistency when writing the references. Sometimes, the author abbreviates the journal names; however, some journal names are not abbreviated.	Okay, I have revised it as recommended.			
9	Please check the number of the last 10 year journal publications. It should be more than 80% according to the guidelines.	I have reviewed the journal publication in the last 10 years and it complies with the guidelines (>80%).			
10	Please see other comments on the text.	Yes, I check at every comment in the text.			
В	Reviewer II	Terimakasih untuk reviewnya. Komentar sangat membangun.			
1	I will use Bahasa in my comments	Saya menggunakan Bahasa Indonesia untuk Response.			
2	Penelitian mengunakan concept of sustainability (baris 8), dengan pendekatan economic dan environmental (baris 89). Indikator yang digunakan LQ dan SS (baris 8; baris 101-105). Namun demikian, hal ini tidak tergambar pada judul.	Judul saya buat seringkas dan sepadat mungkin. Konsep analisis wilaya h untuk pengembangan dalam sektor apapun, selalu mempertimbangkan banyak faktor (ekonomi, lingkungan, sosial). Secara eksplisit, kata- kata analisis wilayah yang terdapat dalam judul, sudah menggambarkan arah penelitian ini. Bagian abstrak penelitian kemudian lebih memperjelas hal tersebut, dimana keberlanjutan yang dinilai hanya faktor ekonomi dan lingkungan.			
3	Baris 37: konsep sustainability dalam	Konsep keberlanjutan dalam perumusan			

	perumusan masalah di pendahuluan, berbeda maksudnya dengan sustainability pada metode penelitian.	masalah di bagian pendahuluan, menurut saya sudah sinkron dengan yang terdapat pada metode penelitian. Hal tersebut dibuktikan pada paragraph 4 dan 5 dalam pendahuluan, yaitu bahwa keberlanjutan ekonomi ditentukan melalui analisis komoditas unggulan (LQ dan SS), sementara itu keberlanjutan lingkungan ditentukan melalui analisis potensi wilayah (Daya dukung dan Indeks daya dukung hijauan, Kesesuaian lingkungan ekologi peternakan sapi potong). Bagian metode penelitian sudah saya revisi agar lebih jelas tentang konsep keberlanjutan
4	Baris 58: rumusan masalahnya "beef cattle	Permasalahan peternakan sapi potong di
	continued to decline", namun di baris 61 dijawab dengan "development of sustainable beef cattles farm, dari segi ekonomi, lingkungan dan sosial	 Kabupaten Semarang yaitu penurunan populasi ternak selama kurun waktu 2014-2016. Permasalahan tersebut disebabkan oleh faktor teknis maupun non teknis (misal: kebijakan). Untuk menjawab permasalahan ini, makan diperlukan konsep pembangunan peternakan yang berkelanjutan. Keberlanjutan yang dinilai dalam penelitian ini yaitu keberlanjutan ekonomi dan lingkungan. Konsep keberlanjutan mampu memberikan gambaran tentang: Wilayah yang menjadi basis ternak sapi potong dan wilayah yang mengalami pertumbuhan ekonomi terkait aktivitas peternakan sapi potong, Ketersediaan hijauan pakan ternak pada suatu wilayah (aman, rawan, kritis, sangat kritis) sehingga pemeliharaan atau pengembangan peternakan sapi potong Wilayah yang sesuai untuk pengembangan peternakan sapi potong, dilihat dari kesesuaian lingkungan ekologi ternak tersebut

Tropical Animal Science

5	LQ dan SS keduanya menggunakan data	Analisis LQ dan SS tidak berhubungan				
	populasi sapi and all type of livestock	dengan kompetisi penggunaan pakan				
	(baris 102). Tidak dijelaskan apakah di	(rumput). Analisis ini digunakan untuk				
	dalamnya tidak memasukkan unggas yang	mengetahui pola pemusatan ternak (basis atau				
	tidak berkompetisi dengan sapi dalam	non-basis) dan trend pertumbuhan ekonomi				
	menggunakan pakan rumput.	wilayah (positif atau negative), khususnya				
		untuk peternakan sapi potong.				
		Data yang digunakan merupakan data				
		seluruh jenis ternak. Ternak di Kabupaten				
		Semarang meliputi Ternak besar (kuda, sapi				
		potong, sapi perah, kerbau), Ternak kecil				
		(babi, kambing, domba, kelinci), dan Unggas				
		(ayam ras layer, ayam ras broiler, ayam ras				
		buras, itik, burung puyuh, mentok).				
		Interpretasi dari nilai LQ dan SS sudah				
		dijabarkan dalam Results and Discussion.				
6	Baris 105-106: equation (2) tidak ada	Equation (2) tentang Shift Share (SS).				
	hubungannya dengan penjelasan di baris	SS terdiri dari 3 komponen, yaitu Regional				
	106 ada rumus SS: a+b+c	share (a), Proportional shift (b), dan				
		Differential shift (c).				
		Pernyataan a+b+c saya hilangkan saja karena				
7	D : 104 1 100 104 (111 1	menimbulkan kebingungan.				
/	Baris 124 dan 129: 134 rumus tidak ada	Produksi banan kering nijauan merupakan				
	(diambil dari mana?)	historia alemi				
		III Jauan alann. Sumhari (Suhaama Widiatmaka k				
		Tiphiono 2014: Vuniar Fugh & Widiotmaka				
		1 (1) (2) (14) , 1 (1) (10) $($				
		Satuan dari rumus potensi limbah pertanian				
		dan potensi hijayan alami adalah ton				
		Setian rumus yang digunakan juga terdapat				
		keterangan lengkan di bagian bawahnya				
8	Tabel 1: satuan Drv month (<100mm	Drv month = jumlah curah hujan <100				
	rainfall/month?); slope (land slope?)	mm/bulan.				
		Sesuai (S) untuk ternak sapi potong jika <8				
		bulan (tergolong agro klimat basah-sedang),				
		sebaliknya menjadi tidak sesuai (NS) jika >8				
		bulan (agro klimat kering-sangat kering).				
		Slope = kemiringan lereng				
		Sesuai (S) untuk ternak sapi potong jika nilai				

		slope <40% (datar sampai berbukit), sebaliknya menjadi tidak sesuai (NS) jika nilai slope >40% (curam sampai sangat		
		terjal).		
9	Tabel 2: ruminansia ada goat, sheep, horse,	Daya dukung atau Carrying capacity (CC)		
	buffalo; namun di table 4 hanya	dan Indeks daya dukung atau Carrying		
	memperhitungkan Bcp=populasi sapi.	capacity Index (CCI).		
	Seharusnya carrying capacity dihitung	Dalam penelitian ini hanya difokuskan		
	dengan memperhitungkan populasi	untuk pengembangan peternakan sapi		
	rumanansia selain sapi.	potong, jadi perhitungan nilai CC dan CCI		
		khusus untuk ternak sapi potong saja.		
10	Baris 512-513: $e(c \times d)$ seharusnya $e = c \times d$	Saya setuju dan sudah diperbaiki pada Tabel		
		4.		

1 2

3

4

ABSTRACT

The Regional Analysis of Beef Cattle Farm Development in Semarang Regency

5 One of the reasons for low production and productivity of beef cattle in Indonesia 6 is that information on the allocation of livestock areas development is not yet clear. This study aims to determine the priority areas for developing beef cattle farm in Semarang 7 Regency based on the concept of sustainability. Sustainability is analyzed through the 8 9 determination of leading commodities (analysis of Location Quotient/LQ and Shift Share/SS), optimization of regional potential (analysis of carrying capacity and carrying 10 11 capacity index of forage), and assessment of land suitability. The process of spatial analysis used GIS software. Comprehensive planning for the development of beef cattle 12 13 farm was directed in 3 sub-districts, namely: Bringin, Bancak, and Banyubiru. The sub-14 district areas have LO>1 and SS positive values which means they are beef cattle base area and experiences business growth. The carrying capacity for beef cattle farm in 15 Bringin sub-district is 15.829 AU, Bancak is 8.457 AU, and Banvubiru is 6.315 AU. 16 Forage carrying capacity index values in each of these sub-districts is >2, which is safe 17 category for the availability of forage. The land area suitable for beef cattle farm from the 18 19 3 priority sub-districts reaches 5.760,141 Ha. It was concluded that the development of beef cattle farm in Semarang Regency is focused on 3 priority sub-districts, namely: 20 Bringin, Bancak, and Banyubiru. The results of this study can be an input for local 21 22 governments in determining the direction and pattern of beef cattle farm development to 23 be more sustainable.

24 Key words: beef cattle, regional analysis, sustainability of livestock sector.

26

INTRODUCTION

The directed and sustainable development of the livestock sector is believed to be 27 28 able to contribute positively to regional development. Along with the increase in population, there is an increasing demand for food from animal protein such as beef. Beef 29 consumption in developing countries such as in Indonesia tends to increase every year 30 (Thornton, 2010; Agus & Widi, 2018), however the population of beef cattle in some 31 regions actually decreases due to the complexity of technical and non-technical problems 32 33 (Paly et al., 2013; Ariningsih, 2014; Nuhung, 2015). There is a gap between demand and supply of beef products which are increasingly widening (Prasetiyono et al, 2007). 34 Many factors causing this gap, including the domestic production of beef cattle is still 35 36 low because information on the allocation of livestock development areas is not yet clear.

Cattle farmings in Indonesia are categorized as unsustainable (Syarifuddin, 2009; 37 Sutanto & Hendraningsih, 2011). The number of available beef cattle has not been able 38 to meet the high consumption of people against meat. The consumption of beef in 2020 39 is estimated to reach 3,36 kg per capita per year, but beef production is still not able to 40 41 fulfill it, there is a deficit in beef procurement of 198.350 tons (Kementan, 2016; Agus & Widi, 2018). Most of beef production in Indonesia, 78% comes from traditional 42 livestock, 5% from imports, and 17% from live livestock imports, especially from 43 44 Australia (Zakiah et al., 2017). Imports of beef are indeed relatively larger compared to other types of meat imports, contributing 21,44% to the total import value of livestock, 45 while the import value of livestock is 18,29% of the total value of agricultural imports 46 47 nationally (Rouf et al., 2014).

Policy efforts to reduce beef imports must be studied, by strengthening domestic
production that is beneficial for farmers (Pasandaran *et al.*, 2014). The development of

50 beef cattle farms in potential areas is an effort to strengthen meat production in the country so that the implementation must be carried out with a comprehensive assessment. 51 52 Semarang Regency is a region in Central Java Province that has the potential to develop beef cattle farms because it has natural resources in the form of land as a place for 53 livestock cultivation and forage production. Good quality and always available forage can 54 increase production, especially for increasing body weight of cattle (Suhaema et al., 55 2014). Forage producing areas in Semarang Regency include gardens (25.562,04 Ha), 56 57 rice fields (23.745,96 Ha), and forests (6.032,77 Ha). The beef cattle population in this region during the 2014-2016 period continued to decline, ranging from 53.135, 49.172, 58 and 46.238 (BPS Kabupaten Semarang, 2018). 59

60 The development of beef cattle farms in Semarang Regency needs to adopt the concept of sustainability. The concept of sustainability is the achievement of economic, 61 environmental and social goals simultaneously which is represented by various 62 performance indicators (Darnhofer et al., 2010). Sustainability is also defined as the 63 concept of multidimensional (economic, ecological, social) and multiscale (micro, meso, 64 65 and macro), although in its application it is often limited to one particular aspect (Santos et al., 2017). Economic sustainability is closely related to the value of comparative and 66 competitive advantages of certain commodities (Broom et al., 2013; Sabaghi et al., 67 68 2016), while environmental sustainability includes optimizing the availability of natural resources and efficient use (Atanga et al., 2013). 69

The sustainability of beef cattle farms can be identified through a regional approach, by considering the existence of leading commodities and the potential of the region concerned (Mulyono & Munibah, 2016; Parmawati *et al.*, 2018). Determination of leading commodities characterized by the existence of comparative and competitive

advantages is the first step towards efficient development of the livestock sector (Hendayana, 2003). The potential of the region to support the development of beef cattle farms is determined by optimizing the carrying capacity and carrying capacity index of forage, as well as assessing the suitability of the land where the livestock grows. Land suitability for beef cattle farms with intensive maintenance patterns considers several environmental factors that affect the growth of these cattle.

Mapping activities based on the determination of leading commodities and optimization of regional potential are needed as a basis for planning sustainable development of beef cattle farms. This study aims to determine the priority areas for developing beef cattle farms in Semarang Regency. The results of this study are expected to be one of the considerations in determining the direction and development policy of the beef cattle farms sector in Semarang Regency.

86

87

MATERIALS AND METHODS

This research is a type of quantitative research and applies the concept of sustainability. Sustainability assessed is economic and environmental sustainability for beef cattle farm in Semarang Regency. In detail, each step of the analysis is outlined below.

92

Leading Commodity

Determination of leading livestock commodities in an area uses Locationt Quotient (LQ) and Shift Share (SS) analysis. The rationale for the two methods is the economic basis theory. LQ analysis is relatively simple, but the benefits are large enough for the initial identification of the ability of a sector in regional development. The shift in the structure of economic activity in beef cattle business, whether experiencing growth or

- 98 decline is analyzed using Shift Share (SS). SS analysis can be used to see the growth of
- 99 the economic sectors of a region for two time points (Muta'ali, 2015). LQ and SS analysis
- uses equations that refer to (Ciptayasa *et al.*, 2016; Mulyono & Munibah, 2016).
- 101 $LQ_{ij} = \frac{Xij / Xi.}{X.j / X..}$ (Equation 1)

102 (X_{ij} = Beef cattle population in the sub-district A, X_i. = Population of all types of livestock in the sub103 district A, X_i = Beef cattle population in Semarang Regency, X_i = Population of all types of livestock in
104 Semarang Regency).

105
$$SS = \left[\frac{X.(t1)}{X.(t0)} - 1\right] + \left[\frac{X.i(t1)}{X.i(t0)} - \frac{X.(t1)}{X.(t0)}\right] + \left[\frac{Xij(t1)}{Xij(t0)} - \frac{X.i(t1)}{X.i(t0)}\right]$$
(Equation 2)

106 (SS = a + b + c, where a = Regional share, b = Proportional shift, c = Differential shift, X ... = Population
107 of all types of livestock in Semarang Regency, Xi = Beef cattle population in Semarang Regency, Xij =
108 Beef cattle population in sub-district A, t0 = Early 2013 year point, t1 = End of year 2017).

- 109
- 110

Carrying Capacity and Carrying Capacity Index of Forage

111 The carrying capacity of the region for livestock development is indicated by the 112 ability of the region to produce forage that can accommodate and meet the needs of a 113 number of beef cattle populations. Forages are divided into two types, namely fresh forage 114 (grass, legume) and dry forage (straw). An assessment of the carrying capacity index of 115 forage is conducted to assess the availability of animal feed in a region, whether classified 116 as safe, vulnerable, critical, or very critical.

117 The carrying capacity of beef cattle farms is calculated based on the production of 118 forage dry matter against the minimum feed requirements of cattle (1 AU) in one year. 119 The animal unit (AU) is a unit for the ruminant livestock population multiplied by the 120 conversion factor. The conversion factor for cattle is 0,7 which can represent cow parent, 121 cattle parent, and calves with various age levels (Muta'ali, 2015; Saputra *et al.*, 2016).

- 122 Forage dry matter production is the amount of potential agricultural waste and natural
- forage potential, using equations that refer to (Suhaema *et al.*, 2014; Yuniar *et al.*, 2016).
- 124 Potential of agricultural waste $(ton) = {(wr x 0,4) + (fr x 3 x 0,4) + (cn x 3 x 0,5) + (sb x 0,4) + (s$

125 $3 \ge 0.55$ + (pt x 2 x 0.55) + (sp x 0.25/6) + (cs x 0.25/4) x 0.65

(wr: wetland rice, fr: field rice, cn: corn, sb: soybean, pt: peanuts, sp: sweet potatoes, cs: cassava. The
numbers in the formula are assumptions about the potential waste produced from the production of each
type of plant food).

129 Natural forage potential (ton) = { $(Ga \times 2,875) + (Fa \times 0,6) + (Cpa \times 10) + (Cfa \times 0,5) +$

- 130 (Cla x 5) x 0,5
- 131 (Ga: garden area, Fa: forest area, Cpa: coconut plant area, Cfa: coffee plant area, Cla: clove plant area. The
- 132 numbers in the formula are assumed to be natural forage potential produced per hectare of land use area).
- 133 Minimum cattle feed requirements.

134 R= $2,5\% \times 50\% \times 365 \times 400$ kg = 1,82 ton DDM/year/AU (Equation 3)

(R = minimum cattle feed requirements (1 AU) in tons of digestible dry matter for 1 year, 2.5% = minimum
requirement for the number of forage rations (dry matter) on livestock weight, 50% = average value
digestibility power of various types of plants, 365 = Number of days in 1 year, 400 kg = live weight of 1
AU of beef cattle in Semarang Regency).

- The results of the calculation of forage dry matter production are then used to
 determine the carrying capacity of beef cattle farms using the following equations
 (Suhaema *et al.*, 2014; Yuniar *et al.*, 2016).
- 142 $CC(AU) = \frac{Forage Dry Matter Production (tons of DDM / year)}{Minimum Cattle Feed Requirement (tons of DDM / year / AU)}$ (Equation 4)
- The level of animal feed security in a region is measured by forage carrying capacity index. Carrying capacity index values are values that indicate the status of the availability of forage for beef cattle, namely: very critical (\leq 1), critical (>1-1,5), vulnerable (> 1,5-2), and safe (>2).

147	Forage carrying capacity index = $\frac{\text{Carrying capacity (AU)}}{\text{Amount of Beef Cattle Population in 2017 (AU)}}$ (Equation 5)
148	
149	Suitability of The Ecological Environment of Beef Cattle
150	The research sample for the assessment of the suitability ecological environment
151	of beef cattle farms in Semarang Regency is 19 points spread throughout the sub-district
152	area (Table 5). Determination of the sample is using purposive sampling technique. The
153	purposive sampling technique is also called judgment sampling (Tongco, 2007), which is
154	to determine the sample based on research considerations. In each sub-district one village
155	is taken which has the most beef cattle population.
156	Land available for the development of beef cattle farms is: gardens, grasslands,
157	open land, rice fields, and dry land agriculture. The fields are assumed to be able to be
158	built for cages for beef cattle. The assessment of land suitable for beef cattle farming with
159	intensive maintenance patterns, also takes into account several environmental parameters
160	that influence the growth of livestock.
161	Land suitability assessment for beef cattle farms begins with making a map of
162	land units. Maps of beef cattle land units refer to research (Rusmana et al., 2006) which
163	states that there are four maps needed for overlaying, namely: land type maps, agro-
164	climate maps, regional altitude maps, and slope maps. The final step is to make a
165	"suitability map of the ecological environment of beef cattle". The method used is by
166	overlaying between land unit maps with environmental parameters that affect the growth
167	of beef cattle (Table 1). The entire process was created and analyzed using GIS software.
168	
169	

170

RESULTS

171

Leading Commodity

172 Leading commodity livestock in an area is determined based on comparative advantage (location quotient analysis) and competitive advantage (shift share analysis). 173 Beef cattle commodities that have LQ>1 and SS (+) values are the leading commodities 174 in the region. The interpretation of the value of LQ>1, is a base or leading sector, beef 175 176 cattle products (meat) are able to meet markets inside and outside the region. LQ<1 value, 177 is a non-base sector, livestock products have not been able to meet markets inside and outside the region. LO=1 value, meaning that the sector is balanced with the reference 178 179 region, livestock products are only able to meet markets in the area. The basis for 180 calculating LQ analysis for livestock commodities is livestock population data (Hendayana, 2003). Data bias in calculations can be minimized by using a minimum 5 181 year data series (Table 2). 182

Shift share analysis starts from the basic assumption that economic growth or 183 added value of an activity in a particular region is influenced by three main components 184 185 which are interconnected with each other, namely: regional growth, sectoral growth, and growth in share or regional competitiveness (Ciptavasa et al., 2016). Through these three 186 components, it can be seen which elements have encouraged regional economic growth. 187 188 The value of each component can be positive or negative, but the total number (shift share) will always be positive if the regional economic growth is positive, and vice versa. 189 The results of the calculation of LQ and SS analysis for beef cattle commodities 190 191 in Semarang Regency are shown in Table 3. The sub-districts which are the base sectors of beef cattle livestock (LQ>1) are: Bancak (4,93), Banyubiru (3,97), Ambarawa (3,92), 192 193 Bringin (2,82), and Bawen (2,34). Cultivation of beef cattle is concentrated in these areas

or in other words the economic density of beef cattle is higher than in other regions. Beef 194 195 cattle commodity in the base sub-district is a prominent or dominant livestock business 196 compared to the other livestock businesses, so the effort for future development is easier (Yuniar et al., 2016; Mulyono & Munibah, 2016). The concept of comparative advantage 197 is economic feasibility. According to Mulyono (2016), commodities that have a 198 199 comparative advantage (LQ>1) show that the commodity (beef cattle) is supported by the 200 existence of adequate natural resources so that the population level is higher than in other 201 regions (Mulyono & Munibah, 2016).

202 Beef cattle commodities that have competitive advantages are seen based on positive shift share (SS) values. Sub-districts with a positive SS value means experiencing 203 204 growth (competitiveness) related to cultivated beef cattle. On the contrary, sub-districts with negative SS value means that the area is not growing (stagnant) and can even 205 206 experience setbacks. As seen in Table 3, sub-districts with positive SS values include: 207 Ungaran Barat (1,286), Banyubiru (0,47), Pabelan (0,435), Bandungan (0,203), Bancak (0,077), Bringin (0,039), and Tengaran (0,026). The concept of competitive advantage is 208 209 financial feasibility. Beef cattle commodities are cultivated in effective and efficient ways, so that they have competitiveness from aspects of quality, quantity, continuity and 210 price (Saptana, 2008; Muta'ali, 2015; Mulyono & Munibah, 2016). 211

The development of beef cattle farms in Semarang Regency is prioritized in the sub-districts with LQ>1 and SS (+) values. The sub-districts are Bringin, Bancak, and Banyubiru.

215

217

Carrying Capacity and Carrying Capacity Index of Forage

Carrying capacity is defined as the maximum population that can be supported by an ecosystem from time to time. The carrying capacity of an area is not static, there is a kind of reciprocal relationship between organism and their environment. The carrying capacity of a region can vary for different species and change over time due to various factors (Taiwo & Feyisara, 2017). Regional carrying capacity for livestock development is the size of the region's ability to support the livelihoods of a number of livestock populations optimally through the role of forage availability (Ardhani, 2008).

Potential availability of feed for beef cattle is seen based on the amount of forage 225 dry matter production (tons of DDM) that can be produced by the region concerned. Dry 226 227 matter is the total feed ingredients without water content, which can come from forages. The region with the largest forage dry matter production has the highest carrying capacity 228 229 for the development of beef cattle farms, and vice versa. Forage is one of the production 230 inputs that determines the success of livestock business because it directly affects productivity and efficiency (Yuniar et al., 2016). Table 4 shows the calculation of 231 carrying capacity and carrying capacity index of forage for beef cattle farms in Semarang 232 Regency. 233

Based on the calculation results of Table 4, it is known that there are three subdistricts with the largest production of forage dry matter, namely Bringin (28.808,63 tons DDM), Pringapus (23.509,36 tons DDM), and Suruh (19.522,03 tons DDM). Sub-district area with the smallest forage dry matter production, namely Bandungan (4.327,55 tons DDM). The status of availability of forage in Bandungan sub-district was categorized as very critical (0,82), while in Tengaran sub-district it was categorized as vulnerable (1,69). Thus, these two sub-districts are not recommended for the development of beef cattle

242	can be recommended for the development of beef cattle farms. The advantage obtained
243	by the area with this safe category is that farmers can reduce the amount of production
244	costs for beef cattle feed.
245	Semarang Regency has carrying capacity for beef cattle farms of 122.725 AU.
246	The population of beef cattle in 2017 is 33.911 AU, so the Semarang Regency area is
247	assumed to still be able to accommodate 88.814 AU beef cattle in 2018.
248	
249	Suitability of The Ecological Environment of Beef Cattle
250	The results of measurements in the field and secondary data collection on several
251	environmental factors that influence the growth of beef cattle are shown in Table 5. The
252	factors that limit the assessment of the suitability ecological environment of beef cattle
253	farming in Semarang Regency are the Temperature Humidity Index (THI) and water pH.
254	Annual rainfall (<4000 mm) and dry months (<8) are in the appropriate category.
255	The relationship between the amount of air temperature and humidity is called the
256	Temperature Humidity Index (THI). If THI exceeds the threshold (>80), it can cause
257	stress or heat stress in beef cattle (Dobson et al., 2003; Eirich, 2018). Long-term heat
258	stress has an impact on increasing drinking water consumption, increasing urine volume,
259	and decreasing feed consumption. The direct effect of heat stress on livestock production
260	causes a decrease in the productivity of beef cattle. This is due to the increasing need for
261	livestock maintenance (Jordan, 2003; Berman, 2005). Furthermore, the THI value that
262	exceeds the threshold influences the decrease in daily body weight gain, depletion of the
263	thickness of meat fat, and the increase of potential for disease occurrence especially in
264	male cattle (Nardone et al., 2010).

farms. Sub-district areas with carrying capacity index value >2 (safe) means that the area

241

265

Hydrogen potential (pH) characterizes the balance between acidic and alkaline solvent in water. If the pH of drinking water for beef cattle is below the quality standard 266 267 or acid (<6,5), the water becomes sour and can cause physiological and digestive 268 disorders in livestock. On the contrary, if the pH of water is too alkaline (>9), the water becomes bitter and causes a decrease in consumption of drinking water which has an 269 impact on decreasing livestock productivity (Pfost & Fulhage, 2001; Sarwanto & 270 Hendarto, 2011). 271

272 The suitability ecological environment map for beef cattle farms in Semarang Regency is shown in Figure 1. The white area is an area that is not assessed because it is 273 274 designated as land for settlements, plantations, tourism, and forests. Based on Figure 1, it 275 is known that the level of suitability of the produced beef cattle ecological environment 276 is: very suitable (S1), quite suitable (S2), and according to marginal (S3). Unsuitable (NS) categories are not raised and not assessed because the area has a slope >40% (steep - very 277 278 steep).

The symbol "p" indicates that there is a limiting factor in the area assessed. The 279 280 limiting factors are the Temperature Humidity Index (THI) and the pH of the water for beef cattle consumption (Table 5). Semarang Regency consists of 19 sub-districts. The 281 development of beef cattle farms is prioritized in sub-districts that have LQ>1, SS (+) 282 value, and carrying capacity index of forage (>2), namely Banyubiru, Bringin, and 283 Bancak. Banyubiru sub-district is not constrained by limiting factors, while Bringin and 284 Bancak are constrained by THI values that exceed the comfort zone for growing cattle 285 286 (>80). The extent suitability of the ecology of beef cattle farms from the three priority sub-districts is shown in Table 6. 287

289 Based on Table 6, the sub-districts that have the largest land area for the 290 development of beef cattle farms with intensive maintenance patterns, respectively are 291 Bringin (2.758,86 Ha), Bancak (1.550,08 Ha), and Banyubiru (1.451,2 Ha). The limiting 292 factor in the form of temperature humidity index (THI) or water pH can be minimized 293 through the engineering design of livestock cages and provision of materials or neutralizing water acidity solvent (Yani et al., 2007; Sarwanto & Hendarto, 2011). Cattle 294 295 with intensive maintenance patterns are generally more susceptible to heat stress than 296 extensively maintained cattle. Efforts that can be done to reduce heat stress in beef cattle include: adding shade around the cage location, watering to the livestock body, using fans 297 to help circulate air in the cage, choosing the right cage roof material, etc (Suhaema et 298 299 al., 2014).

- 300
- 301

DISCUSSION

302 Semarang Regency is a potential area for the development of beef cattle farming because it has abundant natural resources in the form of land for livestock cultivation and 303 forage production. The maintenance pattern of beef cattle that is often found in Semarang 304 305 Regency is an intensive maintenance pattern. Beef cattle are able to show optimal 306 physical conditions if they have superior genetic traits, and are supported by the suitability of their ecological environment (Suhaema et al., 2014). Animal ecology is the study of 307 308 the interactions between animals and their environment (Sumarto & Koneri, 2016). 309 Environmental factors tend to affect the production and productivity of livestock more 310 (Gunawan et al., 2008). Some environmental factors that influence the growth of beef cattle with intensive maintenance patterns are: soil type, length of dry season, altitude, 311 slope (Kadarsih, 2004; Calderon et al., 2005; Rusmana et al., 2006), temperature and 312

relative humidity, rainfall, water pH (Chantalakhana & Skunmun, 2002; Dobson *et al.*,

314 2003; Rumetor, 2003; Yani et al., 2007; Herbut & Angrecka, 2012; Eirich, 2018).

315 The mapping activity is based on the determination of leading livestock commodities, and optimization of regional potential can be one of the benchmarks in 316 317 realizing sustainable development of beef cattle farms. The concept of sustainable development is to meet the needs of the current generation, without sacrificing future 318 319 generations and this concept has become a reference for welfare in almost all sectors, 320 including the livestock sector (Pezzey, 2004; Wasike et al, 2011). The concept of sustainability has been widely debated throughout the world over the past few years (Van 321 Passel et al, 2007; De Longe et al., 2016; Keesstra et al., 2016; Rasmussen et al., 2017), 322 323 not only concerning issues environmental and social issues, but also discussing economic 324 issues to gain certain market or commodity advantages (Broom et al., 2013; Sabaghi et al., 2016). Sustainability assessment is achieved by evaluating the relative contribution 325 of each of the economic, environmental and social factors to the overall goal (Astier & 326 García-Barrios, 2012). 327

328 The synthesis of the assessment results of leading commodities, calculation of carrying capacity and carrying capacity index of forage, as well as land suitability 329 assessment, shows that there are three sub-districts (Bringin, Bancak, and Banyubiru) 330 which are priorities for the development of beef cattle farms in Semarang Regency. It is 331 expected that livestock development in priority sub-districts can increase production and 332 productivity of beef cattle. Governments, communities (cattleman) and the private sector 333 334 (investors) must coordinate and cooperate with each other so that the development of sustainable beef cattle farms can be achieved. 335

337

CONCLUSION

338	Planning for the development of beef cattle farming with intensive maintenance
339	patterns in Semarang Regency is recommended in three sub-districts, namely: Bringin,
340	Bancak, and Banyubiru. The assumption of forage production produced from these three
341	sub-districts reaches 55.693,72 tons of DDM. The total carrying capacity for beef cattle
342	farms is 30.601 AU. The total land area suitable for beef cattle farming in the three priority
343	sub-districts is 5.760,141 Ha. The pattern of developing beef cattle farms in the future
344	should be directed to the development of large scale farms (Feedlot) in order to be able
345	to meet the scale of business economics.
346	
347	REFERENCES
348	Agus, A. & Widi, T. S. M. 2018. Current situation and future prospects for beef cattle
349	production in Indonesia - A review. Asian-Australasian Journal of Animal
350	Sciences. 31(7):976–983. doi: 10.5713/ajas.18.0233.
351	Ardhani, F. 2008. Wilayah potensial untuk pengembangan peternakan di Kabupaten
352	Bulungan, Provinsi Kalimantan Timur. EPP. 5(1):36-43.
353	Ariningsih, E. 2014. Performance of national beef self-sufficiency policy. Forum
354	Penelitian Agro Ekonomi. 32(2):137–156.
355	Astier, M., Barrios. L. G, Miyoshi. Y. G, Esquivel Carlos. E. G, & Masera. O. R.
356	2012. Assessing the sustainability of small farmer natural resource management
357	systems. A critical analysis of the MESMIS program 1995-2010. Ecology and
358	Society. 17(3):25. doi: 10.5751/ES-04910-170325.
359	Atanga, N. L., Treydte. A. C, & Birner. R. 2013. Assessing the sustainability of
360	different small-scale livestock production systems in the Afar Region, Ethiopia.

- 361 Land. 2(4):726–755. doi: 10.3390/land2040726.
- Berman, A. 2005. Estimates of heat stress relief needs for Holstein dairy cows. Journal
 Animal Science. 83:1377–1384.
- 364 BPS Kabupaten Semarang. 2018. Kabupaten Semarang dalam Angka. Badan Pusat
 365 Statistik, Semarang.
- Broom, D. M., Galindo. F. A, & Murgueitio, E. 2013. Sustainable, efficient livestock
 production with high biodiversity and good welfare for animals. The Royal
 Society Publishing. rspb.royalsocietypublishing.org. doi:
 10.1098/rspb.2013.2025.
- Calderon, C., Armstrong. D. V, Ray. D. E, DeNise. S. K, Enns. R. M, & Howison. C.
 M. 2005. Productive and reproductive response of Holsein and Brown Swiss heat
 stressed dairy cows to two different cooling systems. Journal of Animal and
 Veterinary Advances. 4(6):572–578.
- 374 Chantalakhana, C. & Skunmun. P. 2002. Sustainable Smallholder Animal Systems in
 375 the Tropics. Kasetsart University Press, Bangkok.
- 376 Ciptayasa, I. N., Hermansyah, & Yasin. M. 2016. Analisis potensi ternak kambing di
 377 Kabupaten Lombok Barat. Jurnal Ilmu dan Teknologi Peternakan Indonesia.
 378 2(1):110–115.
- 379 Darnhofer, I., Fairweather. J, & Moller. H. 2010. Assessing a farm's sustainability:
 380 insights from resilience thinking. International Journal of Agricultural
 381 Sustainability. 8(3):186–198. doi: 10.3763/ijas.2010.0480.
- 382 DeLonge, M. S., Miles. A, & Carlisle. L. 2016. Investing in the transition to sustainable
 383 agriculture. Environmental Science and Policy. 55:266–273. doi:
 384 10.1016/j.envsci.2015.09.013.

385	Dobson, H., Ghuman. S, Prabhakar. S, & Smith. R. 2003. A conceptual model of the
386	influence of stress on female reproduction. Reproduction. 125(2):151-163. doi:
387	10.1530/rep.0.1250151.
388	Eirich, R. 2018. Beef cattle temperature humidity chart. University of Nebraska.
389	Available at: https://bqa.unl.edu/heat-stress-resources. [28 December 2018].
390	Gunawan, A., Jamal. K, & Sumantri. C. 2008. Pendugaan bobot badan melalui analisis
391	morfometrik dengan pendekatan regresi terbaik best - subset pada Domba Garut
392	tipe pedaging, tangkas dan persilangannya. Majalah Ilmiah Peternakan. 11(1):1-
393	6.
394	Hendayana, R. 2003. Aplikasi metode location quotient (LQ) dalam penentuan
395	komoditas unggulan nasional. Jurnal Informatika Pertanian. 12:1-21. Available
396	at: http://www.litbang.pertanian.go.id/warta-ip/pdf-file/rahmadi-12.pdf.
397	Herbut, P. & Angrecka. S. 2012. Forming of temperature-humidity index (THI) and
398	milk production of cows in the free-stall barn during the period of summer heat.
399	Animal Science Papers and Reports. 30(4):363–372.
400	Jordan, E. R. 2003. Effects of heat stress on reproduction. Journal of Dairy Science.
401	86:104–114. doi: 10.3168/jds.S0022-0302(03)74043-0.
402	Kadarsih, S. 2004. Performans sapi Bali berdasarkan ketinggian tempat di daerah
403	transmigrasi Bengkulu. Jurnal Ilmu-Ilmu Pertanian Indonesia. 6(1):50-56.
404	Keesstra, S. D., Bouma. J, Wallinga. J, Tittonell. P, Smith. P, Cerda. A,
405	Montararella. L, Quinton. J. N, Pachepsky. Y, Putten. W. H, Bardgett. R. D,
406	Moolenaar. S, Mol. G, Jansen. B, & Fresco. L. O. 2016. The significance of
407	soils and soil science towards realization of the United Nations sustainable
408	development goals. Soil. 2:111-128. doi: 10.5194/soil-2-111-2016.

409	Kementan.	2016.	Outlook	Daging	Sapi.	Kementerian	Pertanian	Republik	Indonesia,
410	Jaka	rta.							

- Mulyono, J. & Munibah. K. 2016. Pendekatan location quotient dan shift share analisis
 dalam penentuan komoditas unggulan tanaman pangan di Kabupaten Bantul.
 Informatika Pertanian. 25(2):221–230.
- 414 Muta'ali, L. 2015. Teknik Analisis Regional untuk Perencanaan Wilayah, Tata Ruang,
 415 dan Lingkungan. Badan Penerbit Fakultas Geografi UGM, Yogyakarta.

416 Nardone, A., Ronchi. B, Lacetera. N, Ranieri. M. S, & Bernabucci. U. 2010. Effects

- 417 of climate changes on animal production and sustainability of livestock systems.
 418 Livestock Science. 130:57–69. doi: 10.1016/j.livsci.2010.02.011.
- Nuhung, I. A. 2015. Kinerja, kendala, dan strategi pencapaian swasembada daging sapi.
 Forum Penelitian Agro Ekonomi. 33(1):63–80.
- Paly, B., Natsir. A, Rasyid. S, & Fahmid. I. M. 2013. Interconnectivity multi criteria
 for sustainable development of beef cattle. International Journal Of Scientific and
 Technology Research. 2(7):115–121.
- 424 Parmawati, R., Mashudi, Budiarto. A, Suyadi, & Kurnianto. A. S. 2018. Developing
 425 sustainable livestock production by feed adequacy map : A case study in Pasuruan,
 426 Indonesia. Tropical Animal Science Journal. 41(1):67–76.
- 427 Pasandaran, E., Haryono, & Suherman. 2014. Memperkuat Daya Saing Produk
 428 Pertanian. Perspektif Daya Saing Wilayah. IAARD Press, Jakarta.
- Passel, S., Nevens. F, Mathijs. E, & Huylenbroeck. G. 2007. Measuring farm
 sustainability and explaining differences in sustainable efficiency. Ecological
 Economics. 62:149–161. doi: 10.1016/j.ecolecon.2006.06.008.
- 432 Pezzey, J. C. V. 2004. Sustainability policy and environmental policy. Scandinavian

433	Journal of Economics. 106(2):339–359. doi: 10.1111/j.1467-9442.2004.00355.x.
434	Pfost, D. L. & Fulhage. C. D. 2001. Water quality for livestock drinking. Jefferson City.
435	Agricultural Enginering Extension, Missouri. Available at:
436	https://extension2.missouri.edu/eq381.
437	Prasetiyono, B. W. H. E., Suryahadi, Toharmat. T, Syarief. R. 2007. Strategi
438	suplementasi protein ransum sapi potong berbasis jerami dan dedak padi. Media
439	Peternakan. 30(3):207–217.
440	Rasmussen, L. V., Bierbaum. R, Oldekop. J. A, & Agrawal. A. 2017. Bridging the
441	practitioner-researcher divide: Indicators to track environmental, economic, and
442	sociocultural sustainability of agricultural commodity production. Global
443	Environmental Change. 42:33–46. doi: 10.1016/j.gloenvcha.2016.12.001.
444	Rouf, A. A., A. Daryanto, & A. Fariyanti. 2014. Daya saing usaha sapi potong di
445	Indonesia: Pendekatan domestic resources cost. Wartazoa. 24(2):97-107. doi:
446	10.14334/wartazoa.v2412.1053.
447	Rumetor, S. D. 2003. Stres Panas Pada Sapi Perah Laktasi. Bogor.
448	Rusmana, N., Atmiyati, & Ridwan. 2006. Pembuatan peta kesesuaian ekologis untuk
449	ternak ruminansia pada skala tinjau. Pusat Penelitian dan Pengembangan
450	Peternakan. Bogor.
451	Sabaghi, M., Mascle. C, Baptiste. P, & Rostamzadeh. R. 2016. Sustainability
452	assessment using fuzzy-inference technique (SAFT): A methodology toward
453	green products. Expert Systems with Applications. 56:69-79. doi:
454	10.1016/j.eswa.2016.02.038.
455	Santos, S. A., de Lima. H. P, Massruha. S, de Abreu. U, Tomas. W. M, Salis. S. M,

Cardoso. E. L, de Oliveira. M. D, Soares. M. T, Jr. Antonio, de Oliveira. L.

456

457	O, Calheiros. D. B, Crispim. S. M, Soriano. B. M, Amancio. C. O, Nunes. A.
458	P, & Pellegrin. L. A. 2017. A fuzzy logic-based tool to assess beef cattle ranching
459	sustainability in complex environmental systems. Journal of Environmental
460	Management. 198:95–106. doi: 10.1016/j.jenvman.2017.04.076.
461	Saptana. 2008. Keunggulan komparatif-kompetitif dan strategi kemitraan. Socio-
462	Economic of Agriculture and Agribusiness. 8(2):10–26.
463	Saputra, J. I., Liman, & Widodo. Y. 2016. Analisis potensi pengembangan peternakan
464	sapi potong di Kabupaten Pesawaran. Jurnal Ilmiah Peternakan Terpadu.
465	4(2):115–123.
466	Sarwanto, D. & Hendarto. E. 2011. Analisis kualitas air minum sapi perah rakyat di
467	Kabupaten Banyumas Jawa Tengah. Media Peternakan. 13(1):1–5.
468	Suhaema, E., Widiatmaka, & Tjahjono. B. 2014. The regional development of beef
469	cattle based on physical and forage land suitability in Cianjur Regency. Tanah
470	Lingkungan. 16(2):53-60.
471	Sumarto, S. & Koneri, R. 2016. Ekologi Hewan. Cv. Patra Media Grafindo, Bandung.
472	Sutanto, A. & Hendraningsih. L. 2011. Analisis keberlanjutan usaha sapi perah di
473	Kecamatan Ngantang Kabupaten Malang. Gamma. 7(1):1–12.
474	Syarifuddin, H. 2009. Indeks keberlanjutan integrasi tanaman dengan ternak (crop
475	livestock system) di Kuamang Kuning. Jurnal Ilmiah Ilmu-Ilmu Peternakan.
476	XII(1):41–49.
477	Taiwo, F. J. & Feyisara. O. O. 2017. Understanding the concept of carrying capacity
478	and its relevance to urban and regional planning. Journal of Environmental
479	Studies. 3(1):1–5.
480	Thornton, P. K. 2010. Livestock production: recent trends, future prospects.

- 481 Philosophical Transactions of the Royal Society B: Biological Sciences.
 482 365:2853–2867. doi: 10.1098/rstb.2010.0134.
- Tongco, M. D. C. 2007. Purposive sampling as a tool for informant selection.
 Ethnobotany Research and Applications. 5:147–158. doi: 10.17348/era.5.0.147158.
- Wasike, C. B., Magothe. T. M, Kahi. A. K, & Peters. K. J. 2011. Factors that influence
 the efficiency of beef and dairy cattle recording system in Kenya: A SWOT-AHP
 analysis. Tropical Animal Health and Production. 43:141–152. doi:
 10.1007/s11250-010-9666-3.
- 490 Yani, A., Suhardiyanto. H, Hasbullah. R, & Purwanto. B. P. 2007. Analisis dan
 491 simulasi distribusi suhu udara pada kandang sapi perah menggunakan
 492 computational fluid dynamics (CFD). Media Peternakan. 30(3):218–228.
- Yuniar, P. S., Fuah. A. M, & Widiatmaka. 2016. Carrying capacity and priority region
 for development of beef cattle production in South Tangerang. Jurnal Ilmu
 Produksi dan Teknologi Hasil Peternakan. 04(1):64–268.
- Zakiah., Saleh, A, & Matindas. K. 2017. Gaya kepemimpinan dan perilaku komunikasi
 GPPT dengan kapasitas kelembagaan sekolah peternakan rakyat di Kabupaten
 Muara Enim. Jurnal Penyuluhan. 13(2):133-142.doi:
 10.25015/penyuluhan.v13i2.14977.

500

maintenance patterns		
Parameter	Order of environme	ental suitability of beef attle
	S (Suitable)	N (Unsuitable)
Temperature Humidity Index (THI)	70-80	<70,>80
Water availability (w)		
Dry month (<100 mm rainfall/month)	<8 months	>8 months
Rainfall / year (mm)	< 4,000	> 4,000
The existence of a water source	Available	Not Available
Water Quality (q)		
pH water	6.5-9.0	<6.5;>9.0
Slope (%)	<40	>40

Table 1. Environmental parameters that influence the growth of beef cattle with intensive maintenance patterns

504 Source: (Suhaema *et al.*, 2014; Yuniar *et al.*, 2016).

505 Table 2. Growth of livestock populations in Semarang Regency

True of Prosterile	Number (head)									
Type of investock	2013	2014	2015	2016	2017					
Pig	32,640	17,300	18,431	15,971	15,850					
Goat	197,029	136,999	123,294	117,003	117,373					
Sheep	290,764	191,346	172,211	167,374	162,694					
Rabbit	20,352	9,375	10,462	11,629	11,916					
Horse	1,711	497	515	524	581					
Beef cattle	51,901	53,135	49,172	46,238	48,444					
Dairy cows	22,308	27,609	25,780	25,690	25,557					
Buffalo	2,941	3,168	2,614	2,629	2,589					
Laying Chicken	1,821,286	1,813,049	1,452,019	1,331,528	1,572,463					
Broiler Chicken	12,046,319	7,501,700	10,144,846	10,754,602	11,812,311					
Chicken Breed	819,067	860,408	818,568	861,989	823,226					
Duck	206,882	92,963	80,801	127,859	125,261					
Quail	122,200	238,930	227,737	176,730	142,856					
Muscovy Duck	102,966	72,227	63,889	61,963	54,402					

506 Source: (BPS Kabupaten Semarang, 2018).

NO	CUD DISTRICT	BEEF CATTLE						
NU	SUB-DISTRICT	LQ	RS	PS	DF	SS		
1	Getasan	0.63	-0.052	-0.014	-0.359	-0.425		
2	Tengaran	0.55	-0.052	-0.014	0.092	0.026		
3	Susukan	1.11	-0.052	-0.014	-0.137	-0.203		
4	Kaliwungu	1.22	-0.052	-0.014	0.048	-0.018		
5	Suruh	0.88	-0.052	-0.014	-0.213	-0.279		
6	Pabelan	1.75	-0.052	-0.014	0.501	0.435		
7	Tuntang	0.28	-0.052	-0.014	-0.689	-0.755		
8	Banyubiru	3.97	-0.052	-0.014	0.536	0.47		
9	Jambu	0.42	-0.052	-0.014	-0.417	-0.483		
10	Sumowono	0.95	-0.052	-0.014	-0.234	-0.3		
11	Ambarawa	3.92	-0.052	-0.014	0.006	-0.06		
12	Bandungan	1.01	-0.052	-0.014	0.269	0.203		
13	Bawen	2.34	-0.052	-0.014	0.0009	-0.0651		
14	Bringin	2.82	-0.052	-0.014	0.105	0.039		
15	Bancak	4.93	-0.052	-0.014	0.143	0.077		
16	Pringapus	1.38	-0.052	-0.014	-0.312	-0.378		
17	Bergas	0.77	-0.052	-0.014	-0.106	-0.172		
18	Ungaran Barat	0.77	-0.052	-0.014	1.352	1.286		
19	Ungaran Timur	0.3	-0.052	-0.014	-0.62	-0.686		

Table 3. Value of LQ and SS beef cattle in Semarang Regency in 2018

shift.

Table 4. Carrying capacity and carrying capacity index of forage in Semarang Regency
 in 2018

SD	Вср 2017	Bcp 2017 (AU)	Rm	R Bc	F Dmp	CC	CCI	AV
А	b	с	d	$e = c \ge d$	f	g = f/d	h = g/c	
Getasan	2,085	1,459.5	1.82	2,656.29	7,802.45	4,287.1	2.94	S
Tengaran	4,881	3,416.7	1.82	6,218.39	10,526.78	5,783.9	1.69	V
Susukan	2,905	2,033.5	1.82	3,700.97	15,301.29	8,407.3	4.13	S
Kaliwungu	4,650	3,255	1.82	5,924.1	13,231.72	7,270.2	2.23	S
Suruh	3,335	2,334.5	1.82	4,248.79	19,522.03	10,726.4	4.59	S
Pabelan	4,251	2,975.7	1.82	5,415.77	12,690.04	6,972.5	2.34	S
Tuntang	211	147.7	1.82	268.81	9,458.6	5,197.03	35.19	S
Banyubiru	3,840	2,688	1.82	4,892.16	11,493.54	6,315.1	2.35	S
Jambu	741	518.7	1.82	944.03	8,816.47	4,844.2	9.34	S
Sumowono	2,228	1,559.6	1.82	2,838.47	10,921.51	6,000.8	3.85	S
Ambarawa	1,661	1,162.7	1.82	2,116.11	4,935.95	2,712.05	2.33	S
Bandungan	4,140	2,898	1.82	5,274.36	4,327.55	2,377.8	0.82	VC
Bawen	2,717	1,901.9	1.82	3,461.46	7,241.14	3,978.6	2.09	S
Bringin	2,349	1,644.3	1.82	2,992.63	28,808.63	15,828.9	9.63	S
Bancak	2,820	1,974	1.82	3,592.68	15,391.55	8,456.9	4.28	S
Pringapus	1,333	933.1	1.82	1,698.24	23,509.36	12,917.2	13.84	S
Bergas	1,828	1,279.6	1.82	2,328.87	7,593.47	4,172.2	3.26	S
Ungaran Barat	2,105	1,473.5	1.82	2,681.77	5,400.34	2,967.2	2.01	S
Ungaran Timur	364	254.8	1.82	463.74	6,387.01	3,509.3	13.77	S
Jumlah	48,444	33,910.8		61,717.64	223,359.43	122,724.7	120.68	

515 SD = sub-district, Bcp = beef cattle population, Bcp (AU) = beef cattle population in livestock units, Rm =
516 minimum feed requirements for beef cattle (ton DDM /year /AU), R bc = beef cattle feed requirements
517 (tons /DDM/year), F Dmp = forage dry matter production (ton DDM), CC = carrying capacity (AU), CCI
518 = carrying capacity index of forage, AV = forage availability status; S = safe, V = vurnerable, VC = very
519 critical.

520

521

Subdistrict	Sample (Village)	Tem perat ure (°C)	Tem perat ure (°F)	Humidit y (%)	THI	Rainfall (mm/year)	Dry months	Water pH
Getasan	Samirono	31	87.8	51	79.77	3,403	3	7
Tengaran	Duren	30	86	65	80.61	2,591	3	5.8
Susukan	Timpik	32	89.6	57	82.13	2,618	3	6.5
Kaliwungu	Mukiran	32	89.6	56	81.95	2,618	0	5.5
Suruh	Dadapayam	32	89.6	65	83.52	2,680	4	6.3
Pabelan	Terban	32	89.6	58	82.3	1,927	4	6.5
Tuntang	Tlumpakan	35	95	46	84.01	2,676	0	7
Banyubiru	Wirogomo	30	86	51	78.45	2,066	3	8
Jambu	Genting	31	87.8	49	79.44	2,489	0	6.2
Sumowono	Candi Garon	28	82.4	58	76.76	1,383	4	6.3
Ambarawa	Pasekan	30	86	51	78.45	1,291	3	6.8
Bandungan	Candi	29	84.2	54	77.57	1,291	0	6.7
Bawen	Polosiri	35	95	49	84.62	2,061	4	6.1
Bringin	Banding	35	95	54	85.64	2,211	3	7.9
Bancak	Pucung	33	91.4	58	83.68	2,091	0	6.5
Pringapus	Penawangan	32	89.6	56	81.95	2,290	3	4
Bergas	Munding	32	89.6	48	80.56	3,802	2	5.9
Ungaran Barat	Gogik	32	89.6	49	80.74	3,316	0	7.7
Ungaran Timur	Kawengen	33	91.4	51	82.4	3,316	0	6.6

Table 5. Results of measurements of environmental factors that influence the growth ofbeef cattle in Semarang Regency in 2018

525 THI = T - $\{0.55 (1-RH / 100) (T-58)\}$, where T = temperature (°F), RH = relative humidity.

526

527

Table 6. Extent of suitability ecological environment map of beef cattle farms in Bancak,
 Banyubiru, and Bringin sub-districts

NO	SUBDISTRICT		Tatal					
NU		S 1	S1p	S2	S2p	S 3	S3p	Total
1	Bancak	0	40.26	0.06	1,342.25	0	167.51	1,550.079
2	Banyubiru	17.10	0	1,434.10	0	0	0	1,451.2
3	Bringin	0	36.01	0	2,327.42	0	395.43	2,758.862
	TOTAL	17.10	76.27	1,434.16	3,669.67	0	562.94	5,760.141

530 $\overline{S1}$ = very suitable, S2 = quite suitable, S3 = according to marginal, P = limiting factor in the form of temperature humidity index (THI).

532

Figure 2. The suitability ecological environment map for beef cattle farms in SemarangRegency

537

Faculty of Animal Science Building, IPB University (Bogor Agricultural University) Jln. Agatis, Kampus IPB Darmaga, Bogor Indonesia 16680 Phone/Fax: +62 251 8421692 E-mail: mediapeternakan@apps.ipb.ac.id; mediapeternakan@yahoo.co.id Website: http://journal.ipb.ac.id/index.php/tasj

PAPER EVALUATION

Paper Title: The Regional Analysis of Beef Cattle Farm Development in Semarang Regency

No	Comments	Author's response
Α	Reviewer	
1	Please add Conflict of Interest Statement. Please see	Yes, I have added conflict of
	journal's guidelines on how to write it.	interest statement in the
		manuscript.
2	Please see journal's guidelines on how to write	Yes, I have revised the
	references. Surname for 2nd, 3rd, etc authors should be	references according to
	placed before front name, for example : Agus, A. &	journal guidelines.
	Widi, T. S. M should be Agus, A. & T.S.M. Widi	
	Please revise all references	

1

1	The Regional Analysis of Beef Cattle Farm Development in Semarang Regency
2	
3	
4	ABSTRACT
5	One of the reasons for low production and productivity of beef cattle in Indonesia
6	is that information on the allocation of livestock areas development is not yet clear. This
7	study aims to determine the priority areas for developing beef cattle farm in Semarang
8	Regency based on the concept of sustainability. Sustainability is analyzed through the
9	determination of leading commodities (analysis of Location Quotient and Shift Share),
10	optimization of regional potential (analysis of carrying capacity and carrying capacity
11	index of forage, and assessment of suitability ecological environment of beef cattle). The
12	process of spatial analysis used GIS software. Comprehensive planning for the
13	development of beef cattle farm was directed in three sub-districts, namely: Bringin,
14	Bancak, and Banyubiru. The results of the analysis show that the three sub-districts were
15	beef cattle base areas (LQ>1), had business growth (positive SS), and had a safe status
16	for forage availability (>2). Other results show that the carrying capacity for beef cattle
17	farms in Bringin sub-district was 15,829 AU, Bancak was 8,457 AU, and Banyubiru was
18	6,315 AU. The land area suitable for beef cattle farm from the three priority sub-districts
19	was 5,760.141 Ha. It can be concluded that the development of beef cattle farm in
20	Semarang Regency is focused on three priority sub-districts, namely: Bringin, Bancak,
21	and Banyubiru. The results of this study can be an input for local governments in
22	determining the direction and pattern of beef cattle farm development to be more
23	sustainable.
24	Key words: beef cattle, regional analysis, sustainability of livestock sector.

Commented [MP1]: Generallu this manuscript has been revised according to the advice of reviewers. However, please see comment in the References and please add Conflict of Interest Statement after Conclusion
INTRODUCTION

26

The directed and sustainable development of the livestock sector is believed to be 27 able to contribute positively to regional development. Along with the increase in 28 population, there is an increasing demand for food from animal protein such as beef. Beef 29 consumption in developing countries such as in Indonesia tends to increase every year 30 (Thornton, 2010; Agus & Widi, 2018), however the population of beef cattle in some 31 regions actually decreases due to the complexity of technical and non-technical problems 32 33 (Paly et al., 2013; Ariningsih, 2014; Nuhung, 2015). There is a gap between demand and supply of beef products which are increasingly widening. Many factors causing this 34 35 gap, including the domestic production of beef cattle is still low because information on the allocation of livestock development areas is not yet clear. 36

Cattle farmings in Indonesia are categorized as unsustainable (Syarifuddin, 2009; 37 Sutanto & Hendraningsih, 2011). The number of available beef cattle has not been able 38 to meet the high consumption of people against meat. The consumption of beef in 2020 39 is estimated to reach 3.36 kg per capita per year, but beef production is still not able to 40 fulfill it, there is a deficit in beef supply of 198,350 tons (Kementan, 2016; Agus & Widi, 41 2018). Most of beef production in Indonesia, 78% comes from traditional livestock, 5% 42 from imports, and 17% from live livestock imports, especially from Australia (Zakiah et 43 al., 2017). Imports of beef are indeed relatively larger compared to other types of meat 44 imports, contributing 21.44% to the total import value of livestock, while the import value 45 of livestock is 18.29% of the total value of agricultural imports nationally (Rouf et al., 46 2014). 47

Policy efforts to reduce beef imports must be studied, by strengthening domesticproduction that is beneficial for farmers (Pasandaran *et al.*, 2014). The development of

50 beef cattle farms in potential areas is an effort to strengthen meat production in the country so that the implementation must be carried out with a comprehensive assessment. 51 Semarang Regency is a region in Central Java Province that has the potential to develop 52 beef cattle farms because it has natural resources in the form of land as a place for 53 livestock keeping and forage production. Good quality and always available forage can 54 increase production, especially for increasing body weight of cattle (Suhaema et al., 55 2014). Forage producing areas in Semarang Regency include gardens (25,562.04 Ha), 56 57 rice fields (23,745.96 Ha), and forests (6,032.77 Ha). The beef cattle population in this region during the 2014-2016 period continued to decline, ranging from 53,135, 49,172, 58 59 and 46,238 (BPS Kabupaten Semarang, 2018).

The development of beef cattle farms in Semarang Regency needs to adopt the 60 concept of sustainability. The concept of sustainability is the achievement of economic, 61 environmental and social goals simultaneously which is represented by various 62 performance indicators (Darnhofer et al., 2010). Sustainability is also defined as the 63 concept of multidimensional (economic, ecological, social) and multiscale (micro, meso, 64 and macro), although in its application it is often limited to one particular aspect (Santos 65 et al., 2017). Economic sustainability is closely related to the value of comparative and 66 competitive advantages of certain commodities (Broom et al., 2013; Sabaghi et al., 67 2016), while environmental sustainability includes optimizing the availability of natural 68 resources and efficient use (Atanga et al., 2013). 69

The sustainability of beef cattle farms can be identified through a regional approach, by considering the existence of leading commodities and the potential of the region concerned (Mulyono & Munibah, 2016; Parmawati *et al.*, 2018). Determination of leading commodities characterized by the existence of comparative and competitive

advantages is the first step towards efficient development of the livestock sector. The potential of the region to support the development of beef cattle farms is determined by optimizing the carrying capacity and carrying capacity index of forage, as well as assessing the suitability of the land where the livestock grows. Land suitability for beef cattle farms with intensive production systems considers several environmental factors that affect the growth of these cattle.

Mapping activities based on the determination of leading commodities and optimization of regional potential are needed as a basis for planning sustainable development of beef cattle farms. This study aims to determine the priority areas for developing beef cattle farms in Semarang Regency. The results of this study are expected to be one of the considerations in determining the direction and development policy of the beef cattle farms sector in Semarang Regency.

86

87

MATERIALS AND METHODS

This research is a type of quantitative research and applies the concept of sustainability. Sustainability assessed is economic and environmental sustainability for beef cattle farm in Semarang Regency. Economic sustainability is identified through the determination of leading commodity of livestock, while environmental sustainability is identified through the calculation of the carrying capacity and carrying capacity index of forage, and assessment of suitability ecological environment of beef cattle. In detail, each step of the analysis is outlined below.

95

Leading Commodity

96 Determination of leading livestock commodities in an area uses Locationt
97 Quotient (LQ) and Shift Share (SS) analysis. The rationale for the two methods is the

98 economic basis theory. LQ analysis is relatively simple, but the benefits are large enough 99 for the initial identification of the ability of a sector in regional development. The shift in 100 the structure of economic activity in beef cattle business, whether experiencing growth or 101 decline is analyzed using Shift Share (SS). SS analysis can be used to see the growth of 102 the economic sectors of a region for two time points (Muta'ali, 2015). LQ and SS analysis 103 uses equations that refer to (Ciptayasa *et al.*, 2016; Mulyono & Munibah, 2016).

104
$$LQ_{ij} = \frac{Xij / Xi.}{X.j / X..}$$
 (Equation 1)

105 (X_{ij} = Beef cattle population in the sub-district A, X_i. = Population of all types of livestock in the sub106 district A, X_j = Beef cattle population in Semarang Regency, X_i. = Population of all types of livestock in
107 Semarang Regency).

108 SS = $\left[\frac{X.(t1)}{X.(t0)} - 1\right] + \left[\frac{X.i(t1)}{X.i(t0)} - \frac{X.(t1)}{X.(t0)}\right] + \left[\frac{Xij(t1)}{Xij(t0)} - \frac{X.i(t1)}{X.i(t0)}\right]$ (Equation 2)

109 (Regional share, Proportional shift, Differential shift, X .. = Population of all types of livestock in Semarang
110 Regency, Xi = Beef cattle population in Semarang Regency, Xij = Beef cattle population in sub-district A,
111 t0 = Early 2013 year point, t1 = End of year 2017).

112

113

Carrying Capacity and Carrying Capacity Index of Forage

The carrying capacity of the region for livestock development is indicated by the ability of the region to produce forage that can accommodate and meet the needs of a number of beef cattle populations. Forages are divided into two types, namely fresh forage (grass, legume) and dry forage (straw). An assessment of the carrying capacity index of forage is conducted to assess the availability of animal feed in a region, whether classified as safe, vulnerable, critical, or very critical.

The carrying capacity of beef cattle farms is calculated based on the production of
forage dry matter against the minimum feed requirements of cattle (1 AU) in one year.
The animal unit (AU) is a unit for the ruminant livestock population multiplied by the

and natural forage potential, using equations that refer to (Suhaema et al., 2014; Yuniar 125 et al., 2016). 126 Potential of agricultural waste (ton) = {(wr x 0,4) + (fr x 3 x 0,4) + (cn x 3 x 0,5) + (sb x 0,4) + (sb x127 128 $3 \ge 0.55 + (pt \ge 2 \le 0.55) + (sp \ge 0.25/6) + (cs \ge 0.25/4) \ge 0.65$ 129 (wr: wetland rice, fr: field rice, cn: corn, sb: soybean, pt: peanuts, sp: sweet potatoes, cs: cassava. The 130 numbers in the formula are assumptions about the potential waste produced from the production of each 131 type of plant food). Natural forage potential (ton) = { $(Ga \times 2,875) + (Fa \times 0,6) + (Cpa \times 10) + (Cfa \times 0,5) + (Cpa \times 10) + (Cfa \times 0,5) + (Cpa \times 10) + (Cfa \times 0,5) + (Cfa \times 0,5)$ 132 $(Cla x 5) \} x 0,5$ 133 134 (Ga: garden area, Fa: forest area, Cpa: coconut plant area, Cfa: coffee plant area, Cla: clove plant area. The 135 numbers in the formula are assumed to be natural forage potential produced per hectare of land use area). 136 Minimum cattle feed requirements. $R = 2,5\% \times 50\% \times 365 \times 400 \text{kg} = 1,82 \text{ ton DDM/year/AU}$ (Equation 3) 137 138 (R = minimum cattle feed requirements (1 AU) in tons of digestible dry matter for 1 year, 2.5% = 139 minimum requirement for the number of forage rations (dry matter) on livestock weight, 50% = average 140 value digestibility power of various types of plants, 365 = Number of days in 1 year, 400 kg = live weight 141 of 1 AU of beef cattle in Semarang Regency). Equations that refer to (Suhaema et al., 2014;

conversion factor. The conversion factor for beef cattle is 0,7 (Muta'ali, 2015; Saputra

et al., 2016). Forage dry matter production is the amount of potential agricultural waste

142 Yuniar et al., 2016).

123

124

The results of the calculation of forage dry matter production are then used to
determine the carrying capacity of beef cattle farms using the following equations
(Suhaema *et al.*, 2014; Yuniar *et al.*, 2016).

146 $CC(AU) = \frac{Forage Dry Matter Production (tons of DDM / year)}{Minimum Cattle Feed Requirement (tons of DDM / year / AU)}$ (Equation 4)

148	capacity index. Carrying capacity index values are values that indicate the status of the
149	availability of forage for beef cattle, namely: very critical (\leq 1), critical (>1-1,5),
150	vulnerable (>1,5-2), and safe (>2).
151	Forage carrying capacity index = $\frac{\text{Carrying capacity (AU)}}{\text{Amount of Beef Cattle Population in 2017 (AU)}}$ (Equation 5)
152	
153	Suitability of The Ecological Environment of Beef Cattle
154	The research sample for the assessment of the suitability ecological environment
155	of beef cattle farms in Semarang Regency is 19 points spread throughout the sub-district
156	area (Table 5). Determination of the sample is using purposive sampling technique. The
157	purposive sampling technique is also called judgment sampling (Tongco, 2007), which is
158	to determine the sample based on research considerations. In each sub-district one village
159	is taken which has the most beef cattle population.
160	Land available for the development of beef cattle farms is: gardens, grasslands,
161	open land, rice fields, and dry land agriculture. The fields are assumed to be able to be
162	built for housing for beef cattle. The assessment of land suitable for beef cattle farming
163	with intensive maintenance patterns, also takes into account several environmental
164	parameters that influence the growth of livestock.
165	Land suitability assessment for beef cattle farms begins with making a map of
165 166	Land suitability assessment for beef cattle farms begins with making a map of land units. Maps of beef cattle land units refer to research (Rusmana <i>et al.</i> , 2006) which
165 166 167	Land suitability assessment for beef cattle farms begins with making a map of land units. Maps of beef cattle land units refer to research (Rusmana <i>et al.</i> , 2006) which states that there are four maps needed for overlaying, namely: land type maps, agro-
165 166 167 168	Land suitability assessment for beef cattle farms begins with making a map of land units. Maps of beef cattle land units refer to research (Rusmana <i>et al.</i> , 2006) which states that there are four maps needed for overlaying, namely: land type maps, agro- climate maps, regional altitude maps, and slope maps. The final step is to make a

overlaying between land unit maps with environmental parameters that affect the growth

The level of animal feed security in a region is measured by forage carrying

147

171	of beef cattle (Table 1). Land suitability is classified into 4 levels or strata, namely: very
172	suitable (S1), quite suitable (S2), according to marginal (S3), and non-suitable (NS)
173	(Rusmana et al., 2006; Suhaema et al., 2014; Yuniar et al., 2016). The entire process
174	was created and analyzed using GIS software.

177

178

RESULTS

Leading Commodity

Leading commodity livestock in an area is determined based on comparative 179 advantage (location quotient analysis) and competitive advantage (shift share analysis). 180 Beef cattle commodities that have LQ>1 and SS (+) values are the leading commodities 181 182 in the region. The interpretation of the value of LQ>1, is a base or leading sector, beef cattle products (meat) are able to meet markets inside and outside the region. LQ<1 value, 183 is a non-base sector, livestock products have not been able to meet markets inside and 184 outside the region. LQ=1 value, meaning that the sector is balanced with the reference 185 186 region, livestock products are only able to meet markets in the area. The basis for calculating LQ analysis for livestock commodities is livestock population data 187 (Hendayana, 2003). Data bias in calculations can be minimized by using a minimum 5 188 189 year data series (Table 2).

Shift share analysis starts from the basic assumption that economic growth or 190 added value of an activity in a particular region is influenced by three main components 191 which are interconnected with each other, namely: regional growth, sectoral growth, and 192 growth in share or regional competitiveness (Ciptayasa et al., 2016). Through these three 193 components, it can be seen which elements have encouraged regional economic growth. 194 195 The value of each component can be positive or negative, but the total number (shift share) will always be positive if the regional economic growth is positive, and vice versa. 196 The results of the LQ and SS analysis calculations for beef cattle commodities in 197 Semarang Regency are shown in Table 3. Based on the results of the analysis conducted, 198 the subdistrict areas becoming the beef cattle base sector (LQ> 1) were Bancak (4.93), 199 Banyubiru (3.97), Ambarawa (3.92), Bringin (2.82), and Bawen (2.34). Beef cattle 200

keeping was concentrated in these areas or in other words the economic density of beefcattle was higher than that of in other regions.

203 Beef cattle commodities that have competitive advantages are seen based on positive shift share (SS) values. Sub-districts with a positive SS value means experiencing 204 growth (competitiveness) related to keeping beef cattle. On the other hand, sub-districts 205 206 with negative SS value means that the area is not growing (stagnant) and can even experience setbacks. The results of the analysis conducted in Table 3 shows that sub-207 districts with positive SS values were in Ungaran Barat (1.286), Banyubiru (0.47), 208 Pabelan (0.435), Bandungan (0.203), Bancak (0.077), Bringin (0.039), and Tengaran 209 210 (0.026).

The development of beef cattle farms in Semarang Regency is prioritized in the
sub-districts with LQ>1 and SS (+) values. The sub-districts are Bringin, Bancak, and
Banyubiru.

214

215

Carrying Capacity and Carrying Capacity Index of Forage

Potential availability of feed for beef cattle is seen based on the amount of forage 216 dry matter production (tons of DDM) that can be produced by the region concerned. Dry 217 matter is the total feed ingredients without water content, which can come from forages. 218 219 The region with the largest forage dry matter production has the highest carrying capacity for the development of beef cattle farms, and vice versa. Forage is one of the production 220 inputs that determines the success of livestock business because it directly affects 221 productivity and efficiency (Yuniar et al., 2016). Table 4 shows the calculation of 222 carrying capacity and carrying capacity index of forage for beef cattle farms in Semarang 223 224 Regency.

225 Based on the results of the analysis conducted in Table 4, it is known that there were three sub-districts with the highest production of forage dry matter, namely Bringin 226 (28,808.63 tons DDM), Pringapus (23,509.36 tons DDM), and Suruh (19,522.03 tons 227 DDM). Sub-district area with the lowest forage dry matter production, namely 228 Bandungan (4,327.55 tons DDM). The status of availability of forage in Bandungan sub-229 230 district was categorized as very critical (0.82), while in Tengaran sub-district it was categorized as vulnerable (1.69). Thus, these two sub-districts are not recommended for 231 the development of beef cattle farms. Sub-district areas with carrying capacity index value 232 >2 (safe) means that the area can be recommended for the development of beef cattle 233 234 farms. The advantage obtained by the area with this safe category is that farmers can reduce the amount of production costs for beef cattle feed. 235 Semarang Regency has carrying capacity for beef cattle farms of 122,725 AU. 236 The population of beef cattle in 2017 is 33,911 AU, so the Semarang Regency area is 237 assumed to still be able to accommodate 88,814 AU beef cattle in 2018. 238

- 239
- 240

Suitability of The Ecological Environment of Beef Cattle

The results of field measurements and secondary data collection conducted on several environmental factors that influence the growth of beef cattle are shown in Table 5. The factors that limit the assessment of the suitability ecological environment of beef cattle farming in Semarang Regency are the Temperature Humidity Index (THI) and water pH. Annual rainfall (<4000 mm) and dry months (<8) are in the appropriate category.

The suitability ecological environment map for beef cattle farms in SemarangRegency is shown in Figure 1. The white area is an area that is not assessed because it is

249 designated as land for settlements, plantations, tourism, and forests. Based on Figure 1, it is known that the level of suitability of the produced beef cattle ecological environment 250 is: very suitable (S1), quite suitable (S2), and according to marginal (S3). Non-suitable 251 (NS) categories are not assessed because the area has a slope >40% (steep - very steep). 252 The symbol "p" indicates that there is a limiting factor in the area assessed. The 253 254 limiting factors are the Temperature Humidity Index (THI) and the pH of the water for beef cattle consumption (Table 5). Semarang Regency consists of 19 sub-districts. The 255 development of beef cattle farms is prioritized in sub-districts that have LQ>1, SS (+) 256 value, and carrying capacity index of forage (>2), namely Bringin, Bancak, and 257 258 Banyubiru. Banyubiru sub-district is not constrained by limiting factors, while Bringin and Bancak are constrained by THI values that exceed the comfort zone for growing cattle 259 (>80). The extent suitability of the ecology of beef cattle farms from the three priority 260 261 sub-districts is shown in Table 6.

Based on the results of the analysis conducted in Table 6, the sub-districts with 262 the largest land area for the development of beef cattle farms with intensive production 263 systems were respectively Bringin (2,758.86 Ha), Bancak (1,550.08 Ha), and Banyubiru 264 (1,451.2 Ha). The limiting factor in the form of temperature humidity index (THI) or 265 water pH can be minimized through the engineering design of livestock housing and 266 provision of materials or neutralizing water acidity solvent (Yani et al., 2007; Sarwanto 267 & Hendarto, 2011). Cattle with intensive production systems are generally more 268 susceptible to heat stress than cattle extensively production systems. Efforts that can be 269 270 done to reduce heat stress in beef cattle include: adding shade around the housing location, install a sprinkle tool or add straw that works to lower the surface temperature of the floor, 271 regulate feed, feed additives and medicine, etc (Suhaema et al., 2014). 272

DISCUSSION	

273 274

Semarang Regency is a potential area for the development of beef cattle farming 275 because it has abundant natural resources in the form of land for livestock keeping and 276 277 forage production. The mapping activity is based on the determination of leading livestock commodities, and optimization of regional potential can be one of the 278 benchmarks in realizing sustainable development of beef cattle farms. The concept of 279 280 sustainable development is to meet the needs of the current generation, without sacrificing future generations and this concept has become a reference for welfare in almost all 281 282 sectors, including the livestock sector (Wasike et al, 2011). The concept of sustainability has been widely debated throughout the world over the past few years (De Longe et al., 283 2016; Keesstra et al., 2016; Rasmussen et al., 2017), not only concerning issues 284 environmental and social issues, but also discussing economic issues to gain certain 285 market or commodity advantages (Broom et al., 2013; Sabaghi et al., 2016). 286 Sustainability assessment is achieved by evaluating the relative contribution of each of 287 the economic, environmental and social factors to the overall goal (Astier & García-288 Barrios, 2012). Sustainability assessed in this study is economic and environmental 289 sustainability for beef cattle farms. 290

Economic sustainability is assessed based on the results of the analysis of leading commodity. The leading livestock commodity in an area are determined based on comparative advantage (LQ analysis) and competitive advantage (SS analysis). The concept of comparative advantage is economic feasibility. Commodities that have a comparative advantage (LQ>1) show that the commodity (beef cattle) is supported by the existence of adequate natural resources so that the population level is higher than in other

297 regions (Mulyono & Munibah, 2016). Beef cattle commodity in the base sub-district is a prominent or dominant livestock business compared to the other livestock businesses, so 298 the effort for future development is easier (Yuniar et al., 2016; Mulyono & Munibah, 299 2016). On the other hand, the concept of competitive advantage is financial feasibility. 300 Beef cattle commodities are keeping in effective and efficient ways, so that they have 301 302 competitiveness from aspects of quality, quantity, continuity and price (Muta'ali, 2015; Mulyono & Munibah, 2016). The results presented in Table 3 show that the Bringin, 303 Bancak, and Banyubiru sub-districts are regions with leading commodity of beef cattle. 304 Accordingly, the three sub-districts are a priority for the development of beef cattle farms 305 306 in Semarang Regency.

Environmental sustainability for beef cattle farms is assessed based on the results 307 of the carrying capacity analysis and carrying capacity index of forage, and analysis of 308 suitability of the ecological environment of beef cattle. Carrying capacity is defined as 309 the maximum population that can be supported by an ecosystem from time to time. The 310 carrying capacity of an area is not static, there is a kind of reciprocal relationship between 311 organism and their environment. The carrying capacity of a region can vary for different 312 species and change over time due to various factors (Taiwo & Feyisara, 2017). Regional 313 carrying capacity for livestock development is the size of the region's ability to support 314 315 the livelihoods of a number of livestock populations optimally through the role of forage availability. Based on the results of the analysis presented in Table 4, it is known that the 316 Bringin, Bancak, and Banyubiru sub-districts have a forage carrying capacity index in the 317 318 safe category.

The production systems of beef cattle that is often found in Semarang Regency is an intensive production systems. Beef cattle are able to show optimal physical conditions

321 if they have superior genetic traits, and are supported by the suitability of their ecological environment (Suhaema et al., 2014). Animal ecology is the study of the interactions 322 between animals and their environment. Environmental factors tend to affect the 323 production and productivity of livestock more (Sumarto & Koneri, 2016). Some 324 environmental factors that influence the growth of beef cattle with intensive production 325 326 systems are: soil type, length of dry season, altitude, slope (Rusmana et al., 2006), temperature and relative humidity, rainfall, water pH (Herbut & Angrecka, 2012; 327 Suhaema et al., 2014; Yuniar et al., 2016; Eirich, 2018). 328

The results of the analysis in Table 5 show that environmental factors are limiting 329 330 in the development of beef cattle farms in Semarang Regency are air temperature and 331 humidity, and pH of water for livestock drinking needs. The relationship between the amount of air temperature and humidity is called the Temperature Humidity Index (THI). 332 333 If THI exceeds the threshold (>80), it can cause stress or heat stress in beef cattle (Eirich, 334 2018). Long-term heat stress has an impact on increasing drinking water consumption, increasing urine volume, and decreasing feed consumption. The direct effect of heat stress 335 on livestock production causes a decrease in the productivity of beef cattle. This is due to 336 the increasing need for livestock maintenance (Berman, 2005). Furthermore, the THI 337 value that exceeds the threshold influences the decrease in daily body weight gain, 338 339 depletion of the thickness of meat fat, and the increase of potential for disease occurrence especially in male cattle (Nardone et al., 2010). Hydrogen potential (pH) characterizes 340 the balance between acidic and alkaline solvent in water. If the pH of drinking water for 341 beef cattle is below the quality standard or acid (<6,5), the water becomes sour and can 342 cause physiological and digestive disorders in livestock. On the other hand, if the pH of 343 water is too alkaline (>9), the water becomes bitter and causes a decrease in consumption 344

345	of drinking water which has an impact on decreasing livestock productivity (Sarwanto &	
346	Hendarto, 2011).	
347	The synthesis of the assessment results of leading commodity, calculation of	
348	carrying capacity and carrying capacity index of forage, as well as land suitability	
349	assessment, shows that there are three sub-districts (Bringin, Bancak, and Banyubiru)	
350	which are priorities for the development of beef cattle farms in Semarang Regency.	
351		
352	CONCLUSION	
353	Planning for the development of beef cattle farming with intensive production	
354	systems in Semarang Regency is recommended in three sub-districts, namely: Bringin,	
355	Bancak, and Banyubiru. The assumption of forage production produced from these three	
356	sub-districts reaches 55,693.72 tons of DDM. The total carrying capacity for beef cattle	
357	farms is 30,601 AU. The total land area suitable for beef cattle farming in the three priority	
358	sub-districts is 5,760.141 Ha. The development of beef cattle farms in priority sub-	
359	districts is expected to increase livestock production and productivity. Governments,	
360	communities (cattleman) and the private sector (investors) must coordinate and cooperate	
361	with each other so that the development of sustainable beef cattle farms can be achieved.	
362		Cor
363	REFERENCES	Cor
364	Agus, A. & Widi, T. S. M. 2018. Current situation and future prospects for beef cattle	Surr
365	production in Indonesia - A review. Asian-Australasian Journal of Animal	Plea
366	Sciences. 31(7):976–983. doi: 10.5713/ajas.18.0233.	
367	Ariningsih, E. 2014. Performance of national beef self-sufficiency policy. Forum	
368	Penelitian Agro Ekonomi. 32(2):137–156.	

Commented [MP2]: Please add Conflict of Interest Statement. Please see journal's guidelines on how to write it.

Commented [MP3]: Please see journal's guidelines on how to write references. Surname for 2nd, 3rd, etc authors should be placed before front name, for example : Agus, A. & Widi, T. S. M should be Agus, A. & T.S.M. Widi Please revise all references

370	2012. Assessing the sustainability of small farmer natural resource management							
371	systems. A critical analysis of the MESMIS program 1995-2010. Ecology and							
372	Society. 17(3):25. doi: 10.5751/ES-04910-170325.							
373	Atanga, N. L., Treydte. A. C, & Birner. R. 2013. Assessing the sustainability of							
374	different small-scale livestock production systems in the Afar Region, Ethiopia.							
375	Land. 2(4):726-755. doi: 10.3390/land2040726.							
376	Berman, A. 2005. Estimates of heat stress relief needs for Holstein dairy cows. Journal							
377	Animal Science. 83:1377–1384.							
378	BPS Kabupaten Semarang. 2018. Kabupaten Semarang dalam Angka. Badan Pusat							
379	Statistik, Semarang.							
380	Broom, D. M., Galindo. F. A, & Murgueitio, E. 2013. Sustainable, efficient livestock							
381	production with high biodiversity and good welfare for animals. The Royal							
382	Society Publishing. rspb.royalsocietypublishing.org. doi:							
383	10.1098/rspb.2013.2025.							
384	Ciptayasa, I. N., Hermansyah, & Yasin. M. 2016. Analisis potensi ternak kambing di							
385	Kabupaten Lombok Barat. Jurnal Ilmu dan Teknologi Peternakan Indonesia.							
386	2(1):110–115.							
387	Darnhofer, I., Fairweather. J, & Moller. H. 2010. Assessing a farm's sustainability:							
388	insights from resilience thinking. International Journal of Agricultural							
389	Sustainability. 8(3):186-198. doi: 10.3763/ijas.2010.0480.							
390	DeLonge, M. S., Miles. A, & Carlisle. L. 2016. Investing in the transition to sustainable							
391	agriculture. Environmental Science and Policy. 55:266-273. doi:							
392	10.1016/j.envsci.2015.09.013.							

Astier, M., Barrios. L. G, Miyoshi. Y. G, Esquivel Carlos. E. G, & Masera. O. R.

393	Eirich, R. 2018. Beef cattle temperature humidity chart. University of Nebraska.	
394	Available at: https://bqa.unl.edu/heat-stress-resources. [28 December 2018].	
395	Herbut, P. & Angrecka. S. 2012. Forming of temperature-humidity index (THI) and	
396	milk production of cows in the free-stall barn during the period of summer heat.	
397	Animal Science Papers and Reports. 30(4):363–372.	
398	Kadarsih, S. 2004. Performans sapi Bali berdasarkan ketinggian tempat di daerah	
399	transmigrasi Bengkulu. Jurnal Ilmu-Ilmu Pertanian Indonesia. 6(1):50-56.	
400	Keesstra, S. D., Bouma. J, Wallinga. J, Tittonell. P, Smith. P, Cerda. A,	
401	Montararella. L, Quinton. J. N, Pachepsky. Y, Putten. W. H, Bardgett. R. D,	
402	Moolenaar. S, Mol. G, Jansen. B, & Fresco. L. O. 2016. The significance of	
403	soils and soil science towards realization of the United Nations sustainable	
404	development goals. Soil. 2:111-128. doi: 10.5194/soil-2-111-2016.	
405	Kementan. 2016. Outlook Daging Sapi. Kementerian Pertanian Republik Indonesia,	
406	Jakarta.	
407	Mulyono, J. & Munibah. K. 2016. Pendekatan location quotient dan shift share analisis	
408	dalam penentuan komoditas unggulan tanaman pangan di Kabupaten Bantul.	
409	Informatika Pertanian. 25(2):221–230.	
410	Muta'ali, L. 2015. Teknik Analisis Regional untuk Perencanaan Wilayah, Tata Ruang,	
411	dan Lingkungan. Badan Penerbit Fakultas Geografi UGM, Yogyakarta.	
412	Nardone, A., Ronchi. B, Lacetera. N, Ranieri. M. S, & Bernabucci. U. 2010. Effects	
413	of climate changes on animal production and sustainability of livestock systems.	
414	Livestock Science. 130:57-69. doi: 10.1016/j.livsci.2010.02.011.	
415	Nuhung, I. A. 2015. Kinerja, kendala, dan strategi pencapaian swasembada daging sapi.	

416 Forum Penelitian Agro Ekonomi. 33(1):63–80.

417	Paly, B., Natsir. A, Rasyid. S, & Fahmid. I. M. 2013. Interconnectivity multi criteria	
418	for sustainable development of beef cattle. International Journal Of Scientific and	
419	Technology Research. 2(7):115–121.	
420	Parmawati, R., Mashudi, Budiarto. A, Suyadi, & Kurnianto. A. S. 2018. Developing	
421	sustainable livestock production by feed adequacy map : A case study in Pasuruan,	
422	Indonesia. Tropical Animal Science Journal. 41(1):67–76.	
423	Pasandaran, E., Haryono, & Suherman. 2014. Memperkuat Daya Saing Produk	
424	Pertanian. Perspektif Daya Saing Wilayah. IAARD Press, Jakarta.	
425	Rasmussen, L. V., Bierbaum. R, Oldekop. J. A, & Agrawal. A. 2017. Bridging the	
426	practitioner-researcher divide: Indicators to track environmental, economic, and	
427	sociocultural sustainability of agricultural commodity production. Global	
428	Environmental Change. 42:33-46. doi: 10.1016/j.gloenvcha.2016.12.001.	
429	Rouf, A. A., A. Daryanto, & A. Fariyanti. 2014. Daya saing usaha sapi potong di	
430	Indonesia: Pendekatan domestic resources cost. Wartazoa. 24(2):97-107. doi:	
431	10.14334/wartazoa.v2412.1053.	
432	Rusmana, N., Atmiyati, & Ridwan. 2006. Pembuatan peta kesesuaian ekologis untuk	
433	ternak ruminansia pada skala tinjau. Pusat Penelitian dan Pengembangan	
434	Peternakan. Bogor.	
435	Sabaghi, M., Mascle. C, Baptiste. P, & Rostamzadeh. R. 2016. Sustainability	
436	assessment using fuzzy-inference technique (SAFT): A methodology toward	
437	green products. Expert Systems with Applications. 56:69-79. doi:	
438	10.1016/j.eswa.2016.02.038.	
439	Santos, S. A., de Lima. H. P, Massruha. S, de Abreu. U, Tomas. W. M, Salis. S. M,	
440	Cardoso. E. L, de Oliveira. M. D, Soares. M. T, Jr. Antonio, de Oliveira. L.	

441	O, Calheiros. D. B, Crispim. S. M, Soriano. B. M, Amancio. C. O, Nunes. A.
442	P, & Pellegrin. L. A. 2017. A fuzzy logic-based tool to assess beef cattle ranching
443	sustainability in complex environmental systems. Journal of Environmental
444	Management. 198:95–106. doi: 10.1016/j.jenvman.2017.04.076.
445	Saputra, J. I., Liman, & Widodo. Y. 2016. Analisis potensi pengembangan peternakan
446	sapi potong di Kabupaten Pesawaran. Jurnal Ilmiah Peternakan Terpadu.
447	4(2):115–123.
448	Sarwanto, D. & Hendarto. E. 2011. Analisis kualitas air minum sapi perah rakyat di
449	Kabupaten Banyumas Jawa Tengah. Media Peternakan. 13(1):1-5.
450	Suhaema, E., Widiatmaka, & Tjahjono. B. 2014. The regional development of beef
451	cattle based on physical and forage land suitability in Cianjur Regency. Tanah
452	Lingkungan. 16(2):53-60.
453	Sumarto, S. & Koneri, R. 2016. Ekologi Hewan. Cv. Patra Media Grafindo, Bandung.
454	Sutanto, A. & Hendraningsih. L. 2011. Analisis keberlanjutan usaha sapi perah di
455	Kecamatan Ngantang Kabupaten Malang. Gamma. 7(1):1-12.
456	Syarifuddin, H. 2009. Indeks keberlanjutan integrasi tanaman dengan ternak (crop
457	livestock system) di Kuamang Kuning. Jurnal Ilmiah Ilmu-Ilmu Peternakan.
458	XII(1):41–49.
459	Taiwo, F. J. & Feyisara. O. O. 2017. Understanding the concept of carrying capacity
460	and its relevance to urban and regional planning. Journal of Environmental
461	Studies. 3(1):1–5.
462	Thornton, P. K. 2010. Livestock production: recent trends, future prospects.
463	Philosophical Transactions of the Royal Society B: Biological Sciences.
464	365:2853–2867. doi: 10.1098/rstb.2010.0134.

465	Tongco, M. D. C. 2007. Purposive sampling as a tool for informant selection.							
466	Ethnobotany Research and Applications. 5:147-158. doi: 10.17348/era.5.0.147-							
467	158.							
468	Wasike, C. B., Magothe. T. M, Kahi. A. K, & Peters. K. J. 2011. Factors that influence							
469	the efficiency of beef and dairy cattle recording system in Kenya: A SWOT-AHP							
470	analysis. Tropical Animal Health and Production. 43:141-152. doi:							
471	10.1007/s11250-010-9666-3.							
472	Yuniar, P. S., Fuah. A. M, & Widiatmaka. 2016. Carrying capacity and priority region							
473	for development of beef cattle production in South Tangerang. Jurnal Ilmu							
474	Produksi dan Teknologi Hasil Peternakan. 04(1):64–268.							
475	Zakiah., Saleh, A, & Matindas. K. 2017. Gaya kepemimpinan dan perilaku komunikasi							
476	GPPT dengan kapasitas kelembagaan sekolah peternakan rakyat di Kabupaten							
477	Muara Enim. Jurnal Penyuluhan. 13(2):133-142.doi:							
478	10.25015/penyuluhan.v13i2.14977.							
479								

481 Table 1. Environmental parameters that influence the growth of beef cattle with intensive482 maintenance patterns

Parameter	Order of environme	ental suitability of beel attle
	S (Suitable)	N (Unsuitable)
Temperature Humidity Index (THI)	70-80	<70, >80
Water availability (w)		
Dry month (<100 mm rainfall/month)	<8 months	>8 months
Rainfall / year (mm)	< 4,000	> 4,000
The existence of a water source	Available	Not Available
Water Quality (q)		
pH water	6.5-9.0	<6.5; >9.0
Slope (%)	<40	>40

483 Source: (Suhaema *et al.*, 2014; Yuniar *et al.*, 2016).

484 Table 2. Growth of livestock populations in Semarang Regency

T			Number (head))	
Type of investock	2013	2014	2015	2016	2017
Pig	32,640	17,300	18,431	15,971	15,850
Goat	197,029	136,999	123,294	117,003	117,373
Sheep	290,764	191,346	172,211	167,374	162,694
Rabbit	20,352	9,375	10,462	11,629	11,916
Horse	1,711	497	515	524	581
Beef cattle	51,901	53,135	49,172	46,238	48,444
Dairy cows	22,308	27,609	25,780	25,690	25,557
Buffalo	2,941	3,168	2,614	2,629	2,589
Laying Chicken	1,821,286	1,813,049	1,452,019	1,331,528	1,572,463
Broiler Chicken	12,046,319	7,501,700	10,144,846	10,754,602	11,812,311
Chicken Breed	819,067	860,408	818,568	861,989	823,226
Duck	206,882	92,963	80,801	127,859	125,261
Quail	122,200	238,930	227,737	176,730	142,856
Muscovy Duck	102,966	72,227	63,889	61,963	54,402

485 Source: (BPS Kabupaten Semarang, 2018).

NO	SUB-DISTRICT	BEEF CATTLE				
NO		LQ	RS	PS	DF	SS
1	Getasan	0.63	-0.052	-0.014	-0.359	-0.425
2	Tengaran	0.55	-0.052	-0.014	0.092	0.026
3	Susukan	1.11	-0.052	-0.014	-0.137	-0.203
4	Kaliwungu	1.22	-0.052	-0.014	0.048	-0.018
5	Suruh	0.88	-0.052	-0.014	-0.213	-0.279
6	Pabelan	1.75	-0.052	-0.014	0.501	0.435
7	Tuntang	0.28	-0.052	-0.014	-0.689	-0.755
8	Banyubiru	3.97	-0.052	-0.014	0.536	0.47
9	Jambu	0.42	-0.052	-0.014	-0.417	-0.483
10	Sumowono	0.95	-0.052	-0.014	-0.234	-0.3
11	Ambarawa	3.92	-0.052	-0.014	0.006	-0.06
12	Bandungan	1.01	-0.052	-0.014	0.269	0.203
13	Bawen	2.34	-0.052	-0.014	0.0009	-0.0651
14	Bringin	2.82	-0.052	-0.014	0.105	0.039
15	Bancak	4.93	-0.052	-0.014	0.143	0.077
16	Pringapus	1.38	-0.052	-0.014	-0.312	-0.378
17	Bergas	0.77	-0.052	-0.014	-0.106	-0.172
18	Ungaran Barat	0.77	-0.052	-0.014	1.352	1.286
19	Ungoron Timur	03	-0.052	-0.014	-0.62	-0.686

487 Table 3. Value of LQ and SS beef cattle in Semarang Regency in 2018

 $\frac{19 \quad \text{Ungaran Timur}}{\text{LQ} = \text{Location quotient, SS} = \text{Shift share, RS} = \text{Regional share, PS} = \text{Proportional shift, DS} = \text{Differential}}$ $\frac{19 \quad \text{Ungaran Timur}}{\text{shift}}$

490

SD	Вср 2017	Bcp 2017 (AU)	Rm	R Bc	F Dmp	CC	ССІ	AV
А	b	с	d	e = c x d	f	g = f/d	h = g/c	
Getasan	2,085	1,459.5	1.82	2,656.29	7,802.45	4,287.1	2.94	S
Tengaran	4,881	3,416.7	1.82	6,218.39	10,526.78	5,783.9	1.69	V
Susukan	2,905	2,033.5	1.82	3,700.97	15,301.29	8,407.3	4.13	S
Kaliwungu	4,650	3,255	1.82	5,924.1	13,231.72	7,270.2	2.23	S
Suruh	3,335	2,334.5	1.82	4,248.79	19,522.03	10,726.4	4.59	S
Pabelan	4,251	2,975.7	1.82	5,415.77	12,690.04	6,972.5	2.34	S
Tuntang	211	147.7	1.82	268.81	9,458.6	5,197.03	35.19	S
Banyubiru	3,840	2,688	1.82	4,892.16	11,493.54	6,315.1	2.35	S
Jambu	741	518.7	1.82	944.03	8,816.47	4,844.2	9.34	S
Sumowono	2,228	1,559.6	1.82	2,838.47	10,921.51	6,000.8	3.85	S
Ambarawa	1,661	1,162.7	1.82	2,116.11	4,935.95	2,712.05	2.33	S
Bandungan	4,140	2,898	1.82	5,274.36	4,327.55	2,377.8	0.82	VC
Bawen	2,717	1,901.9	1.82	3,461.46	7,241.14	3,978.6	2.09	S
Bringin	2,349	1,644.3	1.82	2,992.63	28,808.63	15,828.9	9.63	S
Bancak	2,820	1,974	1.82	3,592.68	15,391.55	8,456.9	4.28	S
Pringapus	1,333	933.1	1.82	1,698.24	23,509.36	12,917.2	13.84	S
Bergas	1,828	1,279.6	1.82	2,328.87	7,593.47	4,172.2	3.26	S
Ungaran Barat	2,105	1,473.5	1.82	2,681.77	5,400.34	2,967.2	2.01	S
Ungaran Timur	364	254.8	1.82	463.74	6,387.01	3,509.3	13.77	S
Jumlah	48,444	33,910.8		61,717.64	223,359.43	122,724.7	120.68	

Table 4. Carrying capacity and carrying capacity index of forage in Semarang Regency
 in 2018

494 SD = sub-district, Bcp = beef cattle population, Bcp (AU) = beef cattle population in livestock units, Rm =
495 minimum feed requirements for beef cattle (no DDM /year /AU), R bc = beef cattle feed requirements
496 (tons /DDM/year), F Dmp = forage dry matter production (ton DDM), CC = carrying capacity (AU), CCI
497 = carrying capacity index of forage, AV = forage availability status; S = safe, V = vurnerable, VC = very
498 critical.

499

500

Subdistrict	Sample (Village)	Tem perat ure (°C)	Tem perat ure (°F)	Humidit y (%)	THI	Rainfall (mm/year)	Dry months	Water pH
Getasan	Samirono	31	87.8	51	79.77	3,403	3	7
Tengaran	Duren	30	86	65	80.61	2,591	3	5.8
Susukan	Timpik	32	89.6	57	82.13	2,618	3	6.5
Kaliwungu	Mukiran	32	89.6	56	81.95	2,618	0	5.5
Suruh	Dadapayam	32	89.6	65	83.52	2,680	4	6.3
Pabelan	Terban	32	89.6	58	82.3	1,927	4	6.5
Tuntang	Tlumpakan	35	95	46	84.01	2,676	0	7
Banyubiru	Wirogomo	30	86	51	78.45	2,066	3	8
Jambu	Genting	31	87.8	49	79.44	2,489	0	6.2
Sumowono	Candi Garon	28	82.4	58	76.76	1,383	4	6.3
Ambarawa	Pasekan	30	86	51	78.45	1,291	3	6.8
Bandungan	Candi	29	84.2	54	77.57	1,291	0	6.7
Bawen	Polosiri	35	95	49	84.62	2,061	4	6.1
Bringin	Banding	35	95	54	85.64	2,211	3	7.9
Bancak	Pucung	33	91.4	58	83.68	2,091	0	6.5
Pringapus	Penawangan	32	89.6	56	81.95	2,290	3	4
Bergas	Munding	32	89.6	48	80.56	3,802	2	5.9
Ungaran Barat	Gogik	32	89.6	49	80.74	3,316	0	7.7
Ungaran Timur	Kawengen	33	91.4	51	82.4	3,316	0	6.6

Table 5. Results of measurements of environmental factors that influence the growth of
 beef cattle in Semarang Regency in 2018

504

THI = T - $\{0.55 (1-RH / 100) (T-58)\}$, where T = temperature (°F), RH = relative humidity.

505

506

Table 6. Extent of suitability ecological environment map of beef cattle farms in Bancak,
 Banyubiru, and Bringin sub-districts

NO	SUBDISTRICT		Total					
		S 1	S1p	S2	S2p	S 3	S3p	Total
1	Bancak	0	40.26	0.06	1,342.25	0	167.51	1,550.079
2	Banyubiru	17.10	0	1,434.10	0	0	0	1,451.2
3	Bringin	0	36.01	0	2,327.42	0	395.43	2,758.862
	TOTAL	17.10	76.27	1,434.16	3,669.67	0	562.94	5,760.141

509 $\overline{S1}$ = very suitable, S2 = quite suitable, S3 = according to marginal, P = limiting factor in the form of 510 temperature humidity index (THI).

511

TASJ-1928

513

Figure 2. The suitability ecological environment map for beef cattle farms in SemarangRegency

- 1 2
- 3

4

ABSTRACT

The Regional Analysis of Beef Cattle Farm Development in Semarang Regency

5 One of the reasons for low production and productivity of beef cattle in Indonesia 6 is that information on the allocation of livestock areas development is not yet clear. This study aims to determine the priority areas for developing beef cattle farm in Semarang 7 Regency based on the concept of sustainability. Sustainability is analyzed through the 8 determination of leading commodities (analysis of Location Quotient and Shift Share), 9 optimization of regional potential (analysis of carrying capacity and carrying capacity 10 11 index of forage, and assessment of suitability ecological environment of beef cattle). The process of spatial analysis used GIS software. Comprehensive planning for the 12 development of beef cattle farm was directed in three sub-districts, namely: Bringin, 13 14 Bancak, and Banyubiru. The results of the analysis show that the three sub-districts were beef cattle base areas (LQ>1), had business growth (positive SS), and had a safe status 15 for forage availability (>2). Other results show that the carrying capacity for beef cattle 16 farms in Bringin sub-district was 15,829 AU, Bancak was 8,457 AU, and Banyubiru was 17 6,315 AU. The land area suitable for beef cattle farm from the three priority sub-districts 18 19 was 5,760.141 Ha. It can be concluded that the development of beef cattle farm in Semarang Regency is focused on three priority sub-districts, namely: Bringin, Bancak, 20 21 and Banyubiru. The results of this study can be an input for local governments in 22 determining the direction and pattern of beef cattle farm development to be more 23 sustainable.

24 Key words: beef cattle, regional analysis, sustainability of livestock sector.

26

INTRODUCTION

27 The directed and sustainable development of the livestock sector is believed to be 28 able to contribute positively to regional development. Along with the increase in population, there is an increasing demand for food from animal protein such as beef. Beef 29 consumption in developing countries such as in Indonesia tends to increase every year 30 (Thornton, 2010; Agus & Widi, 2018), however the population of beef cattle in some 31 regions actually decreases due to the complexity of technical and non-technical problems 32 33 (Paly et al., 2013; Ariningsih, 2014; Nuhung, 2015). There is a gap between demand and supply of beef products which are increasingly widening. Many factors causing this 34 gap, including the domestic production of beef cattle is still low because information on 35 36 the allocation of livestock development areas is not yet clear.

Cattle farmings in Indonesia are categorized as unsustainable (Syarifuddin, 2009; 37 Sutanto & Hendraningsih, 2011). The number of available beef cattle has not been able 38 to meet the high consumption of people against meat. The consumption of beef in 2020 39 is estimated to reach 3.36 kg per capita per year, but beef production is still not able to 40 41 fulfill it, there is a deficit in beef supply of 198,350 tons (Kementan, 2016; Agus & Widi, 2018). Most of beef production in Indonesia, 78% comes from traditional livestock, 5% 42 from imports, and 17% from live livestock imports, especially from Australia (Zakiah et 43 44 al., 2017). Imports of beef are indeed relatively larger compared to other types of meat imports, contributing 21.44% to the total import value of livestock, while the import value 45 of livestock is 18.29% of the total value of agricultural imports nationally (Rouf et al., 46 47 2014).

Policy efforts to reduce beef imports must be studied, by strengthening domestic
production that is beneficial for farmers (Pasandaran *et al.*, 2014). The development of

50 beef cattle farms in potential areas is an effort to strengthen meat production in the country so that the implementation must be carried out with a comprehensive assessment. 51 52 Semarang Regency is a region in Central Java Province that has the potential to develop beef cattle farms because it has natural resources in the form of land as a place for 53 livestock keeping and forage production. Good quality and always available forage can 54 increase production, especially for increasing body weight of cattle (Suhaema et al., 55 2014). Forage producing areas in Semarang Regency include gardens (25,562.04 Ha). 56 57 rice fields (23,745.96 Ha), and forests (6,032.77 Ha). The beef cattle population in this region during the 2014-2016 period continued to decline, ranging from 53,135, 49,172, 58 and 46,238 (BPS Kabupaten Semarang, 2018). 59

60 The development of beef cattle farms in Semarang Regency needs to adopt the concept of sustainability. The concept of sustainability is the achievement of economic, 61 environmental and social goals simultaneously which is represented by various 62 performance indicators (Darnhofer et al., 2010). Sustainability is also defined as the 63 concept of multidimensional (economic, ecological, social) and multiscale (micro, meso, 64 65 and macro), although in its application it is often limited to one particular aspect (Santos et al., 2017). Economic sustainability is closely related to the value of comparative and 66 competitive advantages of certain commodities (Broom et al., 2013; Sabaghi et al., 67 68 2016), while environmental sustainability includes optimizing the availability of natural resources and efficient use (Atanga et al., 2013). 69

The sustainability of beef cattle farms can be identified through a regional approach, by considering the existence of leading commodities and the potential of the region concerned (Mulyono & Munibah, 2016; Parmawati *et al.*, 2018). Determination of leading commodities characterized by the existence of comparative and competitive

advantages is the first step towards efficient development of the livestock sector. The potential of the region to support the development of beef cattle farms is determined by optimizing the carrying capacity and carrying capacity index of forage, as well as assessing the suitability of the land where the livestock grows. Land suitability for beef cattle farms with intensive production systems considers several environmental factors that affect the growth of these cattle.

Mapping activities based on the determination of leading commodities and optimization of regional potential are needed as a basis for planning sustainable development of beef cattle farms. This study aims to determine the priority areas for developing beef cattle farms in Semarang Regency. The results of this study are expected to be one of the considerations in determining the direction and development policy of the beef cattle farms sector in Semarang Regency.

86

87

MATERIALS AND METHODS

This research is a type of quantitative research and applies the concept of sustainability. Sustainability assessed is economic and environmental sustainability for beef cattle farm in Semarang Regency. Economic sustainability is identified through the determination of leading commodity of livestock, while environmental sustainability is identified through the calculation of the carrying capacity and carrying capacity index of forage, and assessment of suitability ecological environment of beef cattle. In detail, each step of the analysis is outlined below.

95

Leading Commodity

Determination of leading livestock commodities in an area uses Locationt
Quotient (LQ) and Shift Share (SS) analysis. The rationale for the two methods is the

economic basis theory. LQ analysis is relatively simple, but the benefits are large enough
for the initial identification of the ability of a sector in regional development. The shift in
the structure of economic activity in beef cattle business, whether experiencing growth or
decline is analyzed using Shift Share (SS). SS analysis can be used to see the growth of
the economic sectors of a region for two time points (Muta'ali, 2015). LQ and SS analysis
uses equations that refer to (Ciptayasa *et al.*, 2016; Mulyono & Munibah, 2016).

104
$$LQ_{ij} = \frac{Xij / Xi.}{X.j / X..}$$
 (Equation 1)

105 $(X_{ij} = \text{Beef cattle population in the sub-district A, X_i.} = \text{Population of all types of livestock in the sub 106 district A, X_j = Beef cattle population in Semarang Regency, X_i = Population of all types of livestock in$ 107 Semarang Regency).

108
$$SS = \left[\frac{X.i(t1)}{X.i(t0)} - 1\right] + \left[\frac{X.i(t1)}{X.i(t0)} - \frac{X.i(t1)}{X.i(t0)}\right] + \left[\frac{Xij(t1)}{Xij(t0)} - \frac{X.i(t1)}{X.i(t0)}\right]$$
(Equation 2)

109 (Regional share, Proportional shift, Differential shift, X .. = Population of all types of livestock in Semarang
110 Regency, Xi = Beef cattle population in Semarang Regency, Xij = Beef cattle population in sub-district A,
111 t0 = Early 2013 year point, t1 = End of year 2017).

- 112
- 113

Carrying Capacity and Carrying Capacity Index of Forage

The carrying capacity of the region for livestock development is indicated by the ability of the region to produce forage that can accommodate and meet the needs of a number of beef cattle populations. Forages are divided into two types, namely fresh forage (grass, legume) and dry forage (straw). An assessment of the carrying capacity index of forage is conducted to assess the availability of animal feed in a region, whether classified as safe, vulnerable, critical, or very critical.

120 The carrying capacity of beef cattle farms is calculated based on the production of 121 forage dry matter against the minimum feed requirements of cattle (1 AU) in one year. 122 The animal unit (AU) is a unit for the ruminant livestock population multiplied by the conversion factor. The conversion factor for beef cattle is 0,7 (Muta'ali, 2015; Saputra *et al.*, 2016). Forage dry matter production is the amount of potential agricultural waste
and natural forage potential, using equations that refer to (Suhaema *et al.*, 2014; Yuniar *et al.*, 2016).

127 Potential of agricultural waste $(ton) = {(wr x 0,4) + (fr x 3 x 0,4) + (cn x 3 x 0,5) + (sb x 0,4) + (s$

128 $3 \ge 0.55$ + (pt x 2 x 0.55) + (sp x 0.25/6) + (cs x 0.25/4) x 0.65

(wr: wetland rice, fr: field rice, cn: corn, sb: soybean, pt: peanuts, sp: sweet potatoes, cs: cassava. The
numbers in the formula are assumptions about the potential waste produced from the production of each
type of plant food).

132 Natural forage potential (ton) = { $(Ga \times 2,875) + (Fa \times 0,6) + (Cpa \times 10) + (Cfa \times 0,5) +$

- 133 (Cla x 5) x 0,5
- 134 (Ga: garden area, Fa: forest area, Cpa: coconut plant area, Cfa: coffee plant area, Cla: clove plant area. The

numbers in the formula are assumed to be natural forage potential produced per hectare of land use area).

136 Minimum cattle feed requirements.

137 R= 2,5% x 50% x 365 x 400kg = 1,82 ton DDM/year/AU (Equation 3)

(R = minimum cattle feed requirements (1 AU) in tons of digestible dry matter for 1 year, 2.5% =
minimum requirement for the number of forage rations (dry matter) on livestock weight, 50% = average
value digestibility power of various types of plants, 365 = Number of days in 1 year, 400 kg = live weight
of 1 AU of beef cattle in Semarang Regency). Equations that refer to (Suhaema *et al.*, 2014;
Yuniar *et al.*, 2016).

The results of the calculation of forage dry matter production are then used to determine the carrying capacity of beef cattle farms using the following equations (Suhaema *et al.*, 2014; Yuniar *et al.*, 2016).

146 $CC(AU) = \frac{Forage Dry Matter Production (tons of DDM / year)}{Minimum Cattle Feed Requirement (tons of DDM / year / AU)}$ (Equation 4)

The level of animal feed security in a region is measured by forage carrying capacity index. Carrying capacity index values are values that indicate the status of the availability of forage for beef cattle, namely: very critical (≤ 1), critical (>1-1,5), vulnerable (> 1,5-2), and safe (>2).

151 Forage carrying capacity index = $\frac{\text{Carrying capacity (AU)}}{\text{Amount of Beef Cattle Population in 2017 (AU)}}$ (Equation 5)

152

153

Suitability of The Ecological Environment of Beef Cattle

The research sample for the assessment of the suitability ecological environment of beef cattle farms in Semarang Regency is 19 points spread throughout the sub-district area (Table 5). Determination of the sample is using purposive sampling technique. The purposive sampling technique is also called judgment sampling (Tongco, 2007), which is to determine the sample based on research considerations. In each sub-district one village is taken which has the most beef cattle population.

Land available for the development of beef cattle farms is: gardens, grasslands, open land, rice fields, and dry land agriculture. The fields are assumed to be able to be built for housing for beef cattle. The assessment of land suitable for beef cattle farming with intensive maintenance patterns, also takes into account several environmental parameters that influence the growth of livestock.

Land suitability assessment for beef cattle farms begins with making a map of land units. Maps of beef cattle land units refer to research (Rusmana *et al.*, 2006) which states that there are four maps needed for overlaying, namely: land type maps, agroclimate maps, regional altitude maps, and slope maps. The final step is to make a "suitability map of the ecological environment of beef cattle". The method used is by overlaying between land unit maps with environmental parameters that affect the growth

171	of beef cattle (Table 1). Land suitability is classified into 4 levels or strata, namely: very
172	suitable (S1), quite suitable (S2), according to marginal (S3), and non-suitable (NS)
173	(Rusmana et al., 2006; Suhaema et al., 2014; Yuniar et al., 2016). The entire process
174	was created and analyzed using GIS software.

177

RESULTS

178

199

Leading Commodity

179 Leading commodity livestock in an area is determined based on comparative advantage (location quotient analysis) and competitive advantage (shift share analysis). 180 Beef cattle commodities that have LQ>1 and SS (+) values are the leading commodities 181 in the region. The interpretation of the value of LQ>1, is a base or leading sector, beef 182 cattle products (meat) are able to meet markets inside and outside the region. LQ<1 value, 183 184 is a non-base sector, livestock products have not been able to meet markets inside and outside the region. LO=1 value, meaning that the sector is balanced with the reference 185 region, livestock products are only able to meet markets in the area. The basis for 186 187 calculating LQ analysis for livestock commodities is livestock population data (Hendayana, 2003). Data bias in calculations can be minimized by using a minimum 5 188 year data series (Table 2). 189

Shift share analysis starts from the basic assumption that economic growth or 190 added value of an activity in a particular region is influenced by three main components 191 192 which are interconnected with each other, namely: regional growth, sectoral growth, and growth in share or regional competitiveness (Ciptavasa et al., 2016). Through these three 193 components, it can be seen which elements have encouraged regional economic growth. 194 195 The value of each component can be positive or negative, but the total number (shift share) will always be positive if the regional economic growth is positive, and vice versa. 196 The results of the LQ and SS analysis calculations for beef cattle commodities in 197 198 Semarang Regency are shown in Table 3. Based on the results of the analysis conducted,

200 Banyubiru (3.97), Ambarawa (3.92), Bringin (2.82), and Bawen (2.34). Beef cattle

the subdistrict areas becoming the beef cattle base sector (LQ> 1) were Bancak (4.93),

keeping was concentrated in these areas or in other words the economic density of beefcattle was higher than that of in other regions.

203 Beef cattle commodities that have competitive advantages are seen based on 204 positive shift share (SS) values. Sub-districts with a positive SS value means experiencing 205 growth (competitiveness) related to keeping beef cattle. On the other hand, sub-districts 206 with negative SS value means that the area is not growing (stagnant) and can even 207 experience setbacks. The results of the analysis conducted in Table 3 shows that sub-208 districts with positive SS values were in Ungaran Barat (1.286), Banyubiru (0.47), Pabelan (0.435), Bandungan (0.203), Bancak (0.077), Bringin (0.039), and Tengaran 209 210 (0.026).

The development of beef cattle farms in Semarang Regency is prioritized in the sub-districts with LQ>1 and SS (+) values. The sub-districts are Bringin, Bancak, and Banyubiru.

214

215

Carrying Capacity and Carrying Capacity Index of Forage

216 Potential availability of feed for beef cattle is seen based on the amount of forage dry matter production (tons of DDM) that can be produced by the region concerned. Dry 217 matter is the total feed ingredients without water content, which can come from forages. 218 219 The region with the largest forage dry matter production has the highest carrying capacity for the development of beef cattle farms, and vice versa. Forage is one of the production 220 inputs that determines the success of livestock business because it directly affects 221 222 productivity and efficiency (Yuniar et al., 2016). Table 4 shows the calculation of carrying capacity and carrying capacity index of forage for beef cattle farms in Semarang 223 224 Regency.

225 Based on the results of the analysis conducted in Table 4, it is known that there 226 were three sub-districts with the highest production of forage dry matter, namely Bringin 227 (28,808.63 tons DDM), Pringapus (23,509.36 tons DDM), and Suruh (19,522.03 tons 228 DDM). Sub-district area with the lowest forage dry matter production, namely 229 Bandungan (4,327.55 tons DDM). The status of availability of forage in Bandungan subdistrict was categorized as very critical (0.82), while in Tengaran sub-district it was 230 categorized as vulnerable (1.69). Thus, these two sub-districts are not recommended for 231 232 the development of beef cattle farms. Sub-district areas with carrying capacity index value >2 (safe) means that the area can be recommended for the development of beef cattle 233 farms. The advantage obtained by the area with this safe category is that farmers can 234 235 reduce the amount of production costs for beef cattle feed.

Semarang Regency has carrying capacity for beef cattle farms of 122,725 AU.
The population of beef cattle in 2017 is 33,911 AU, so the Semarang Regency area is
assumed to still be able to accommodate 88,814 AU beef cattle in 2018.

- 239
- 240

Suitability of The Ecological Environment of Beef Cattle

The results of field measurements and secondary data collection conducted on several environmental factors that influence the growth of beef cattle are shown in Table 5. The factors that limit the assessment of the suitability ecological environment of beef cattle farming in Semarang Regency are the Temperature Humidity Index (THI) and water pH. Annual rainfall (<4000 mm) and dry months (<8) are in the appropriate category.

The suitability ecological environment map for beef cattle farms in SemarangRegency is shown in Figure 1. The white area is an area that is not assessed because it is
designated as land for settlements, plantations, tourism, and forests. Based on Figure 1, it
is known that the level of suitability of the produced beef cattle ecological environment
is: very suitable (S1), quite suitable (S2), and according to marginal (S3). Non-suitable
(NS) categories are not assessed because the area has a slope >40% (steep - very steep).

The symbol "p" indicates that there is a limiting factor in the area assessed. The 253 limiting factors are the Temperature Humidity Index (THI) and the pH of the water for 254 beef cattle consumption (Table 5). Semarang Regency consists of 19 sub-districts. The 255 256 development of beef cattle farms is prioritized in sub-districts that have LQ>1, SS (+) value, and carrying capacity index of forage (>2), namely Bringin, Bancak, and 257 Banyubiru. Banyubiru sub-district is not constrained by limiting factors, while Bringin 258 259 and Bancak are constrained by THI values that exceed the comfort zone for growing cattle 260 (>80). The extent suitability of the ecology of beef cattle farms from the three priority sub-districts is shown in Table 6. 261

Based on the results of the analysis conducted in Table 6, the sub-districts with 262 the largest land area for the development of beef cattle farms with intensive production 263 264 systems were respectively Bringin (2,758.86 Ha), Bancak (1,550.08 Ha), and Banyubiru (1,451.2 Ha). The limiting factor in the form of temperature humidity index (THI) or 265 water pH can be minimized through the engineering design of livestock housing and 266 267 provision of materials or neutralizing water acidity solvent (Yani et al., 2007; Sarwanto & Hendarto, 2011). Cattle with intensive production systems are generally more 268 susceptible to heat stress than cattle extensively production systems. Efforts that can be 269 270 done to reduce heat stress in beef cattle include: adding shade around the housing location, install a sprinkle tool or add straw that works to lower the surface temperature of the floor, 271 272 regulate feed, feed additives and medicine, etc (Suhaema et al., 2014).

273

274

DISCUSSION

Semarang Regency is a potential area for the development of beef cattle farming 275 276 because it has abundant natural resources in the form of land for livestock keeping and forage production. The mapping activity is based on the determination of leading 277 278 livestock commodities, and optimization of regional potential can be one of the benchmarks in realizing sustainable development of beef cattle farms. The concept of 279 280 sustainable development is to meet the needs of the current generation, without sacrificing future generations and this concept has become a reference for welfare in almost all 281 sectors, including the livestock sector (Wasike et al, 2011). The concept of sustainability 282 has been widely debated throughout the world over the past few years (De Longe et al., 283 284 2016; Keesstra et al., 2016; Rasmussen et al., 2017), not only concerning issues environmental and social issues, but also discussing economic issues to gain certain 285 286 market or commodity advantages (Broom et al., 2013; Sabaghi et al., 2016). Sustainability assessment is achieved by evaluating the relative contribution of each of 287 the economic, environmental and social factors to the overall goal (Astier & García-288 289 Barrios, 2012). Sustainability assessed in this study is economic and environmental 290 sustainability for beef cattle farms.

Economic sustainability is assessed based on the results of the analysis of leading commodity. The leading livestock commodity in an area are determined based on comparative advantage (LQ analysis) and competitive advantage (SS analysis). The concept of comparative advantage is economic feasibility. Commodities that have a comparative advantage (LQ>1) show that the commodity (beef cattle) is supported by the existence of adequate natural resources so that the population level is higher than in other

297 regions (Mulyono & Munibah, 2016). Beef cattle commodity in the base sub-district is a 298 prominent or dominant livestock business compared to the other livestock businesses, so 299 the effort for future development is easier (Yuniar et al., 2016; Mulyono & Munibah, 300 2016). On the other hand, the concept of competitive advantage is financial feasibility. 301 Beef cattle commodities are keeping in effective and efficient ways, so that they have competitiveness from aspects of quality, quantity, continuity and price (Muta'ali, 2015; 302 303 Mulyono & Munibah, 2016). The results presented in Table 3 show that the Bringin, 304 Bancak, and Banyubiru sub-districts are regions with leading commodity of beef cattle. Accordingly, the three sub-districts are a priority for the development of beef cattle farms 305 306 in Semarang Regency.

307 Environmental sustainability for beef cattle farms is assessed based on the results of the carrying capacity analysis and carrying capacity index of forage, and analysis of 308 suitability of the ecological environment of beef cattle. Carrying capacity is defined as 309 the maximum population that can be supported by an ecosystem from time to time. The 310 carrying capacity of an area is not static, there is a kind of reciprocal relationship between 311 312 organism and their environment. The carrying capacity of a region can vary for different species and change over time due to various factors (Taiwo & Feyisara, 2017). Regional 313 carrying capacity for livestock development is the size of the region's ability to support 314 the livelihoods of a number of livestock populations optimally through the role of forage 315 availability. Based on the results of the analysis presented in Table 4, it is known that the 316 Bringin, Bancak, and Banyubiru sub-districts have a forage carrying capacity index in the 317 318 safe category.

319 The production systems of beef cattle that is often found in Semarang Regency is 320 an intensive production systems. Beef cattle are able to show optimal physical conditions

321 if they have superior genetic traits, and are supported by the suitability of their ecological environment (Suhaema et al., 2014). Animal ecology is the study of the interactions 322 323 between animals and their environment. Environmental factors tend to affect the 324 production and productivity of livestock more (Sumarto & Koneri, 2016). Some environmental factors that influence the growth of beef cattle with intensive production 325 systems are: soil type, length of dry season, altitude, slope (Rusmana et al., 2006), 326 temperature and relative humidity, rainfall, water pH (Herbut & Angrecka, 2012: 327 328 Suhaema et al., 2014; Yuniar et al., 2016; Eirich, 2018).

The results of the analysis in Table 5 show that environmental factors are limiting 329 in the development of beef cattle farms in Semarang Regency are air temperature and 330 331 humidity, and pH of water for livestock drinking needs. The relationship between the 332 amount of air temperature and humidity is called the Temperature Humidity Index (THI). If THI exceeds the threshold (>80), it can cause stress or heat stress in beef cattle (Eirich, 333 2018). Long-term heat stress has an impact on increasing drinking water consumption, 334 increasing urine volume, and decreasing feed consumption. The direct effect of heat stress 335 336 on livestock production causes a decrease in the productivity of beef cattle. This is due to the increasing need for livestock maintenance (Berman, 2005). Furthermore, the THI 337 value that exceeds the threshold influences the decrease in daily body weight gain, 338 339 depletion of the thickness of meat fat, and the increase of potential for disease occurrence especially in male cattle (Nardone et al., 2010). Hydrogen potential (pH) characterizes 340 the balance between acidic and alkaline solvent in water. If the pH of drinking water for 341 342 beef cattle is below the quality standard or acid (<6,5), the water becomes sour and can cause physiological and digestive disorders in livestock. On the other hand, if the pH of 343 water is too alkaline (>9), the water becomes bitter and causes a decrease in consumption 344

of drinking water which has an impact on decreasing livestock productivity (Sarwanto &Hendarto, 2011).

The synthesis of the assessment results of leading commodity, calculation of carrying capacity and carrying capacity index of forage, as well as land suitability assessment, shows that there are three sub-districts (Bringin, Bancak, and Banyubiru) which are priorities for the development of beef cattle farms in Semarang Regency.

- 351
- 352

CONCLUSION

353 Planning for the development of beef cattle farming with intensive production systems in Semarang Regency is recommended in three sub-districts, namely: Bringin, 354 355 Bancak, and Banyubiru. The assumption of forage production produced from these three sub-districts reaches 55,693.72 tons of DDM. The total carrying capacity for beef cattle 356 farms is 30.601 AU. The total land area suitable for beef cattle farming in the three priority 357 sub-districts is 5,760.141 Ha. The development of beef cattle farms in priority sub-358 districts is expected to increase livestock production and productivity. Governments, 359 360 communities (cattleman) and the private sector (investors) must coordinate and cooperate with each other so that the development of sustainable beef cattle farms can be achieved. 361 362

363

CONFLICT OF INTEREST

The authors confirm that there are no conflicts of interest with any financial, personal, or other relationships with other people or organization related to the material discussed in the manuscript.

- 367
- 368

REFERENCES

- Agus, A. & T. S. M. Widi. 2018. Current situation and future prospects for beef cattle
 production in Indonesia A review. Asian-Australasian Journal of Animal
 Sciences. 31(7):976–983. doi: 10.5713/ajas.18.0233.
- Ariningsih, E. 2014. Performance of national beef self-sufficiency policy. Forum
 Penelitian Agro Ekonomi. 32(2):137–156.
- Astier, M., L. G. Barrios, Y. G. Miyoshi, Carlos. E. G. Esquivel, & O. R. Masera.
- 2012. Assessing the sustainability of small farmer natural resource management
 systems. A critical analysis of the MESMIS program 1995-2010. Ecology and
 Society. 17(3):25. doi: 10.5751/ES-04910-170325.
- Atanga, N. L., A. C. Treydte, & R. Birner. 2013. Assessing the sustainability of
 different small-scale livestock production systems in the Afar Region, Ethiopia.
 Land. 2(4):726–755. doi: 10.3390/land2040726.
- Berman, A. 2005. Estimates of heat stress relief needs for Holstein dairy cows. Journal
 Animal Science. 83:1377–1384.
- 383 BPS Kabupaten Semarang. 2018. Kabupaten Semarang dalam Angka. Badan Pusat
 384 Statistik, Semarang.
- Broom, D. M., F. A. Galindo, & E. Murgueitio. 2013. Sustainable, efficient livestock
 production with high biodiversity and good welfare for animals. The Royal
 Society Publishing. rspb.royalsocietypublishing.org. doi:
 10.1098/rspb.2013.2025.
- Ciptayasa, I. N., Hermansyah, & M. Yasin. 2016. Analisis potensi ternak kambing di
 Kabupaten Lombok Barat. Jurnal Ilmu dan Teknologi Peternakan Indonesia.
 2(1):110–115.
- **Darnhofer, I., J. Fairweather, & H. Moller.** 2010. Assessing a farm's sustainability:

393	insights from resilience thinking. International Journal of Agricultural
394	Sustainability. 8(3):186–198. doi: 10.3763/ijas.2010.0480.
395	DeLonge, M. S., A. Miles, & L. Carlisle. 2016. Investing in the transition to sustainable
396	agriculture. Environmental Science and Policy. 55:266-273. doi:
397	10.1016/j.envsci.2015.09.013.
398	Eirich, R. 2018. Beef cattle temperature humidity chart. University of Nebraska.
399	Available at: https://bqa.unl.edu/heat-stress-resources. [28 December 2018].
400	Herbut, P. & S. Angrecka. 2012. Forming of temperature-humidity index (THI) and
401	milk production of cows in the free-stall barn during the period of summer heat.
402	Animal Science Papers and Reports. 30(4):363–372.
403	Kadarsih, S. 2004. Performans sapi Bali berdasarkan ketinggian tempat di daerah
404	transmigrasi Bengkulu. Jurnal Ilmu-Ilmu Pertanian Indonesia. 6(1):50-56.
	Kassatra S. D. J. Dauma, J. Wallings, D. Tittanall, D. Smith, A. Canda, J.
405	Keesstra, S. D., J. Doullia, J. Wallinga, P. Huohen, P. Shilth, A. Cerua, L.
405 406	Montararella, J. N. Quinton, Y. Pachepsky, W. H. Putten, R. D. Bardgett, S.
405 406 407	 Montararella, J. N. Quinton, Y. Pachepsky, W. H. Putten, R. D. Bardgett, S. Moolenaar, G. Mol, B. Jansen, & L. O. Fresco. 2016. The significance of soils
405 406 407 408	 Keesstra, S. D., J. Bounna, J. Wanniga, P. Tittonen, P. Smith, A. Cerda, L. Montararella, J. N. Quinton, Y. Pachepsky, W. H. Putten, R. D. Bardgett, S. Moolenaar, G. Mol, B. Jansen, & L. O. Fresco. 2016. The significance of soils and soil science towards realization of the United Nations sustainable
405 406 407 408 409	 Keesstra, S. D., J. Bounna, J. Wanniga, P. Tittonen, P. Smith, A. Cerda, L. Montararella, J. N. Quinton, Y. Pachepsky, W. H. Putten, R. D. Bardgett, S. Moolenaar, G. Mol, B. Jansen, & L. O. Fresco. 2016. The significance of soils and soil science towards realization of the United Nations sustainable development goals. Soil. 2:111–128. doi: 10.5194/soil-2-111-2016.
405 406 407 408 409 410	 Keesstra, S. D., J. Bounna, J. Wanniga, P. Tittonen, P. Smith, A. Cerda, L. Montararella, J. N. Quinton, Y. Pachepsky, W. H. Putten, R. D. Bardgett, S. Moolenaar, G. Mol, B. Jansen, & L. O. Fresco. 2016. The significance of soils and soil science towards realization of the United Nations sustainable development goals. Soil. 2:111–128. doi: 10.5194/soil-2-111-2016. Kementan. 2016. Outlook Daging Sapi. Kementerian Pertanian Republik Indonesia,
405 406 407 408 409 410 411	 Keesstra, S. D., J. Boulna, J. Walniga, P. Tittohell, P. Shitti, A. Cerda, L. Montararella, J. N. Quinton, Y. Pachepsky, W. H. Putten, R. D. Bardgett, S. Moolenaar, G. Mol, B. Jansen, & L. O. Fresco. 2016. The significance of soils and soil science towards realization of the United Nations sustainable development goals. Soil. 2:111–128. doi: 10.5194/soil-2-111-2016. Kementan. 2016. Outlook Daging Sapi. Kementerian Pertanian Republik Indonesia, Jakarta.
405 406 407 408 409 410 411 412	 Keesstra, S. D., J. Bouma, J. Wanniga, P. Tittohen, P. Smith, A. Cerda, L. Montararella, J. N. Quinton, Y. Pachepsky, W. H. Putten, R. D. Bardgett, S. Moolenaar, G. Mol, B. Jansen, & L. O. Fresco. 2016. The significance of soils and soil science towards realization of the United Nations sustainable development goals. Soil. 2:111–128. doi: 10.5194/soil-2-111-2016. Kementan. 2016. Outlook Daging Sapi. Kementerian Pertanian Republik Indonesia, Jakarta. Mulyono, J. & K. Munibah. 2016. Pendekatan location quotient dan shift share analisis
405 406 407 408 409 410 411 412 413	 Keesstra, S. D., J. Bounna, J. Wanniga, P. Tittonen, P. Sinth, A. Cerua, L. Montararella, J. N. Quinton, Y. Pachepsky, W. H. Putten, R. D. Bardgett, S. Moolenaar, G. Mol, B. Jansen, & L. O. Fresco. 2016. The significance of soils and soil science towards realization of the United Nations sustainable development goals. Soil. 2:111–128. doi: 10.5194/soil-2-111-2016. Kementan. 2016. Outlook Daging Sapi. Kementerian Pertanian Republik Indonesia, Jakarta. Mulyono, J. & K. Munibah. 2016. Pendekatan location quotient dan shift share analisis dalam penentuan komoditas unggulan tanaman pangan di Kabupaten Bantul.
405 406 407 408 409 410 411 412 413 414	 Keesstra, S. D., J. Bounda, J. Wanniga, P. Tittohen, P. Sinthi, A. Cerda, L. Montararella, J. N. Quinton, Y. Pachepsky, W. H. Putten, R. D. Bardgett, S. Moolenaar, G. Mol, B. Jansen, & L. O. Fresco. 2016. The significance of soils and soil science towards realization of the United Nations sustainable development goals. Soil. 2:111–128. doi: 10.5194/soil-2-111-2016. Kementan. 2016. Outlook Daging Sapi. Kementerian Pertanian Republik Indonesia, Jakarta. Mulyono, J. & K. Munibah. 2016. Pendekatan location quotient dan shift share analisis dalam penentuan komoditas unggulan tanaman pangan di Kabupaten Bantul. Informatika Pertanian. 25(2):221–230.
405 406 407 408 409 410 411 412 413 414 415	 Keesstra, S. D., J. Bounna, J. Wanniga, P. Tittonen, P. Sinthi, A. Cerda, L. Montararella, J. N. Quinton, Y. Pachepsky, W. H. Putten, R. D. Bardgett, S. Moolenaar, G. Mol, B. Jansen, & L. O. Fresco. 2016. The significance of soils and soil science towards realization of the United Nations sustainable development goals. Soil. 2:111–128. doi: 10.5194/soil-2-111-2016. Kementan. 2016. Outlook Daging Sapi. Kementerian Pertanian Republik Indonesia, Jakarta. Mulyono, J. & K. Munibah. 2016. Pendekatan location quotient dan shift share analisis dalam penentuan komoditas unggulan tanaman pangan di Kabupaten Bantul. Informatika Pertanian. 25(2):221–230. Muta'ali, L. 2015. Teknik Analisis Regional untuk Perencanaan Wilayah, Tata Ruang,

417	Nardone, A., B. Ronchi, N. Lacetera, M. S. Ranieri, & U. Bernabucci. 2010. Effects
418	of climate changes on animal production and sustainability of livestock systems.
419	Livestock Science. 130:57–69. doi: 10.1016/j.livsci.2010.02.011.

- Nuhung, I. A. 2015. Kinerja, kendala, dan strategi pencapaian swasembada daging sapi.
 Forum Penelitian Agro Ekonomi. 33(1):63–80.
- Paly, B., A. Natsir, S. Rasyid, & I. M. Fahmid. 2013. Interconnectivity multi criteria
 for sustainable development of beef cattle. International Journal Of Scientific and
 Technology Research. 2(7):115–121.
- 425 Parmawati, R., Mashudi, A. Budiarto, Suyadi, & A. S. Kurnianto. 2018. Developing
- 426 sustainable livestock production by feed adequacy map : A case study in Pasuruan,
 427 Indonesia. Tropical Animal Science Journal. 41(1):67–76.
- 428 Pasandaran, E., Haryono, & Suherman. 2014. Memperkuat Daya Saing Produk
 429 Pertanian. Perspektif Daya Saing Wilayah. IAARD Press, Jakarta.
- Rasmussen, L. V., R. Bierbaum, J. A. Oldekop, & A. Agrawal. 2017. Bridging the
 practitioner-researcher divide: Indicators to track environmental, economic, and
 sociocultural sustainability of agricultural commodity production. Global
 Environmental Change. 42:33–46. doi: 10.1016/j.gloenvcha.2016.12.001.
- 434 Rouf, A. A., Daryanto, & A. Fariyanti. 2014. Daya saing usaha sapi potong di
 435 Indonesia: Pendekatan domestic resources cost. Wartazoa. 24(2):97–107. doi:
 436 10.14334/wartazoa.v2412.1053.
- 437 Rusmana, N., Atmiyati, & Ridwan. 2006. Pembuatan peta kesesuaian ekologis untuk
 438 ternak ruminansia pada skala tinjau. Pusat Penelitian dan Pengembangan
 439 Peternakan. Bogor.
- 440 Sabaghi, M., C. Mascle, P. Baptiste, & R. Rostamzadeh. 2016. Sustainability

441	assessment using fuzzy-inference technique (SAFT): A methodology toward
442	green products. Expert Systems with Applications. 56:69-79. doi:
443	10.1016/j.eswa.2016.02.038.
444	Santos, S. A., H. P. de Lima, Silvia. M. F. S. Massruha, Urbano. G. P. de Abreu, W.
445	M. Tomas, S. M. Salis, E. L. Cardoso, M. D. de Oliveira, Marcia. T. S. Soares,
446	A. dos Santos Jr, L. O. F. de Oliveira, D. F. Calheiros, S. M. A. Crispim, B.
447	M. A. Soriano, C. O. G. Amancio, A. P. Nunes, & L. A. Pellegrin. 2017. A
448	fuzzy logic-based tool to assess beef cattle ranching sustainability in complex
449	environmental systems. Journal of Environmental Management. 198:95–106. doi:
450	10.1016/j.jenvman.2017.04.076.
451	Saputra, J. I., Liman, & Y. Widodo. 2016. Analisis potensi pengembangan peternakan
452	sapi potong di Kabupaten Pesawaran. Jurnal Ilmiah Peternakan Terpadu.
453	4(2):115–123.
454	Sarwanto, D. & E. Hendarto. 2011. Analisis kualitas air minum sapi perah rakyat di
455	Kabupaten Banyumas Jawa Tengah. Media Peternakan. 13(1):1–5.
456	Suhaema, E., Widiatmaka, & B. Tjahjono. 2014. The regional development of beef
457	cattle based on physical and forage land suitability in Cianjur Regency. Tanah
458	Lingkungan. 16(2):53–60.
459	Sumarto, S. & R. Koneri. 2016. Ekologi Hewan. Cv. Patra Media Grafindo, Bandung.
460	Sutanto, A. & L. Hendraningsih. 2011. Analisis keberlanjutan usaha sapi perah di
461	Kecamatan Ngantang Kabupaten Malang. Gamma. 7(1):1–12.
462	Syarifuddin, H. 2009. Indeks keberlanjutan integrasi tanaman dengan ternak (crop
463	livestock system) di Kuamang Kuning. Jurnal Ilmiah Ilmu-Ilmu Peternakan.
464	XII(1):41–49.

465	Taiwo, F. J. & O. O. Feyisara. 2017. Understanding the concept of carrying capacity
466	and its relevance to urban and regional planning. Journal of Environmental
467	Studies. 3(1):1–5.

- Thornton, P. K. 2010. Livestock production: recent trends, future prospects.
 Philosophical Transactions of the Royal Society B: Biological Sciences.
 365:2853–2867. doi: 10.1098/rstb.2010.0134.
- Tongco, M. D. C. 2007. Purposive sampling as a tool for informant selection.
 Ethnobotany Research and Applications. 5:147–158. doi: 10.17348/era.5.0.147158.
- Wasike, C. B., T. M. Magothe, A. K. Kahi, & K. J. Peters. 2011. Factors that influence
 the efficiency of beef and dairy cattle recording system in Kenya: A SWOT-AHP
 analysis. Tropical Animal Health and Production. 43:141–152. doi:
 10.1007/s11250-010-9666-3.
- Yuniar, P. S., A. M. Fuah, & Widiatmaka. 2016. Carrying capacity and priority region
 for development of beef cattle production in South Tangerang. Jurnal Ilmu
 Produksi dan Teknologi Hasil Peternakan. 04(1):64–268.
- Zakiah., A. Saleh, & K. Matindas. 2017. Gaya kepemimpinan dan perilaku komunikasi
 GPPT dengan kapasitas kelembagaan sekolah peternakan rakyat di Kabupaten
 Muara Enim. Jurnal Penyuluhan. 13(2):133-142.doi:
 10.25015/penyuluhan.v13i2.14977.
- 485

Parameter	Order of environme	ental suitability of beef attle	
	S (Suitable)	N (Unsuitable)	
Temperature Humidity Index (THI)	70-80	<70, >80	
Water availability (w)			
Dry month (<100 mm rainfall/month)	<8 months	>8 months > 4,000	
Rainfall / year (mm)	< 4,000		
The existence of a water source	Available	Not Available	
Water Quality (q)			
pH water	6.5-9.0	<6.5;>9.0	
Slope (%)	<40	>40	

487 Table 1. Environmental parameters that influence the growth of beef cattle with intensive488 maintenance patterns

489 Source: (Suhaema *et al.*, 2014; Yuniar *et al.*, 2016).

490 Table 2. Growth of livestock populations in Semarang Regency

True of Prosterile	Number (head)								
Type of investock	2013	2014	2015	2016	2017				
Pig	32,640	17,300	18,431	15,971	15,850				
Goat	197,029	136,999	123,294	117,003	117,373				
Sheep	290,764	191,346	172,211	167,374	162,694				
Rabbit	20,352	9,375	10,462	11,629	11,916				
Horse	1,711	497	515	524	581				
Beef cattle	51,901	53,135	49,172	46,238	48,444				
Dairy cows	22,308	27,609	25,780	25,690	25,557				
Buffalo	2,941	3,168	2,614	2,629	2,589				
Laying Chicken	1,821,286	1,813,049	1,452,019	1,331,528	1,572,463				
Broiler Chicken	12,046,319	7,501,700	10,144,846	10,754,602	11,812,311				
Chicken Breed	819,067	860,408	818,568	861,989	823,226				
Duck	206,882	92,963	80,801	127,859	125,261				
Quail	122,200	238,930	227,737	176,730	142,856				
Muscovy Duck	102,966	72,227	63,889	61,963	54,402				

491 Source: (BPS Kabupaten Semarang, 2018).

	CUD DICTDICT		BEEF CATTLE						
NU	SUB-DISTRICT	LQ	RS	PS	DF	SS			
1	Getasan	0.63	-0.052	-0.014	-0.359	-0.425			
2	Tengaran	0.55	-0.052	-0.014	0.092	0.026			
3	Susukan	1.11	-0.052	-0.014	-0.137	-0.203			
4	Kaliwungu	1.22	-0.052	-0.014	0.048	-0.018			
5	Suruh	0.88	-0.052	-0.014	-0.213	-0.279			
6	Pabelan	1.75	-0.052	-0.014	0.501	0.435			
7	Tuntang	0.28	-0.052	-0.014	-0.689	-0.755			
8	Banyubiru	3.97	-0.052	-0.014	0.536	0.47			
9	Jambu	0.42	-0.052	-0.014	-0.417	-0.483			
10	Sumowono	0.95	-0.052	-0.014	-0.234	-0.3			
11	Ambarawa	3.92	-0.052	-0.014	0.006	-0.06			
12	Bandungan	1.01	-0.052	-0.014	0.269	0.203			
13	Bawen	2.34	-0.052	-0.014	0.0009	-0.0651			
14	Bringin	2.82	-0.052	-0.014	0.105	0.039			
15	Bancak	4.93	-0.052	-0.014	0.143	0.077			
16	Pringapus	1.38	-0.052	-0.014	-0.312	-0.378			
17	Bergas	0.77	-0.052	-0.014	-0.106	-0.172			
18	Ungaran Barat	0.77	-0.052	-0.014	1.352	1.286			
19	Ungaran Timur	0.3	-0.052	-0.014	-0.62	-0.686			

493	Table 3. Value of LQ a	nd SS beef cattle in	Semarang Regency in	2018

Table 4. Carrying capacity and carrying capacity index of forage in Semarang Regency
 in 2018

SD	Вср 2017	Bcp 2017 (AU)	Rm	R Bc	F Dmp	CC	CCI	AV
А	b	с	d	$e = c \ge d$	f	g = f/d	h = g/c	
Getasan	2,085	1,459.5	1.82	2,656.29	7,802.45	4,287.1	2.94	S
Tengaran	4,881	3,416.7	1.82	6,218.39	10,526.78	5,783.9	1.69	V
Susukan	2,905	2,033.5	1.82	3,700.97	15,301.29	8,407.3	4.13	S
Kaliwungu	4,650	3,255	1.82	5,924.1	13,231.72	7,270.2	2.23	S
Suruh	3,335	2,334.5	1.82	4,248.79	19,522.03	10,726.4	4.59	S
Pabelan	4,251	2,975.7	1.82	5,415.77	12,690.04	6,972.5	2.34	S
Tuntang	211	147.7	1.82	268.81	9,458.6	5,197.03	35.19	S
Banyubiru	3,840	2,688	1.82	4,892.16	11,493.54	6,315.1	2.35	S
Jambu	741	518.7	1.82	944.03	8,816.47	4,844.2	9.34	S
Sumowono	2,228	1,559.6	1.82	2,838.47	10,921.51	6,000.8	3.85	S
Ambarawa	1,661	1,162.7	1.82	2,116.11	4,935.95	2,712.05	2.33	S
Bandungan	4,140	2,898	1.82	5,274.36	4,327.55	2,377.8	0.82	VC
Bawen	2,717	1,901.9	1.82	3,461.46	7,241.14	3,978.6	2.09	S
Bringin	2,349	1,644.3	1.82	2,992.63	28,808.63	15,828.9	9.63	S
Bancak	2,820	1,974	1.82	3,592.68	15,391.55	8,456.9	4.28	S
Pringapus	1,333	933.1	1.82	1,698.24	23,509.36	12,917.2	13.84	S
Bergas	1,828	1,279.6	1.82	2,328.87	7,593.47	4,172.2	3.26	S
Ungaran Barat	2,105	1,473.5	1.82	2,681.77	5,400.34	2,967.2	2.01	S
Ungaran Timur	364	254.8	1.82	463.74	6,387.01	3,509.3	13.77	S
Jumlah	48,444	33,910.8		61,717.64	223,359.43	122,724.7	120.68	

SD = sub-district, Bcp = beef cattle population, Bcp (AU) = beef cattle population in livestock units, Rm =
 minimum feed requirements for beef cattle (ton DDM /year /AU), R bc = beef cattle feed requirements
 (tons /DDM/year), F Dmp = forage dry matter production (ton DDM), CC = carrying capacity (AU), CCI
 a carrying capacity index of forage, AV = forage availability status; S = safe, V = vurnerable, VC = very
 critical.

505

506

508	
509	

 Table 5. Results of measurements of environmental factors that influence the growth of beef cattle in Semarang Regency in 2018

Subdistrict	Sample (Village)	Tem perat ure (°C)	Tem perat ure (°F)	Humidit y (%)	THI	Rainfall (mm/year)	Dry months	Water pH
Getasan	Samirono	31	87.8	51	79.77	3,403	3	7
Tengaran	Duren	30	86	65	80.61	2,591	3	5.8
Susukan	Timpik	32	89.6	57	82.13	2,618	3	6.5
Kaliwungu	Mukiran	32	89.6	56	81.95	2,618	0	5.5
Suruh	Dadapayam	32	89.6	65	83.52	2,680	4	6.3
Pabelan	Terban	32	89.6	58	82.3	1,927	4	6.5
Tuntang	Tlumpakan	35	95	46	84.01	2,676	0	7
Banyubiru	Wirogomo	30	86	51	78.45	2,066	3	8
Jambu	Genting	31	87.8	49	79.44	2,489	0	6.2
Sumowono	Candi Garon	28	82.4	58	76.76	1,383	4	6.3
Ambarawa	Pasekan	30	86	51	78.45	1,291	3	6.8
Bandungan	Candi	29	84.2	54	77.57	1,291	0	6.7
Bawen	Polosiri	35	95	49	84.62	2,061	4	6.1
Bringin	Banding	35	95	54	85.64	2,211	3	7.9
Bancak	Pucung	33	91.4	58	83.68	2,091	0	6.5
Pringapus	Penawangan	32	89.6	56	81.95	2,290	3	4
Bergas	Munding	32	89.6	48	80.56	3,802	2	5.9
Ungaran Barat	Gogik	32	89.6	49	80.74	3,316	0	7.7
Ungaran Timur	Kawengen	33	91.4	51	82.4	3,316	0	6.6

 $\overline{\text{THI} = \text{T} - \{0.55 (1-\text{RH} / 100) (\text{T}-58)\}}, \text{ where } \text{T} = \text{temperature (}^{\circ}\text{F}\text{)}, \text{RH} = \text{relative humidity}.}$

Table 6. Extent of suitability ecological environment map of beef cattle farms in Bancak,
 Banyubiru, and Bringin sub-districts

NO	SUDDISTDICT		Total					
	SUBDISTRICT	S 1	S1p	S2	S2p	S 3	S3p	Total
1	Bancak	0	40.26	0.06	1,342.25	0	167.51	1,550.079
2	Banyubiru	17.10	0	1,434.10	0	0	0	1,451.2
3	Bringin	0	36.01	0	2,327.42	0	395.43	2,758.862
	TOTAL	17.10	76.27	1,434.16	3,669.67	0	562.94	5,760.141

 $\overline{S1}$ = very suitable, S2 = quite suitable, S3 = according to marginal, P = limiting factor in the form of temperature humidity index (THI).

520 Figure 2. The suitability ecological environment map for beef cattle farms in Semarang

- 521 Regency
- 522

[TASJ] Copyediting Review Request

Inbox

Prof. Dr. Komang G Wiryawan <jurnal@apps.ipb.ac.id>

Tue, Dec 3, 2:46 PM

Budi Santoso, & B. W. H. E. Prasetiyono:

Your submission "The Regional Analysis of Beef Cattle Farm Development in Semarang Regency" for Tropical Animal Science Journal has been discussed in the Editorial meeting.

Submission URL: <u>http://journal.ipb.ac.id/index.php/tasj/author/submissionEditing/26348</u> Username: budi_santoso

Please check if there are comments and suggestions from Editor that should be addressed by Authors. Please also check if there are corrections of the typesetting. Please do the revision on the attached file and give highlights to the correction, and return back the document within 7 days.

After the copyediting stage, we will send you the PROOF of your manuscript as we will ask you for some correction of the final form of your manuscript.

If you are unable to undertake this work at this time or have any questions, please contact me. Thank you for your contribution to this journal.

1 2	The Regional Analysis of Beef Cattle Farm Development in Semarang Regency
3	Budi Santoso ^a , & B. W. H. E. Prasetiyono ^{b,*}
4	^a Master Program in Environmental Science, Diponegoro University
5	^b Faculty of Animal and Agricultural Sciences, Diponegoro University
6	Jl. Prof. Soedarto, Kampus Tembalang Semarang 50275, Indonesia
7	*Corresponding author: <u>bambangwhep63@gmail.com</u>
8	
9	ABSTRACT
10	One of the reasons for the low production and productivity of beef cattle in
11	Indonesia is that information on the allocation of livestock areas development is not yet
12	clear. This study aims to determine the priority areas for developing beef cattle farm in
13	Semarang Regency based on the concept of sustainability. Sustainability was analyzed
14	through the determination of leading commodities (analysis of Location Quotient and
15	Shift Share), optimization of regional potential (analysis of carrying capacity and carrying
16	capacity index of forage, and assessment of suitability of ecological environment of beef
17	cattle). The process of spatial analysis used GIS software. Comprehensive planning for
18	the development of beef cattle farm was directed in three sub-districts, namely: Bringin,
19	Bancak, and Banyubiru. The results of the analysis showed that the three sub-districts
20	were beef cattle base areas (LQ>1), had business growth (positive SS), and had a safe
21	status for forage availability (>2). Other results showed that the carrying capacity for beef
22	cattle farms in Bringin sub-district was 15,829 AU, Bancak was 8,457 AU, and Banyubiru
23	was 6,315 AU. The land area suitable for beef cattle farm from the three priority sub-
24	districts was 5,760.141 Ha. It can be concluded that the development of beef cattle farm
25	in Semarang Regency is focused on three priority sub-districts, namely: Bringin, Bancak,

26	and Banyubiru. The results of this study can be an input for local governments in
27	determining the direction and pattern of beef cattle farm development to be more
28	sustainable.
29	Keywords: beef cattle, regional analysis, sustainability of livestock sector
30	
31	INTRODUCTION
32	The directed and sustainable development of the livestock sector is believed to be
33	able to contribute positively to regional development. Along with the increase in
34	population, there is an increasing demand for food from animal protein, such as beef.
35	Beef consumption in developing countries such as in Indonesia tends to increase every
36	year (Thornton, 2010; Agus & Widi, 2018), however the population of beef cattle in some
37	regions actually decreases due to the complexity of technical and non-technical problems
38	(Paly et al., 2013; Ariningsih, 2014; Nuhung, 2015). There is a gap between demand
39	and supply of beef products, which is increasingly widening. Many factors causing this
40	gap, including the domestic production of beef cattle is still low because information on
41	the allocation of livestock development areas is not yet clear.
42	Cattle farmings in Indonesia are categorized as unsustainable (Syarifuddin, 2009;
43	Sutanto & Hendraningsih, 2011). The number of available beef cattle has not been able
44	to meet the high meat consumption of people. The consumption of beef in 2020 is
45	estimated to reach 3.36 kg per capita per year, but beef production is still not able to fulfill
46	it; there is a deficit in beef supply by 198,350 tons (Kementan, 2016; Agus & Widi, 2018).
47	Most of the beef production in Indonesia, 78% comes from traditional livestock, 5% from
48	imports, and 17% from live livestock imports, especially from Australia (Zakiah et al.,
49	2017). Imports of beef are indeed relatively larger compared to the other types of meat

imports, contributing 21.44% to the total import value of livestock, while the import value
of livestock is 18.29% of the total value of agricultural imports nationally (Rouf *et al.*,
2014).

Policy efforts to reduce beef imports must be studied, by strengthening domestic 53 production that is beneficial for farmers (Pasandaran et al., 2014). The development of 54 55 beef cattle farms in potential areas is an effort to strengthen meat production in the country so that the implementation must be carried out with a comprehensive assessment. 56 57 Semarang Regency is a region in Central Java Province that has the potential to develop beef cattle farms because it has natural resources in the form of land as a place for 58 59 livestock keeping and forage production. Good quality and forage availability can increase production, especially for increasing body weight of cattle (Suhaema et al., 60 2014). Forage producing areas in Semarang Regency include gardens (25,562.04 Ha), 61 62 rice fields (23,745.96 Ha), and forests (6,032.77 Ha). The beef cattle population in this region during the 2014-2016 period continued to decline, ranging from 53,135; 49,172; 63 and 46,238 (BPS Kabupaten Semarang, 2018). 64

The development of beef cattle farms in Semarang Regency needs to adopt the 65 concept of sustainability. The concept of sustainability is the achievement of economic, 66 environmental, and social goals simultaneously which is represented by various 67 performance indicators (Darnhofer et al., 2010). Sustainability is also defined as the 68 concept of multidimensional (economic, ecological, and social) and multiscale (micro, 69 meso, and macro), although in its application, it is often limited to one particular aspect 70 (Santos et al., 2017). Economic sustainability is closely related to the value of 71 comparative and competitive advantages of certain commodities (Broom et al., 2013; 72

```
73 Sabaghi et al., 2016), while environmental sustainability includes optimizing the
74 availability and efficient use of natural resources (Atanga et al., 2013).
```

75 The sustainability of beef cattle farms can be identified through a regional approach, by considering the existence of leading commodities and the potential of the 76 region concerned (Mulyono & Munibah, 2016; Parmawati et al., 2018). Determination 77 of leading commodities characterized by the existence of comparative and competitive 78 79 advantages is the first step towards the efficient development of livestock sector. The 80 potential of the region to support the development of beef cattle farms is determined by optimizing the carrying capacity and carrying capacity index of forage, as well as by 81 82 assessing the suitability of the land where the livestocks are raised. Land suitability for beef cattle farms with intensive production systems considers several environmental 83 factors that affect the growth of these cattle. 84

Mapping activities based on the determination of leading commodities and optimization of regional potential are needed as a basis for planning sustainable development of beef cattle farms. This study aims to determine the priority areas for developing beef cattle farms in Semarang Regency. The results of this study are expected to be one of the considerations in determining the direction and development policy of the beef cattle farms sector in Semarang Regency.

91

92

MATERIALS AND METHODS

93 This research was a type of quantitative research and applied the concept of 94 sustainability. Sustainabilities assessed were economic and environmental sustainabilities 95 for beef cattle farm in Semarang Regency. Economic sustainability was identified through 96 the determination of the leading commodity of livestock, while environmental

97 sustainability was identified through the calculation of the carrying capacity and carrying
98 capacity index of forage, and the assessment of suitability of ecological environment of
99 beef cattle. In detail, each step of the analysis was outlined below.

100

Leading Commodity

Determination of leading livestock commodities in an area used Location Quotient 101 102 (LQ) and Shift Share (SS) analysis. The rationale for the two methods was the economic 103 basis theory. LQ analysis was relatively simple, but the benefits were large enough for 104 the initial identification of the ability of a sector in regional development. The shift in the structure of economic activity in beef cattle business, whether experiencing growth or 105 106 decline was analyzed using Shift Share (SS). SS analysis can be used to see the growth of the economic sectors of a region for two-time points (Muta'ali, 2015). LQ and SS 107 analysis used the following equations (Ciptayasa et al., 2016; Mulyono & Munibah, 108

109 2016).

110
$$LQ_{ij} = \frac{Xij / Xi.}{X.j / X..}$$
 (Equation 1)

111 $(X_{ij} = Beef cattle population in the sub-district A, X_i$. = Population of all types of livestock in the sub-

district A, X_j = Beef cattle population in Semarang Regency, X_i = Population of all types of livestock in
Semarang Regency).

114 SS =
$$\left[\frac{X.(t1)}{X.(t0)} - 1\right] + \left[\frac{X.i(t1)}{X.i((t0)} - \frac{X.(t1)}{X.(t0)}\right] + \left[\frac{Xij(t1)}{Xij(t0)} - \frac{X.i(t1)}{X.i((t0)}\right]$$
 (Equation 2)

(Regional share, Proportional shift, Differential shift, X ..= Population of all types of livestock in Semarang
Regency, Xi= Beef cattle population in Semarang Regency, Xij= Beef cattle population in sub-district A,
t0= Early 2013 year point, t1= End of year 2017).

118

119 Carrying Capacity and Carrying Capacity Index of Forage

120 The carrying capacity of the region for livestock development is indicated by the

ability of the region to produce forage that can accommodate and meet the needs of a

number of beef cattle populations. Forages were divided into two types, namely fresh	
forage (grass, legume) and dry forage (straw). An assessment of the carrying capacity	
index of forage was conducted to assess the availability of animal feed in a region,	
whether it was classified as safe, vulnerable, critical, or very critical.	
The carrying capacity of beef cattle farms was calculated based on the production	
of forage dry matter against the minimum feed requirements of cattle (1 AU) in one year.	
The animal unit (AU) was a unit for the ruminant livestock population multiplied by the	
conversion factor. The conversion factor for beef cattle was 0,7 (Muta'ali, 2015; Saputra	Commented [MP1]: bagaimana dengan konversi AU
et al., 2016). Forage dry matter production was the amount of potential agricultural waste	
and natural forage potential, using equations that refer to Suhaema et al. (2014) and	
Yuniar et al. (2016).	
Potential of agricultural waste (ton) = {(wr x 0.4) + (fr x 3 x 0.4) + (cn x 3 x 0.5) + (sb x $(x + 1)$	Commented [MP2]: fresh forage or dry matter?
$3 \ge 0.55$ + (pt x 2 x 0.55) + (sp x 0.25/6) + (cs x 0.25/4) x 0.65	
(wr is wetland rice, fr is field rice, cn is corn, sb is soybean, pt is peanuts, sp is sweet	
potatoes, cs is cassava. The numbers in the formula are assumptions about the potential	
waste produced from the production of each type of plant food).	
Natural forage potential (ton) = {(Ga x 2.875) + (Fa x 0.6) + (Cpa x 10) + (Cfa x 0.5) +	Commented [MP3]: fresh or dry matter?
(Cla x 5)} x 0.5	
(Ga is garden area, Fa is forest area, Cpa is coconut plant area, Cfa is coffee plant area,	
Cla is clove plant area. The numbers in the formula are assumed to be natural forage	
potential produced per hectare of land use area).	
Minimum cattle feed requirements (R)= $2.5\% \times 50\% \times 365 \times 400 \text{ kg} = 1.82 \text{ ton}$	Commented [MP4]: daya cerna 50%, maka pengalinya menjadi
	number of beef cattle populations. Forages were divided into two types, namely fresh forage (grass, legume) and dry forage (straw). An assessment of the carrying capacity index of forage was conducted to assess the availability of animal feed in a region, whether it was classified as safe, vulnerable, critical, or very critical. The carrying capacity of beef cattle farms was calculated based on the production of forage dry matter against the minimum feed requirements of cattle (1 AU) in one year. The animal unit (AU) was a unit for the ruminant livestock population multiplied by the conversion factor. The conversion factor for beef cattle was 0,7 (Muta'ali, 2015; Saputra <i>et al.</i> , 2016). Forage dry matter production was the amount of potential agricultural waste and natural forage potential, using equations that refer to Suhaema <i>et al.</i> (2014) and Yuniar <i>et al.</i> (2016). Potential of agricultural waste $(ton) = \{(wr x 0.4) + (fr x 3 x 0.4) + (cn x 3 x 0.5) + (sb x3 x 0.55) + (pt x 2 x 0.55) + (sp x 0.25/6) + (cs x 0.25/4) \} x 0.65(wr is wetland rice, fr is field rice, cn is corn, sb is soybean, pt is peanuts, sp is sweetpotatoes, cs is cassava. The numbers in the formula are assumptions about the potentialwaste produced from the production of each type of plant food).Natural forage potential (ton) = \{(Ga x 2.875) + (Fa x 0.6) + (Cpa x 10) + (Cfa x 0.5) +(Cla x 5) \} x 0.5(Ga is garden area, Fa is forest area, Cpa is coconut plant area, Cfa is coffee plant area,Cla is clove plant area. The numbers in the formula are assumed to be natural foragepotential produced per hectare of land use area).Minimum cattle feed requirements (R)= 2.5% x 50% x 365 x 400 kg = 1.82 ton$

144 DDM/year/AU (Equation 3)

145	(R is minimum cattle feed requirements (1 AU) in tons of digestible dry matter	
146	for 1 year, 2.5% is minimum requirement for the number of forage rations (dry matter)	
147	on livestock weight, 50% is average value digestibility power of various types of plants,	
148	365 is number of days in 1 year, 400 kg is live weight of 1 AU of beef cattle in Semarang	
149	Regency). Equations that refer to Suhaema et al. (2014) and Yuniar et al. (2016).	
150	The results of the calculation of forage dry matter production were then used to	
151	determine the carrying capacity of beef cattle farms using the following equations	
152	(Suhaema et al., 2014; Yuniar et al., 2016).	
153	CC (AU) = <u>Forage Dry Matter Production (tons of DDM / year)</u> <u>Minimum Cattle Feed Requirement (tons of DDM / year / AU)</u> (Equation 4)	
154	The level of animal feed security in a region was measured by forage carrying	
155	capacity index. Carrying capacity index values were values that indicated the status of	
156	the availability of forage for beef cattle, namely: very critical (\leq 1), critical (>1-1.5),	
157	vulnerable (> 1.5-2), and safe (>2).	
158	Forage carrying capacity index = $\frac{\text{Carrying capacity (AU)}}{\text{Amount of Beef Cattle Population in 2017 (AU)}}$ (Equation 5)	
159		
160	Suitability of the Ecological Environment of Beef Cattle	
161	The research sample for the assessment of the suitability ecological environment	
162	of beef cattle farms in Semarang Regency was 19 points spreading throughout the sub-	
163	district area (Table 5). The determination of the sample was using purposive sampling	
164	technique. The purposive sampling technique was also called judgment sampling	
165	(Tongco, 2007), which was used to determine the sample based on research	
166	considerations. In each sub-district, one village was taken which had the most beef cattle	
167	population.	

Commented [MP5]: kalau daya cerna 50%; maka kebutuhannya menjadi dikali 100/50, bukan dikali 50%

Commented [MP6]: Penghitungan AU menggunakan konversi 0.7 semua. Padahal populasi sapi ada yg muda dan anak2, seharusnya berdasarkan struktur populasi.

Lands available for the development of beef cattle farms are gardens, grasslands, open land, rice fields, and dryland agriculture. The fields are assumed to be able to be used for building housing for beef cattle. The assessment of land suitable for beef cattle farming with intensive maintenance patterns also takes into account several environmental parameters that influence the growth of livestock.

Land suitability assessment for beef cattle farms began by making a map of land 173 174 units. Maps of beef cattle land units referred to research of Rusmana et al. (2006) which 175 stated that there were four maps needed for overlaying, namely: land type maps, agroclimate maps, regional altitude maps, and slope maps. The final step was to make a 176 177 "suitability map of the ecological environment of beef cattle". The method used was by overlaying between land unit maps with environmental parameters that affected the 178 growth of beef cattle (Table 1). Land suitability was classified into 4 levels or strata, 179 180 namely: very suitable (S-1), quite suitable (S-2), according to marginal (S-3), and nonsuitable (NS) (Rusmana et al., 2006; Suhaema et al., 2014; Yuniar et al., 2016). The entire 181 process was created and analyzed using GIS software. 182

183

185

186

RESULTS

Leading Commodity

The leading commodity of livestock in an area was determined based on 187 comparative advantage (location quotient analysis) and competitive advantage (shift-188 share analysis). Beef cattle commodities that had LQ>1 and SS (+) values were the 189 leading commodities in the region. The interpretation of the value of LQ>1, was a base 190 or leading sector, beef cattle products (meat) were able to meet markets inside and outside 191 the region. The value of LQ<1 implied a non-base sector, livestock products had not been 192 able to meet markets inside and outside the region. The value of LQ=1 implied that the 193 194 sector was balanced with the reference region, livestock products were only able to meet markets in the area. The basis for calculating LQ analysis for livestock commodities was 195 196 livestock population data (Hendayana, 2003). Data bias in calculations could be 197 minimized by using a minimum 5 year data series (Table 2).

Shift share analysis started from the basic assumption that economic growth or 198 199 added value of an activity in a particular region was influenced by three main components which were interconnected with each other, namely: regional growth, sectoral growth, 200 and growth in share or regional competitiveness (Ciptayasa et al., 2016). Through these 201 three components, it could be seen which elements had encouraged regional economic 202 203 growth. The value of each component could be positive or negative, but the total number (shift-share) would always be positive if the regional economic growth were positive, and 204 vice versa. 205

The results of the LQ and SS analysis calculations for beef cattle commodities in Semarang Regency are shown in Table 3. Based on the results of the analysis conducted, the subdistrict areas becoming the beef cattle base sector (LQ> 1) were Bancak (4.93), **Commented [MP7]:** Data 5 tahun untuk LQ metodenya bagaimana? dirata2, dijumlah atau bagaimana?

Banyubiru (3.97), Ambarawa (3.92), Bringin (2.82), and Bawen (2.34). Beef cattle
keeping was concentrated in these areas or in the other words the economic density of
beef cattle was higher than that of in the other regions.

Beef cattle commodities that had competitive advantages were seen based on 212 positive shift-share (SS) values. Sub-districts with a positive SS value means 213 214 experiencing growth (competitiveness) related to keeping beef cattle. On the other hand, sub-districts with negative SS value means that the area is not growing (stagnant) and can 215 even experience setbacks. The results of the analysis conducted in Table 3 showed that 216 sub-districts with positive SS values were in Ungaran Barat (1.286), Banyubiru (0.47), 217 218 Pabelan (0.435), Bandungan (0.203), Bancak (0.077), Bringin (0.039), and Tengaran (0.026).219

The development of beef cattle farms in Semarang Regency is prioritized in the
sub-districts with LQ>1 and SS (+) values. The sub-districts are Bringin, Bancak, and
Banyubiru.

223

224

Carrying Capacity and Carrying Capacity Index of Forage

The potential availability of feed for beef cattle was seen based on the amount of forage dry matter production (tons of DDM) that could be produced by the region concerned. Dry matter is the total feed ingredients without water content, which can come from forages. The region with the largest forage dry matter production has the highest carrying capacity for the development of beef cattle farms, and vice versa. Forage is one of the production inputs that determine the success of livestock business because it directly affects productivity and efficiency (Yuniar *et al.*, 2016). Table 4 shows the

232 calculation of carrying capacity and carrying capacity index of forage for beef cattle farms 233 in Semarang Regency. Based on the results of the analysis conducted in Table 4, it was known that there 234 were three sub-districts with the highest production of forage dry matter, namely Bringin 235 (28,808.63 tons DDM), Pringapus (23,509.36 tons DDM), and Suruh (19,522.03 tons 236 237 DDM). Sub-district area with the lowest forage dry matter production was Bandungan (4,327.55 tons DDM). The status of the availability of forage in Bandungan sub-district 238 was categorized as very critical (0.82), while in Tengaran sub-district it was categorized 239 as vulnerable (1.69). Therefore, these two sub-districts are not recommended for the 240 241 development of beef cattle farms. Sub-district areas with carrying capacity index value >2 (safe) means that the areas can be recommended for the development of beef cattle 242 farms. The advantage obtained by the area with this safe category is that farmers can 243 244 reduce the amount of production costs for beef cattle feed. Semarang Regency had a carrying capacity for beef cattle farms of 122,725 AU. 245 The population of beef cattle in 2017 was 33,911 AU, so the Semarang Regency area was 246 assumed to still be able to accommodate 88,814 AU beef cattle in 2018. 247 248 249 The Suitability of Ecological Environment of Beef Cattle The results of field measurements and secondary data collection conducted on 250 several environmental factors that influence the growth of beef cattle are shown in Table 251 5. The factors that limited the assessment of the suitability of the ecological environment 252 of beef cattle farming in Semarang Regency were the Temperature Humidity Index (THI) 253 and water pH. Annual rainfall (<4000 mm) and dry months (<8) were in the appropriate 254 255 category.

Commented [MP8]: penambahan cattle; tidak hanya berdasarkan populasi sapi yg ada, tetapi juga AU ruminansia lain (Table 2) yg menggunakan hijauan (kebau, kuda, domba/kambing)

256	The suitability of the ecological environment map for beef cattle farms in
257	Semarang Regency is shown in Figure 1. The white area was an area that was not assessed
258	because it was designated as land for settlements, plantations, tourism, and forests, Based
259	on data in Figure 1, the level of suitability of the produced beef cattle ecological
260	environment was: very suitable (S-1), quite suitable (S-2), and according to marginal (S-
261	3). Non-suitable (NS) categories were not assessed because the area had a slope $>40\%$
262	(steep - very steep).

The symbol "p" indicated that there was a limiting factor in the area assessed. The 263 limiting factors were the Temperature Humidity Index (THI) and the pH of the water for 264 265 beef cattle consumption (Table 5). Semarang Regency consists of 19 sub-districts. The development of beef cattle farms will be prioritized in sub-districts having LQ>1, positive 266 SS (+) value, and carrying capacity index of forage >2, namely Bringin, Bancak, and 267 268 Banyubiru. Banyubiru sub-district was not constrained by the limiting factors, while Bringin and Bancak were constrained by THI values that exceed the comfort zone for 269 growing cattle (>80). The extent suitability of the ecology of beef cattle farms from the 270 three priority sub-districts is shown in Table 6. 271

Based on the results of the analysis conducted in Table 6, the sub-districts with 272 the largest land area for the development of beef cattle farms with intensive production 273 systems were Bringin (2,758.86 Ha), Bancak (1,550.08 Ha), and Banyubiru (1,451.2 Ha). 274 The limiting factor in the form of temperature humidity index (THI) or water pH can be 275 minimized through the engineering design of livestock housing and the provision of 276 materials or neutralizing water acidity solvent (Yani et al., 2007; Sarwanto & Hendarto, 277 2011). Cattle with intensive production systems are generally more susceptible to heat 278 stress than cattle with extensive production systems. Efforts that can be done to reduce 279

Commented [MP9]: dalam menghitung forage, daerah putih seharusnya menjadi pengurang.

280	heat stress in beef cattle include: adding shade around the housing location, install a
281	sprinkle tool or add straw that works to lower the surface temperature of the floor, regulate
282	feed, feed additives, and medicine, etc (Suhaema et al., 2014).
283	
284	DISCUSSION
285	Semarang Regency is a potential area for the development of beef cattle farming
286	because it has abundant natural resources in the form of land for livestock raising and
287	forage production. The mapping activity is based on the determination of leading
288	livestock commodities, and optimization of regional potential can be one of the
289	benchmarks in realizing sustainable development of beef cattle farms. The concept of
290	sustainable development is to meet the needs of the current generation, without sacrificing
291	future generations and this concept has become a reference for welfare in almost all
292	sectors, including the livestock sector (Wasike et al., 2011). The concept of sustainability
293	was widely debated throughout the world over the past few years (De Longe et al., 2016;
294	Keesstra et al., 2016; Rasmussen et al., 2017), not only concerning environmental and
295	social issues, but also discussing economic issues to gain certain market or commodity
296	advantages (Broom et al., 2013; Sabaghi et al., 2016). Sustainability assessment is
297	achieved by evaluating the relative contribution of each of the economic, environmental,
298	and social factors to the overall goal (Astier & García-Barrios, 2012). Sustainability
299	assessed in this study is economical and environmental sustainability for beef cattle
300	farms.
301	Economic sustainability was assessed based on the results of the analysis of the

leading commodity. The leading livestock commodity in an area was determined basedon the comparative advantage (LQ analysis) and competitive advantage (SS analysis).

304 The concept of comparative advantage is economic feasibility. Commodities that have a comparative advantage (LQ>1) show that the commodity (beef cattle) is supported by the 305 existence of adequate natural resources so that the population level is higher than in other 306 regions (Mulyono & Munibah, 2016). Beef cattle commodity in the base sub-district is a 307 prominent or dominant livestock business compared to the other livestock businesses, so 308 309 the effort for future development is easier (Yuniar et al., 2016; Mulyono & Munibah, 2016). On the other hand, the concept of competitive advantage is financial feasibility. 310 Beef cattle commodities are keeping in effective and efficient ways so that they have 311 competitiveness from the aspects of quality, quantity, continuity, and price (Muta'ali, 312 313 2015; Mulyono & Munibah, 2016). The results presented in Table 3 show that the Bringin, Bancak, and Banyubiru sub-districts are regions with a leading commodity of 314 beef cattle. Accordingly, the three sub-districts are a priority for the development of beef 315 316 cattle farms in Semarang Regency.

317 Environmental sustainability for beef cattle farms was assessed based on the results of the carrying capacity analysis and carrying capacity index of forage, and 318 analysis of the suitability of the ecological environment of beef cattle. Carrying capacity 319 320 is defined as the maximum population that can be supported by an ecosystem from time to time. The carrying capacity of an area is not static, there is a kind of reciprocal 321 322 relationship between organism and their environments. The carrying capacity of a region can vary for different species and change over time due to various factors (Taiwo & 323 Feyisara, 2017). Regional carrying capacity for livestock development is the size of the 324 region's ability to support the livelihoods of a number of livestock populations optimally 325 through the role of forage availability. Based on the results of the analysis presented in 326

Table 4, it is known that the Bringin, Bancak, and Banyubiru sub-districts have a foragecarrying capacity index in the safe category.

The production systems of beef cattle that is often found in Semarang Regency is 329 an intensive production system. Beef cattle are able to show optimal physical conditions 330 if they have superior genetic traits, and are supported by the suitability of their ecological 331 332 environment (Suhaema et al., 2014). Animal ecology is the study of the interactions between animals and their environments. Environmental factors tend to have a greater 333 effect on the production and productivity of livestock (Sumarto & Koneri, 2016). Some 334 environmental factors that influence the growth of beef cattle with intensive production 335 336 systems are: soil type, length of dry season, altitude, slope (Rusmana et al., 2006), temperature and relative humidity, rainfall, and water pH (Herbut & Angrecka, 2012; 337 Suhaema et al., 2014; Yuniar et al., 2016; Eirich, 2018). 338

339 The results of the analysis in Table 5 show that environmental factors that are limiting the development of beef cattle farms in Semarang Regency are air temperature 340 and humidity, as well as pH of water used by livestock for drinking. The relationship 341 between the amount of air temperature and humidity is called the Temperature Humidity 342 Index (THI). If THI exceeds the threshold (>80), it can cause stress or heat stress in beef 343 cattle (Eirich, 2018). Long-term heat stress has an impact on increasing drinking water 344 consumption, increasing urine volume, and decreasing feed consumption. The direct 345 effect of heat stress on livestock production causes a decrease in the productivity of beef 346 cattle. This effect is due to the increasing need for livestock maintenance during stress 347 conditions (Berman, 2005). Furthermore, the THI value that exceeds the threshold will 348 decrease the daily body weight gain, increase the depletion of the thickness of meat fat, 349 and increase the potential for disease occurrence, especially in male cattle (Nardone et 350

351	al., 2010). Hydrogen potential (pH) characterizes the balance between acidic and alkaline	
352	solvent in water. If the pH of drinking water for beef cattle is below the quality standard	
353	or acid (<6,5), the water becomes sour and can cause physiological and digestive	
354	disorders in livestock. On the other hand, if the pH of water is too alkaline (>9), the water	
355	becomes bitter and causes a decrease in the consumption of drinking water which has an	
356	impact on decreasing livestock productivity (Sarwanto & Hendarto, 2011).	
357	The synthesis of the assessment results of leading commodity, calculation of	
358	carrying capacity and carrying capacity index of forage, as well as land suitability	
359	assessment, shows that there are three sub-districts (Bringin, Bancak, and Banyubiru)	
360	which have high priorities for the development of beef cattle farms in Semarang Regency.	
361		
362	CONCLUSION	
363	Planning for the development of beef cattle farming with intensive production	
364	systems in Semarang Regency is recommended in three sub-districts namely. Bringin	
265	Bancak and Banyahira. The assumption of forage production produced from these three	
505	Bancak, and Banyubiu. The assumption of forage production produced non-mess unce	
366	sub-districts reaches 55,693.72 tons of DDM. The total carrying capacity for beef cattle	
367	farms is 30,601 AU. The total land area suitable for beef cattle farming in the three priority	Commented [MP10]: CC semarang 33,911 AU; sementara 3 kecamatan 30,601 AU (?????)
368	sub-districts is 5,760.141 Ha. The development of beef cattle farms in the priority sub-	Commented [MP11]: perhitungan CC berdasarkan struktur populasi sapi
369	districts is expected to increase livestock production and productivity. Governments,	tambahan sapi dikoreksi dengan populasi ruminansia yang ada
370	communities (cattleman), and the private sector (investors) must coordinate and	ditanami jagung (penghasil limbah terbanyak di persamaan 1), produksinya hanya:
371	cooperate with each other so that the development of sustainable beef cattle farms can be	3760 3 0.5= 8840 tol / 1.82 = 4747 AO. Jaun dibawan kesimpulan 30601 AU
372	achieved.	
373		
374	CONFLICT OF INTEREST	

375	The authors confirm that there are no conflicts of interest with any financial,
376	personal, or other relationships with other people or organization related to the material
377	discussed in the manuscript.
378	
379	REFERENCES
380	
381	Agus, A. & T. S. M. Widi. 2018. Current situation and future prospects for beef cattle
382	production in Indonesia - A review. Asian-Australas. J. Anim. Sci. 31:976-983.
383	https://doi.org/10.5713/ajas.18.0233
384	Ariningsih, E. 2014. Performance of national beef self-sufficiency policy. Forum
385	Penelitian Agro Ekonomi 32:137-156.
386	https://doi.org/10.21082/fae.v32n2.2014.137-156
387	Astier, M., L. G. Barrios, Y. G. Miyoshi, Carlos. E. G. Esquivel, & O. R. Masera.
388	2012. Assessing the sustainability of small farmer natural resource management
389	systems. A critical analysis of the MESMIS program 1995-2010. Ecology and
390	Society 17:25. https://doi.org/10.5751/ES-04910-170325
391	Atanga, N. L., A. C. Treydte, & R. Birner. 2013. Assessing the sustainability of
392	different small-scale livestock production systems in the Afar Region, Ethiopia.
393	Land. 2:726-755. https://doi.org/10.3390/land2040726
394	Berman, A. 2005. Estimates of heat stress relief needs for Holstein dairy cows. Journal
395	Animal Science 83:1377-1384. https://doi.org/10.2527/2005.8361377x
396	BPS Kabupaten Semarang. 2018. Kabupaten Semarang dalam Angka. Badan Pusat
397	Statistik, Semarang.

402	Ciptayasa, I. N., Hermansyah, & M. Yasin. 2016. Analisis potensi ternak kambing di
403	Kabupaten Lombok Barat. Jurnal Ilmu dan Teknologi Peternakan Indonesia
404	2:110-115. https://doi.org/10.29303/jitpi.v2i1.20
405	Darnhofer, I., J. Fairweather, & H. Moller. 2010. Assessing a farm's sustainability:
406	insights from resilience thinking. Int. J. Agric. Sustain. 8:186-198.
407	https://doi.org/10.3763/ijas.2010.0480
408	DeLonge, M. S., A. Miles, & L. Carlisle. 2016. Investing in the transition to sustainable
409	agriculture. Environ. Sci. Policy. 55:266-273.
410	https://doi.org/10.1016/j.envsci.2015.09.013
411	Eirich, R. 2018. Beef cattle temperature humidity chart. University of Nebraska.
412	Available at: https://bqa.unl.edu/heat-stress-resources. [28 December 2018].
413	Herbut, P. & S. Angrecka. 2012. Forming of temperature-humidity index (THI) and
414	milk production of cows in the free-stall barn during the period of summer heat.
415	Nim. Sci. Pap. Rep. 30:363-372.
416	Kadarsih, S. 2004. Performans sapi Bali berdasarkan ketinggian tempat di daerah
417	transmigrasi Bengkulu. Jurnal Ilmu-Ilmu Pertanian Indonesia 6:50-56.
418	Keesstra, S. D., J. Bouma, J. Wallinga, P. Tittonell, P. Smith, A. Cerda, L.
419	Montararella, J. N. Quinton, Y. Pachepsky, W. H. Putten, R. D. Bardgett, S.
420	Moolenaar, G. Mol, B. Jansen, & L. O. Fresco. 2016. The significance of soils
421	and soil science towards realization of the United Nations sustainable
422	development goals. Soil 2:111-128. https://doi.org/10.5194/soil-2-111-2016

Broom, D. M., F. A. Galindo, & E. Murgueitio. 2013. Sustainable, efficient livestock

280: 20132025. https://doi.org/10.1098/rspb.2013.2025

production with high biodiversity and good welfare for animals. Proc. R. Soc. B.
423	Kementan. 2016. Outlook Daging Sapi. Kementerian Pertanian Republik Indonesia,							
424	Jakarta.							
425	Mulyono, J. & K. Munibah. 2016. Pendekatan location quotient dan shift share analisis							
426	dalam penentuan komoditas unggulan tanaman pangan di Kabupaten Bantul.							
427	Informatika Pertanian 25:221-230. https://doi.org/10.21082/ip.v25n2.2016.p221-							
428	230							
429	Muta'ali, L. 2015. Teknik Analisis Regional untuk Perencanaan Wilayah, Tata Ruang,							
430	dan Lingkungan. Badan Penerbit Fakultas Geografi UGM, Yogyakarta.							
431	Nardone, A., B. Ronchi, N. Lacetera, M. S. Ranieri, & U. Bernabucci. 2010. Effects							
432	of climate changes on animal production and sustainability of livestock systems.							
433	Livest. Sci. 130:57-69. https://doi.org/10.1016/j.livsci.2010.02.011							
434	Nuhung, I. A. 2015. Kinerja, kendala, dan strategi pencapaian swasembada daging sapi.							
435	Forum Penelitian Agro Ekonomi 33:63-80.							
436	https://doi.org/10.21082/fae.v33n1.2015.63-80							
437	Paly, B., A. Natsir, S. Rasyid, & I. M. Fahmid. 2013. Interconnectivity multi criteria							
438	for sustainable development of beef cattle. International Journal of Scientific and							
439	Technology Research 2:115-121.							
440	Parmawati, R., Mashudi, A. Budiarto, Suyadi, & A. S. Kurnianto. 2018. Developing							
441	sustainable livestock production by feed adequacy map : A case study in Pasuruan,							
442								
1.12	Indonesia. Trop. Anim. Sci. J. 41:67-76. <u>https://doi.org/10.5398/tasj.2018.41.1.67</u>							
443	Indonesia. Trop. Anim. Sci. J. 41:67-76. <u>https://doi.org/10.5398/tasj.2018.41.1.67</u> Pasandaran, E., Haryono, & Suherman. 2014. Memperkuat Daya Saing Produk							
443 444	 Indonesia. Trop. Anim. Sci. J. 41:67-76. <u>https://doi.org/10.5398/tasj.2018.41.1.67</u> Pasandaran, E., Haryono, & Suherman. 2014. Memperkuat Daya Saing Produk Pertanian. Perspektif Daya Saing Wilayah. IAARD Press, Jakarta. 							

446 practitioner-researcher divide: Indicators to track environmental, economic, and

447	sociocultural sustainability of agricultural commodity production. Glob. Environ.
448	Change 42:33-46. https://doi.org/10.1016/j.gloenvcha.2016.12.001
449	Rouf, A. A., Daryanto, & A. Fariyanti. 2014. Daya saing usaha sapi potong di
450	Indonesia: Pendekatan domestic resources cost. Wartazoa 24:97-107.
451	https://doi.org/10.14334/wartazoa.v24i2.1053
452	Rusmana, N., Atmiyati, & Ridwan. 2006. Pembuatan peta kesesuaian ekologis untuk
453	ternak ruminansia pada skala tinjau. Pusat Penelitian dan Pengembangan
454	Peternakan, Bogor. pp. 175-178.
455	Sabaghi, M., C. Mascle, P. Baptiste, & R. Rostamzadeh. 2016. Sustainability
456	assessment using fuzzy-inference technique (SAFT): A methodology toward
457	green products. Expert Syst. Appl. 56:69-79.
458	https://doi.org/10.1016/j.eswa.2016.02.038
459	Santos, S. A., H. P. de Lima, Silvia. M. F. S. Massruha, Urbano. G. P. de Abreu, W.
460	M. Tomas, S. M. Salis, E. L. Cardoso, M. D. de Oliveira, Marcia. T. S. Soares,
461	A. dos Santos Jr, L. O. F. de Oliveira, D. F. Calheiros, S. M. A. Crispim, B.
462	M. A. Soriano, C. O. G. Amancio, A. P. Nunes, & L. A. Pellegrin. 2017. A
463	fuzzy logic-based tool to assess beef cattle ranching sustainability in complex
464	environmental systems. Journal of Environmental Management 198:95-106.
465	https://doi.org/10.1016/j.jenvman.2017.04.076
466	Saputra, J. I., Liman, & Y. Widodo. 2016. Analisis potensi pengembangan peternakan
467	sapi potong di Kabupaten Pesawaran. Jurnal Ilmiah Peternakan Terpadu 4:115-
468	123.
469	Sarwanto, D. & E. Hendarto. 2011. Analisis kualitas air minum sapi perah rakyat di
470	Kabupaten Banyumas Jawa Tengah. Med. Pet. 13:1-5.

472	Suhaema, E., Widiatmaka, & B. Tjahjono. 2014. The regional development of beef
473	cattle based on physical and forage land suitability in Cianjur Regency. Tanah
474	Lingkungan 16:53-60. https://doi.org/10.29244/jitl.16.2.53-60
475	Sumarto, S. & R. Koneri. 2016. Ekologi Hewan. Cv. Patra Media Grafindo, Bandung.
476	Sutanto, A. & L. Hendraningsih. 2011. Analisis keberlanjutan usaha sapi perah di
477	Kecamatan Ngantang Kabupaten Malang. Gamma 7:1-12.
478	Syarifuddin, H. 2009. Indeks keberlanjutan integrasi tanaman dengan ternak (crop
479	livestock system) di Kuamang Kuning. Jurnal Ilmiah Ilmu-Ilmu Peternakan
480	XII:41-49.
481	Taiwo, F. J. & O. O. Feyisara. 2017. Understanding the concept of carrying capacity
482	and its relevance to urban and regional planning. Journal of Environmental Studies
483	3:1-5.
484	Thornton, P. K. 2010. Livestock production: recent trends, future prospects.
485	Philosophical Transactions of the Royal Society B: Biological Sciences.
486	365:2853-2867. https://doi.org/10.1098/rstb.2010.0134
487	Tongco, M. D. C. 2007. Purposive sampling as a tool for informant selection.
488	Ethnobotany Research and Applications 5:147-158.
489	https://doi.org/10.17348/era.5.0.147-158
490	Wasike, C. B., T. M. Magothe, A. K. Kahi, & K. J. Peters. 2011. Factors that influence
491	the efficiency of beef and dairy cattle recording system in Kenya: A SWOT-AHP
492	analysis. Trop. Anim. Health Prod. 43:141-152. https://doi.org/10.1007/s11250-

493 <u>010-9666-3</u>

494	Yuniar, P. S., A. M. Fuah, & Widiatmaka. 2016. Carrying capacity and priority region
495	for development of beef cattle production in South Tangerang. Jurnal Ilmu
496	Produksi dan Teknologi Hasil Peternakan 4:64-268.
497	https://doi.org/10.29244/jipthp.4.1.264-268
498	Zakiah, A. Saleh, & K. Matindas. 2017. Gaya kepemimpinan dan perilaku komunikasi
499	GPPT dengan kapasitas kelembagaan sekolah peternakan rakyat di Kabupaten
500	Muara Enim. Jurnal Penyuluhan 13:133-142.
501	https://doi.org/10.25015/penyuluhan.v13i2.14977
502 503	
504	
505	

Table 1. Environmental parameters that influence the growth of beef cattle with intensive maintenance patterns

Parameter	Order of environmental suitabilit cattle				
	S (Suitable)	N (Unsuitable)			
Temperature Humidity Index (THI)	70-80	<70, >80			
Water availability (w)					
Dry month (<100 mm rainfall/month)	<8 months	>8 months			
Rainfall/year (mm)	< 4,000	> 4,000			
The existence of a water source	Available	Not Available			
Water Quality (q)					
pH water	6.5-9.0	<6.5; >9.0			
Slope (%)	<40	>40			

508 Source: (Suhaema et al., 2014; Yuniar et al., 2016).

509 Table 2. Growth of livestock populations in Semarang Regency

T	Number (head)									
Type of investock	2013	2014	2015	2016	2017					
Pig	32,640	17,300	18,431	15,971	15,850					
Goat	197,029	136,999	123,294	117,003	117,373					
Sheep	290,764	191,346	172,211	167,374	162,694					
Rabbit	20,352	9,375	10,462	11,629	11,916					
Horse	1,711	497	515	524	581					
Beef cattle	51,901	53,135	49,172	46,238	48,444					
Dairy cows	22,308	27,609	25,780	25,690	25,557					
Buffalo	2,941	3,168	2,614	2,629	2,589					
Laying Chicken	1,821,286	1,813,049	1,452,019	1,331,528	1,572,463					
Broiler Chicken	12,046,319	7,501,700	10,144,846	10,754,602	11,812,311					
Chicken Breed	819,067	860,408	818,568	861,989	823,226					
Duck	206,882	92,963	80,801	127,859	125,261					
Quail	122,200	238,930	227,737	176,730	142,856					
Muscovy Duck	102,966	72,227	63,889	61,963	54,402					

510 Source: (BPS Kabupaten Semarang, 2018).

NO	CUD DISTRICT		BEEF CATTLE						
NU	SUB-DISTRICT	LQ	RS	PS	DF	SS			
1	Getasan	0.63	-0.052	-0.014	-0.359	-0.425			
2	Tengaran	0.55	-0.052	-0.014	0.092	0.026			
3	Susukan	1.11	-0.052	-0.014	-0.137	-0.203			
4	Kaliwungu	1.22	-0.052	-0.014	0.048	-0.018			
5	Suruh	0.88	-0.052	-0.014	-0.213	-0.279			
6	Pabelan	1.75	-0.052	-0.014	0.501	0.435			
7	Tuntang	0.28	-0.052	-0.014	-0.689	-0.755			
8	Banyubiru	3.97	-0.052	-0.014	0.536	0.47			
9	Jambu	0.42	-0.052	-0.014	-0.417	-0.483			
10	Sumowono	0.95	-0.052	-0.014	-0.234	-0.3			
11	Ambarawa	3.92	-0.052	-0.014	0.006	-0.06			
12	Bandungan	1.01	-0.052	-0.014	0.269	0.203			
13	Bawen	2.34	-0.052	-0.014	0.0009	-0.0651			
14	Bringin	2.82	-0.052	-0.014	0.105	0.039			
15	Bancak	4.93	-0.052	-0.014	0.143	0.077			
16	Pringapus	1.38	-0.052	-0.014	-0.312	-0.378			
17	Bergas	0.77	-0.052	-0.014	-0.106	-0.172			
18	Ungaran Barat	0.77	-0.052	-0.014	1.352	1.286			
19	Ungaran Timur	0.3	-0.052	-0.014	-0.62	-0.686			

Table 3. Value of LQ and SS of beef cattle in Semarang Regency in 2018

shift.

514

SD	Bcp Bcp 2017 Rm R Bc F Dmp (AU)		CC	CCI	AV			
А	b	с	d	$e = c \ge d$	f	g = f/d	h = g/c	
Getasan	2,085	1,459.5	1.82	2,656.29	7,802.45	4,287.1	2.94	S
Tengaran	4,881	3,416.7	1.82	6,218.39	10,526.78	5,783.9	1.69	V
Susukan	2,905	2,033.5	1.82	3,700.97	15,301.29	8,407.3	4.13	S
Kaliwungu	4,650	3,255	1.82	5,924.1	13,231.72	7,270.2	2.23	S
Suruh	3,335	2,334.5	1.82	4,248.79	19,522.03	10,726.4	4.59	S
Pabelan	4,251	2,975.7	1.82	5,415.77	12,690.04	6,972.5	2.34	S
Tuntang	211	147.7	1.82	268.81	9,458.6	5,197.03	35.19	S
Banyubiru	3,840	2,688	1.82	4,892.16	11,493.54	6,315.1	2.35	S
Jambu	741	518.7	1.82	944.03	8,816.47	4,844.2	9.34	S
Sumowono	2,228	1,559.6	1.82	2,838.47	10,921.51	6,000.8	3.85	S
Ambarawa	1,661	1,162.7	1.82	2,116.11	4,935.95	2,712.05	2.33	S
Bandungan	4,140	2,898	1.82	5,274.36	4,327.55	2,377.8	0.82	VC
Bawen	2,717	1,901.9	1.82	3,461.46	7,241.14	3,978.6	2.09	S
Bringin	2,349	1,644.3	1.82	2,992.63	28,808.63	15,828.9	9.63	S
Bancak	2,820	1,974	1.82	3,592.68	15,391.55	8,456.9	4.28	S
Pringapus	1,333	933.1	1.82	1,698.24	23,509.36	12,917.2	13.84	S
Bergas	1,828	1,279.6	1.82	2,328.87	7,593.47	4,172.2	3.26	S
Ungaran Barat	2,105	1,473.5	1.82	2,681.77	5,400.34	2,967.2	2.01	S
Ungaran Timur	364	254.8	1.82	463.74	6,387.01	3,509.3	13.77	S
Jumlah	48,444	33,910.8		61,717.64	223,359.43	122,724.7	120.68	

Table 4. Carrying capacity and carrying capacity index of forage in Semarang Regency
 in 2018

SD = sub-district, Bcp = beef cattle population, Bcp (AU) = beef cattle population in livestock units, Rm =
 minimum feed requirements for beef cattle (ton DDM /year /AU), R bc = beef cattle feed requirements (tons /DDM/year), F Dmp = forage dry matter production (ton DDM), CC = carrying capacity (AU), CCI
 carrying capacity index of forage, AV = forage availability status; S = safe, V = vurnerable, VC = very critical.

524

525

Subdistrict	Sample (Village)	Tem perat ure (°C)	Tem perat ure (°F)	Humidit y (%)	THI	Rainfall (mm/year)	Dry months	Water pH
Getasan	Samirono	31	87.8	51	79.77	3,403	3	7
Tengaran	Duren	30	86	65	80.61	2,591	3	5.8
Susukan	Timpik	32	89.6	57	82.13	2,618	3	6.5
Kaliwungu	Mukiran	32	89.6	56	81.95	2,618	0	5.5
Suruh	Dadapayam	32	89.6	65	83.52	2,680	4	6.3
Pabelan	Terban	32	89.6	58	82.3	1,927	4	6.5
Tuntang	Tlumpakan	35	95	46	84.01	2,676	0	7
Banyubiru	Wirogomo	30	86	51	78.45	2,066	3	8
Jambu	Genting	31	87.8	49	79.44	2,489	0	6.2
Sumowono	Candi Garon	28	82.4	58	76.76	1,383	4	6.3
Ambarawa	Pasekan	30	86	51	78.45	1,291	3	6.8
Bandungan	Candi	29	84.2	54	77.57	1,291	0	6.7
Bawen	Polosiri	35	95	49	84.62	2,061	4	6.1
Bringin	Banding	35	95	54	85.64	2,211	3	7.9
Bancak	Pucung	33	91.4	58	83.68	2,091	0	6.5
Pringapus	Penawangan	32	89.6	56	81.95	2,290	3	4
Bergas	Munding	32	89.6	48	80.56	3,802	2	5.9
Ungaran Barat	Gogik	32	89.6	49	80.74	3,316	0	7.7
Ungaran Timur	Kawengen	33	91.4	51	82.4	3,316	0	6.6

Table 5. Results of measurements of environmental factors that influence the growth of
 beef cattle in Semarang Regency in 2018

 $THI = T - \{0.55 (1-RH / 100) (T-58)\},$ where T = temperature (°F), RH = relative humidity.

Table 6. Extent of suitability of ecological environment map of beef cattle farms in
 Bancak, Banyubiru, and Bringin sub-districts

NO	SUBDISTRICT		Tatal					
NO		S 1	S1p	S2	S2p	S 3	S3p	Total
1	Bancak	0	40.26	0.06	1,342.25	0	167.51	1,550.079
2	Banyubiru	17.10	0	1,434.10	0	0	0	1,451.2
3	Bringin	0	36.01	0	2,327.42	0	395.43	2,758.862
	TOTAL	17.10	76.27	1,434.16	3,669.67	0	562.94	5,760.141

 $\overline{S1}$ = very suitable, S2 = quite suitable, S3 = according to marginal, P = limiting factor in the form of 535 temperature humidity index (THI).

TASJ-1928

538

539 Figure 2. The suitability of ecological environment map for beef cattle farms in

540 Semarang Regency

1 2	The Regional Analysis of Beef Cattle Farm Development in Semarang Regency
3	Budi Santoso ^a , & B. W. H. E. Prasetiyono ^{b,*}
4	^a Master Program in Environmental Science, Diponegoro University
5	^b Faculty of Animal and Agricultural Sciences, Diponegoro University
6	Jl. Prof. Soedarto, Kampus Tembalang Semarang 50275, Indonesia
7	*Corresponding author: <u>bambangwhep63@gmail.com</u>
8	
9	ABSTRACT
10	One of the reasons for the low production and productivity of beef cattle in
11	Indonesia is that information on the allocation of livestock areas development is not yet
12	clear. This study aims to determine the priority areas for developing beef cattle farm in
13	Semarang Regency based on the concept of sustainability. Sustainability was analyzed
14	through the determination of leading commodities (analysis of Location Quotient and
15	Shift Share), optimization of regional potential (analysis of carrying capacity and carrying
16	capacity index of forage, and assessment of suitability of ecological environment of beef
17	cattle). The process of spatial analysis used GIS software. Comprehensive planning for
18	the development of beef cattle farm was directed in three sub-districts, namely: Bringin,
19	Bancak, and Banyubiru. The results of the analysis showed that the three sub-districts
20	were beef cattle base areas (LQ>1), had business growth (positive SS), and had a safe
21	status for forage availability (>2). Other results showed that the carrying capacity for beef
22	cattle farms in Bringin sub-district was 15,829 AU, Bancak was 8,457 AU, and Banyubiru
23	was 6,315 AU. The land area suitable for beef cattle farm from the three priority sub-
24	districts was 5,760.141 Ha. It can be concluded that the development of beef cattle farm
25	in Semarang Regency is focused on three priority sub-districts, namely: Bringin, Bancak,

26	and Banyubiru. The results of this study can be an input for local governments in
27	determining the direction and pattern of beef cattle farm development to be more
28	sustainable.
29	Keywords: beef cattle, regional analysis, sustainability of livestock sector
30	
31	INTRODUCTION
32	The directed and sustainable development of the livestock sector is believed to be
33	able to contribute positively to regional development. Along with the increase in
34	population, there is an increasing demand for food from animal protein, such as beef.
35	Beef consumption in developing countries such as in Indonesia tends to increase every
36	year (Thornton, 2010; Agus & Widi, 2018), however the population of beef cattle in some
37	regions actually decreases due to the complexity of technical and non-technical problems
38	(Paly et al., 2013; Ariningsih, 2014; Nuhung, 2015). There is a gap between demand
39	and supply of beef products, which is increasingly widening. Many factors causing this
40	gap, including the domestic production of beef cattle is still low because information on
41	the allocation of livestock development areas is not yet clear.
42	Cattle farmings in Indonesia are categorized as unsustainable (Syarifuddin, 2009;
43	Sutanto & Hendraningsih, 2011). The number of available beef cattle has not been able
44	to meet the high meat consumption of people. The consumption of beef in 2020 is
45	estimated to reach 3.36 kg per capita per year, but beef production is still not able to fulfill
46	it; there is a deficit in beef supply by 198,350 tons (Kementan, 2016; Agus & Widi, 2018).
47	Most of the beef production in Indonesia, 78% comes from traditional livestock, 5% from
48	imports, and 17% from live livestock imports, especially from Australia (Zakiah et al.,
49	2017). Imports of beef are indeed relatively larger compared to the other types of meat

imports, contributing 21.44% to the total import value of livestock, while the import value
of livestock is 18.29% of the total value of agricultural imports nationally (Rouf *et al.*,
2014).

Policy efforts to reduce beef imports must be studied, by strengthening domestic 53 production that is beneficial for farmers (Pasandaran et al., 2014). The development of 54 55 beef cattle farms in potential areas is an effort to strengthen meat production in the country so that the implementation must be carried out with a comprehensive assessment. 56 57 Semarang Regency is a region in Central Java Province that has the potential to develop beef cattle farms because it has natural resources in the form of land as a place for 58 59 livestock keeping and forage production. Good quality and forage availability can increase production, especially for increasing body weight of cattle (Suhaema et al., 60 2014). Forage producing areas in Semarang Regency include gardens (25,562.04 Ha), 61 62 rice fields (23,745.96 Ha), and forests (6,032.77 Ha). The beef cattle population in this region during the 2014-2016 period continued to decline, ranging from 53,135; 49,172; 63 and 46,238 (BPS Kabupaten Semarang, 2018). 64

The development of beef cattle farms in Semarang Regency needs to adopt the 65 concept of sustainability. The concept of sustainability is the achievement of economic, 66 environmental, and social goals simultaneously which is represented by various 67 performance indicators (Darnhofer et al., 2010). Sustainability is also defined as the 68 concept of multidimensional (economic, ecological, and social) and multiscale (micro, 69 meso, and macro), although in its application, it is often limited to one particular aspect 70 (Santos et al., 2017). Economic sustainability is closely related to the value of 71 comparative and competitive advantages of certain commodities (Broom et al., 2013; 72

```
73 Sabaghi et al., 2016), while environmental sustainability includes optimizing the
74 availability and efficient use of natural resources (Atanga et al., 2013).
```

75 The sustainability of beef cattle farms can be identified through a regional approach, by considering the existence of leading commodities and the potential of the 76 region concerned (Mulyono & Munibah, 2016; Parmawati et al., 2018). Determination 77 of leading commodities characterized by the existence of comparative and competitive 78 79 advantages is the first step towards the efficient development of livestock sector. The 80 potential of the region to support the development of beef cattle farms is determined by optimizing the carrying capacity and carrying capacity index of forage, as well as by 81 82 assessing the suitability of the land where the livestocks are raised. Land suitability for beef cattle farms with intensive production systems considers several environmental 83 factors that affect the growth of these cattle. 84

Mapping activities based on the determination of leading commodities and optimization of regional potential are needed as a basis for planning sustainable development of beef cattle farms. This study aims to determine the priority areas for developing beef cattle farms in Semarang Regency. The results of this study are expected to be one of the considerations in determining the direction and development policy of the beef cattle farms sector in Semarang Regency.

91

92

MATERIALS AND METHODS

93 This research was a type of quantitative research and applied the concept of 94 sustainability. Sustainabilities assessed were economic and environmental sustainabilities 95 for beef cattle farm in Semarang Regency. Economic sustainability was identified through 96 the determination of the leading commodity of livestock, while environmental

97 sustainability was identified through the calculation of the carrying capacity and carrying
98 capacity index of forage, and the assessment of suitability of ecological environment of
99 beef cattle. In detail, each step of the analysis was outlined below.

100

Leading Commodity

Determination of leading livestock commodities in an area used Location Quotient 101 102 (LQ) and Shift Share (SS) analysis. The rationale for the two methods was the economic 103 basis theory. LQ analysis was relatively simple, but the benefits were large enough for 104 the initial identification of the ability of a sector in regional development. The shift in the structure of economic activity in beef cattle business, whether experiencing growth or 105 106 decline was analyzed using Shift Share (SS). SS analysis can be used to see the growth of the economic sectors of a region for two-time points (Muta'ali, 2015). LQ and SS 107 analysis used the following equations (Ciptayasa et al., 2016; Mulyono & Munibah, 108

109 2016).

110
$$LQ_{ij} = \frac{Xij / Xi.}{X.j / X..}$$
 (Equation 1)

111 $(X_{ij} = Beef cattle population in the sub-district A, X_i$. = Population of all types of livestock in the sub-

district A, X_j = Beef cattle population in Semarang Regency, X_i = Population of all types of livestock in
Semarang Regency).

114 SS =
$$\left[\frac{X.(t1)}{X.(t0)} - 1\right] + \left[\frac{X.i(t1)}{X.i((t0)} - \frac{X.(t1)}{X.(t0)}\right] + \left[\frac{Xij(t1)}{Xij(t0)} - \frac{X.i(t1)}{X.i((t0)}\right]$$
 (Equation 2)

(Regional share, Proportional shift, Differential shift, X ..= Population of all types of livestock in Semarang
Regency, Xi= Beef cattle population in Semarang Regency, Xij= Beef cattle population in sub-district A,
t0= Early 2013 year point, t1= End of year 2017).

118

119 Carrying Capacity and Carrying Capacity Index of Forage

120 The carrying capacity of the region for livestock development is indicated by the

ability of the region to produce forage that can accommodate and meet the needs of a

124	index of forage was conducted to assess the availability of animal feed in a region,	
125	whether it was classified as safe, vulnerable, critical, or very critical.	
126	The carrying capacity of beef cattle farms was calculated based on the production	
127	of forage dry matter against the minimum feed requirements of cattle (1 AU) in one year.	
128	The animal unit (AU) was a unit for the ruminant livestock population multiplied by the	
129	conversion factor. The conversion factor for beef cattle was 0.7 (Muta'ali, 2015; Saputra	Co
130	et al., 2016). Forage dry matter production was the amount of potential agricultural waste	Co
131	and natural forage potential, using equations that refer to Suhaema et al. (2014) and	aya dar
132	Yuniar et al. (2016).	Fak (CC
133	Potential of agricultural waste $(ton) = {(wr x 0.4) + (fr x 3 x 0.4) + (cn x 3 x 0.5) + (sb x $	Co
134	$3 \ge 0.55$ + (pt x 2 x 0.55) + (sp x 0.25/6) + (cs x 0.25/4) } x 0.65	Co Fo
135	(wr is wetland rice, fr is field rice, cn is corn, sb is soybean, pt is peanuts, sp is sweet	agr An
136	potatoes, cs is cassava. The numbers in the formula are assumptions about the potential	dih
137	waste produced from the production of each type of plant food).	
138	Natural forage potential (ton) = {(Ga x 2.875) + (Fa x 0.6) + (Cpa x 10) + (Cfa x 0.5) +	Co
139	(Cla x 5)} x 0.5	Co
140	(Ga is garden area, Fa is forest area, Cpa is coconut plant area, Cfa is coffee plant area,	
141	Cla is clove plant area. The numbers in the formula are assumed to be natural forage	

number of beef cattle populations. Forages were divided into two types, namely fresh

forage (grass, legume) and dry forage (straw). An assessment of the carrying capacity

142 potential produced per hectare of land use area).

143 Minimum cattle feed requirements (R) = 2.5% x 50% x 365 x 400 kg = 1.82 ton

144 DDM/year/AU (Equation 3)

122

123

Commented [MP1]: bagaimana dengan konversi AU ivestock lainnya (kelinci, ayam babi dll)?

Commented [BS2R1]: Penelitian ini hanya berfokus untuk pengembangan ternak sapi potong. AU jenis ternak lainnya (kelinci, ayam, dll) tidak diperhitungkan, sesuai dengan penelitian terdahulu dari Suhaema (2014), Yuniar (2016).

Faktor konversi AU (0.7) digunakan untuk perhitungan daya dukung (CC) ternak sapi potong dan indeks daya dukung hijauan (CCI). Secara lebih lengkap dijabarkan pada Tabel 4.

Commented [MP3]: fresh forage or dry matter?

Commented [BS4R3]: Jawabannya adalah fresh forage

Forage dry matter production (ton of DDM/year) = Potential of agricultural waste + Natural forage potential

Angka-angka dalam rumus adalah asumsi potensi limbah yang dihasilkan dari **produksi setiap jenis tanaman pangan.**

Commented [MP5]: fresh or dry matter?
Commented [BS6R5]: Fresh forage

Commented [MP7]: daya cerna 50%, maka pengalinya menjadi 100/50; bukan 50%

Commented [BS8R7]: Menghitung R berdasar penelitian terdahulu dari Suhaema (2014), Muta'ali (2015), Yuniar (2016). 2.5% X 50% = 0.0125 atau 1.25%

1.25% X 365 X 400 = 1,825 kg = 1.82 Ton DDM/year/AU

145	(R is minimum cattle feed requirements (1 AU) in tons of digestible dry matter	
146	for 1 year, 2.5% is minimum requirement for the number of forage rations (dry matter)	
147	on livestock weight, 50% is average value digestibility power of various types of plants,	
148	365 is number of days in 1 year, 400 kg is live weight of 1 AU of beef cattle in Semarang	
149	Regency). Equations that refer to Suhaema et al. (2014) and Yuniar et al. (2016).	
150	The results of the calculation of forage dry matter production were then used to	
151	determine the carrying capacity of beef cattle farms using the following equations	
152	(Suhaema et al., 2014; Yuniar et al., 2016).	
153	$CC (AU) = \frac{Forage Dry Matter Production (tons of DDM / year)}{Minimum Cattle Feed Requirement (tons of DDM / year / AU)} (Equation 4)$	l
154	The level of animal feed security in a region was measured by forage carrying	
155	capacity index. Carrying capacity index values were values that indicated the status of	
156	the availability of forage for beef cattle, namely: very critical (\leq 1), critical (>1-1.5),	
157	vulnerable (> 1.5-2), and safe (>2).	
158	Forage carrying capacity index = $\frac{\text{Carrying capacity (AU)}}{\text{Amount of Beef Cattle Population in 2017 (AU)}}$ (Equation 5)	
159		
160	Suitability of the Ecological Environment of Beef Cattle	
161	The research sample for the assessment of the suitability ecological environment	
162	of beef cattle farms in Semarang Regency was 19 points spreading throughout the sub-	
163	district area (Table 5). The determination of the sample was using purposive sampling	
164	technique. The purposive sampling technique was also called judgment sampling	
165	(Tongco, 2007), which was used to determine the sample based on research	
166	considerations. In each sub-district, one village was taken which had the most beef cattle	
167	population.	

Commented [MP9]: kalau daya cerna 50%; maka kebutuhannya menjadi dikali 100/50, bukan dikali 50%

Commented [BS10R9]: Sudah terjawab dalam komentar sebelumnya.

Commented [MP11]: Penghitungan AU menggunakan konversi 0.7 semua. Padahal populasi sapi ada yg muda dan anak2, seharusnya berdasarkan struktur populasi.

Commented [BS12R11]: Menurut Muta'ali (2015), Saputra (2016), faktor konversi untuk ternak sapi 0.7, mewakili populasi sapi yang terdiri dari induk betina, induk jantan, dan anak dengan berbagai tingkatan umur. Penelitian lebih detail untuk perhitungan AU ternak sapi potong (berdasar struktur populasi), memungkinkan untuk dilakukan di masa mendatang.

Lands available for the development of beef cattle farms are gardens, grasslands, open land, rice fields, and dryland agriculture. The fields are assumed to be able to be used for building housing for beef cattle. The assessment of land suitable for beef cattle farming with intensive maintenance patterns also takes into account several environmental parameters that influence the growth of livestock.

Land suitability assessment for beef cattle farms began by making a map of land 173 174 units. Maps of beef cattle land units referred to research of Rusmana et al. (2006) which 175 stated that there were four maps needed for overlaying, namely: land type maps, agroclimate maps, regional altitude maps, and slope maps. The final step was to make a 176 177 "suitability map of the ecological environment of beef cattle". The method used was by overlaying between land unit maps with environmental parameters that affected the 178 growth of beef cattle (Table 1). Land suitability was classified into 4 levels or strata, 179 180 namely: very suitable (S-1), quite suitable (S-2), according to marginal (S-3), and nonsuitable (NS) (Rusmana et al., 2006; Suhaema et al., 2014; Yuniar et al., 2016). The entire 181 process was created and analyzed using GIS software. 182

183

185

186

RESULTS

Leading Commodity

The leading commodity of livestock in an area was determined based on 187 comparative advantage (location quotient analysis) and competitive advantage (shift-188 share analysis). Beef cattle commodities that had LQ>1 and SS (+) values were the 189 leading commodities in the region. The interpretation of the value of LQ>1, was a base 190 or leading sector, beef cattle products (meat) were able to meet markets inside and outside 191 the region. The value of LQ<1 implied a non-base sector, livestock products had not been 192 able to meet markets inside and outside the region. The value of LQ=1 implied that the 193 194 sector was balanced with the reference region, livestock products were only able to meet markets in the area. The basis for calculating LQ analysis for livestock commodities was 195 livestock population data (Hendayana, 2003). Data bias in calculations could be 196 197 minimized by using a minimum 5 year data series (Table 2).

Shift share analysis started from the basic assumption that economic growth or 198 199 added value of an activity in a particular region was influenced by three main components which were interconnected with each other, namely: regional growth, sectoral growth, 200 and growth in share or regional competitiveness (Ciptayasa et al., 2016). Through these 201 three components, it could be seen which elements had encouraged regional economic 202 203 growth. The value of each component could be positive or negative, but the total number (shift-share) would always be positive if the regional economic growth were positive, and 204 vice versa. 205

The results of the LQ and SS analysis calculations for beef cattle commodities in Semarang Regency are shown in Table 3. Based on the results of the analysis conducted, the subdistrict areas becoming the beef cattle base sector (LQ> 1) were Bancak (4.93), **Commented [MP13]:** Data 5 tahun untuk LQ metodenya bagaimana? dirata2, dijumlah atau bagaimana?

Commented [BS14R13]: Perhitungan analisis LQ merupakan penjumlahan populasi masing-masing jenis ternak yang terdapat di Kabupaten Semarang (dari tahun 2013-2017).

Setelah data 5 tahun tersebut dijumlahkan, kemudian perhitungan LQ mengikuti pada persamaan 1.

Banyubiru (3.97), Ambarawa (3.92), Bringin (2.82), and Bawen (2.34). Beef cattle
keeping was concentrated in these areas or in the other words the economic density of
beef cattle was higher than that of in the other regions.

Beef cattle commodities that had competitive advantages were seen based on 212 positive shift-share (SS) values. Sub-districts with a positive SS value means 213 214 experiencing growth (competitiveness) related to keeping beef cattle. On the other hand, sub-districts with negative SS value means that the area is not growing (stagnant) and can 215 even experience setbacks. The results of the analysis conducted in Table 3 showed that 216 sub-districts with positive SS values were in Ungaran Barat (1.286), Banyubiru (0.47), 217 218 Pabelan (0.435), Bandungan (0.203), Bancak (0.077), Bringin (0.039), and Tengaran (0.026).219

The development of beef cattle farms in Semarang Regency is prioritized in the
sub-districts with LQ>1 and SS (+) values. The sub-districts are Bringin, Bancak, and
Banyubiru.

223

224

Carrying Capacity and Carrying Capacity Index of Forage

The potential availability of feed for beef cattle was seen based on the amount of forage dry matter production (tons of DDM) that could be produced by the region concerned. Dry matter is the total feed ingredients without water content, which can come from forages. The region with the largest forage dry matter production has the highest carrying capacity for the development of beef cattle farms, and vice versa. Forage is one of the production inputs that determine the success of livestock business because it directly affects productivity and efficiency (Yuniar *et al.*, 2016). Table 4 shows the

233 in Semarang Regency. Based on the results of the analysis conducted in Table 4, it was known that there 234 were three sub-districts with the highest production of forage dry matter, namely Bringin 235 (28,808.63 tons DDM), Pringapus (23,509.36 tons DDM), and Suruh (19,522.03 tons 236 DDM). Sub-district area with the lowest forage dry matter production was Bandungan 237 (4,327.55 tons DDM). The status of the availability of forage in Bandungan sub-district 238 was categorized as very critical (0.82), while in Tengaran sub-district it was categorized 239 as vulnerable (1.69). Therefore, these two sub-districts are not recommended for the 240 241 development of beef cattle farms. Sub-district areas with carrying capacity index value >2 (safe) means that the areas can be recommended for the development of beef cattle 242 farms. The advantage obtained by the area with this safe category is that farmers can 243 244 reduce the amount of production costs for beef cattle feed. 245 Semarang Regency had a carrying capacity for beef cattle farms of 122,725 AU. The population of beef cattle in 2017 was 33,911 AU, so the Semarang Regency area was 246 assumed to still be able to accommodate 88,814 AU beef cattle in 2018. 247 248 249 The Suitability of Ecological Environment of Beef Cattle The results of field measurements and secondary data collection conducted on 250 several environmental factors that influence the growth of beef cattle are shown in Table 251 5. The factors that limited the assessment of the suitability of the ecological environment 252 of beef cattle farming in Semarang Regency were the Temperature Humidity Index (THI) 253 and water pH. Annual rainfall (<4000 mm) and dry months (<8) were in the appropriate 254 255 category.

calculation of carrying capacity and carrying capacity index of forage for beef cattle farms

232

Commented [MP15]: penambahan cattle; tidak hanya berdasarkan populasi sapi yg ada, tetapi juga AU ruminansia lain (Table 2) yg menggunakan hijauan (kebau, kuda, domba/kambina)

Commented [BS16R15]: Asumsi penambahan sapi potong dalam penelitian ini berdasar perhitungan daya dukung (CC) pada Tabel 4, yang mengacu pada penelitian terdahulu dari Suhaema (2014) dan Yuniar (2016).

256	The suitability of the ecological environment map for beef cattle farms in
257	Semarang Regency is shown in Figure 1. The white area was an area that was not assessed
258	because it was designated as land for settlements, plantations, tourism, and forests. Based
259	on data in Figure 1, the level of suitability of the produced beef cattle ecological
260	environment was: very suitable (S-1), quite suitable (S-2), and according to marginal (S-
261	3). Non-suitable (NS) categories were not assessed because the area had a slope $>40\%$
262	(steep - very steep).

263 The symbol "p" indicated that there was a limiting factor in the area assessed. The limiting factors were the Temperature Humidity Index (THI) and the pH of the water for 264 265 beef cattle consumption (Table 5). Semarang Regency consists of 19 sub-districts. The development of beef cattle farms will be prioritized in sub-districts having LQ>1, positive 266 SS (+) value, and carrying capacity index of forage >2, namely Bringin, Bancak, and 267 268 Banyubiru. Banyubiru sub-district was not constrained by the limiting factors, while Bringin and Bancak were constrained by THI values that exceed the comfort zone for 269 growing cattle (>80). The extent suitability of the ecology of beef cattle farms from the 270 three priority sub-districts is shown in Table 6. 271

Based on the results of the analysis conducted in Table 6, the sub-districts with 272 the largest land area for the development of beef cattle farms with intensive production 273 systems were Bringin (2,758.86 Ha), Bancak (1,550.08 Ha), and Banyubiru (1,451.2 Ha). 274 The limiting factor in the form of temperature humidity index (THI) or water pH can be 275 minimized through the engineering design of livestock housing and the provision of 276 materials or neutralizing water acidity solvent (Yani et al., 2007; Sarwanto & Hendarto, 277 2011). Cattle with intensive production systems are generally more susceptible to heat 278 stress than cattle with extensive production systems. Efforts that can be done to reduce 279

Commented [MP17]: dalam menghitung forage, daerah putih seharusnya menjadi pengurang.

Commented [BS18R17]: Wilayah berwarna putih tidak diperhitungkan dalam penelitian ini karena:

 Merupakan penggunaan lahan yang tidak potensial untuk pengembangan peternakan sapi potong karena berupa lahan permukiman, industri & pariwisata, badan air, perkebunan, hutan,
 Mempunyai kemiringan lereng >40% (curam-sangat terjal), sehingga tidak memungkinkan mengambil hijauan (misal dari hutan) di wilayah ini.

280	heat stress in beef cattle include: adding shade around the housing location, install a
281	sprinkle tool or add straw that works to lower the surface temperature of the floor, regulate
282	feed, feed additives, and medicine, etc (Suhaema et al., 2014).
283	
284	DISCUSSION
285	Semarang Regency is a potential area for the development of beef cattle farming
286	because it has abundant natural resources in the form of land for livestock raising and
287	forage production. The mapping activity is based on the determination of leading
288	livestock commodities, and optimization of regional potential can be one of the
289	benchmarks in realizing sustainable development of beef cattle farms. The concept of
290	sustainable development is to meet the needs of the current generation, without sacrificing
291	future generations and this concept has become a reference for welfare in almost all
292	sectors, including the livestock sector (Wasike et al., 2011). The concept of sustainability
293	was widely debated throughout the world over the past few years (De Longe et al., 2016;
294	Keesstra et al., 2016; Rasmussen et al., 2017), not only concerning environmental and
295	social issues, but also discussing economic issues to gain certain market or commodity
296	advantages (Broom et al., 2013; Sabaghi et al., 2016). Sustainability assessment is
297	achieved by evaluating the relative contribution of each of the economic, environmental,
298	and social factors to the overall goal (Astier & García-Barrios, 2012). Sustainability
299	assessed in this study is economical and environmental sustainability for beef cattle
300	farms.
301	Economic sustainability was assessed based on the results of the analysis of the

leading commodity. The leading livestock commodity in an area was determined basedon the comparative advantage (LQ analysis) and competitive advantage (SS analysis).

304 The concept of comparative advantage is economic feasibility. Commodities that have a comparative advantage (LQ>1) show that the commodity (beef cattle) is supported by the 305 existence of adequate natural resources so that the population level is higher than in other 306 regions (Mulyono & Munibah, 2016). Beef cattle commodity in the base sub-district is a 307 prominent or dominant livestock business compared to the other livestock businesses, so 308 309 the effort for future development is easier (Yuniar et al., 2016; Mulyono & Munibah, 2016). On the other hand, the concept of competitive advantage is financial feasibility. 310 Beef cattle commodities are keeping in effective and efficient ways so that they have 311 competitiveness from the aspects of quality, quantity, continuity, and price (Muta'ali, 312 313 2015; Mulyono & Munibah, 2016). The results presented in Table 3 show that the Bringin, Bancak, and Banyubiru sub-districts are regions with a leading commodity of 314 beef cattle. Accordingly, the three sub-districts are a priority for the development of beef 315 316 cattle farms in Semarang Regency.

317 Environmental sustainability for beef cattle farms was assessed based on the results of the carrying capacity analysis and carrying capacity index of forage, and 318 analysis of the suitability of the ecological environment of beef cattle. Carrying capacity 319 320 is defined as the maximum population that can be supported by an ecosystem from time to time. The carrying capacity of an area is not static, there is a kind of reciprocal 321 322 relationship between organism and their environments. The carrying capacity of a region can vary for different species and change over time due to various factors (Taiwo & 323 Feyisara, 2017). Regional carrying capacity for livestock development is the size of the 324 region's ability to support the livelihoods of a number of livestock populations optimally 325 through the role of forage availability. Based on the results of the analysis presented in 326

Table 4, it is known that the Bringin, Bancak, and Banyubiru sub-districts have a foragecarrying capacity index in the safe category.

The production systems of beef cattle that is often found in Semarang Regency is 329 an intensive production system. Beef cattle are able to show optimal physical conditions 330 if they have superior genetic traits, and are supported by the suitability of their ecological 331 332 environment (Suhaema et al., 2014). Animal ecology is the study of the interactions between animals and their environments. Environmental factors tend to have a greater 333 effect on the production and productivity of livestock (Sumarto & Koneri, 2016). Some 334 environmental factors that influence the growth of beef cattle with intensive production 335 336 systems are: soil type, length of dry season, altitude, slope (Rusmana et al., 2006), temperature and relative humidity, rainfall, and water pH (Herbut & Angrecka, 2012; 337 Suhaema et al., 2014; Yuniar et al., 2016; Eirich, 2018). 338

339 The results of the analysis in Table 5 show that environmental factors that are limiting the development of beef cattle farms in Semarang Regency are air temperature 340 and humidity, as well as pH of water used by livestock for drinking. The relationship 341 between the amount of air temperature and humidity is called the Temperature Humidity 342 Index (THI). If THI exceeds the threshold (>80), it can cause stress or heat stress in beef 343 cattle (Eirich, 2018). Long-term heat stress has an impact on increasing drinking water 344 consumption, increasing urine volume, and decreasing feed consumption. The direct 345 effect of heat stress on livestock production causes a decrease in the productivity of beef 346 cattle. This effect is due to the increasing need for livestock maintenance during stress 347 conditions (Berman, 2005). Furthermore, the THI value that exceeds the threshold will 348 decrease the daily body weight gain, increase the depletion of the thickness of meat fat, 349 and increase the potential for disease occurrence, especially in male cattle (Nardone et 350

al., 2010). Hydrogen potential (pH) characterizes the balance between acidic and alkaline
solvent in water. If the pH of drinking water for beef cattle is below the quality standard
or acid (<6,5), the water becomes sour and can cause physiological and digestive
disorders in livestock. On the other hand, if the pH of water is too alkaline (>9), the water
becomes bitter and causes a decrease in the consumption of drinking water which has an
impact on decreasing livestock productivity (Sarwanto & Hendarto, 2011).

The synthesis of the assessment results of leading commodity, calculation of carrying capacity and carrying capacity index of forage, as well as land suitability assessment, shows that there are three sub-districts (Bringin, Bancak, and Banyubiru) which have high priorities for the development of beef cattle farms in Semarang Regency.

361

362

CONCLUSION

363 Planning for the development of beef cattle farming with intensive production systems in Semarang Regency is recommended in three sub-districts, namely: Bringin, 364 Bancak, and Banyubiru. The assumption of forage production produced from these three 365 sub-districts reaches 55,693.72 tons of DDM. The total carrying capacity for beef cattle 366 farms is 30,601 AU. The total land area suitable for beef cattle farming in the three priority 367 sub-districts is 5,760.141 Ha. The development of beef cattle farms in the priority sub-368 369 districts is expected to increase livestock production and productivity. Governments, communities (cattleman), and the private sector (investors) must coordinate and 370 cooperate with each other so that the development of sustainable beef cattle farms can be 371 372 achieved.

373

374

CONFLICT OF INTEREST

Commented [MP19]: CC semarang 33,911 AU; sementara 3 kecamatan 30,601 AU (????)

Commented [BS20R19]: angka 33,911 bukan CC, tapi merupakan jumlah seluruh populasi sapi potong di Kabupaten Semarang (dalam AU) pada tahun 2017. Sementara estimasi CC ternak sapi potong pada tahun 2018 di tiga wilayah prioritas pengembangan (Bringin, Bancak, & Banyubiru) yaitu 30,601 AU. Angka yang dihasilkan tersebut berdasar hasil perhitungan (equation 4 dan Tabel 4).

Commented [MP21]: perhitungan CC berdasarkan struktur populasi sapi

tambahan sapi dikoreksi dengan populasi ruminansia yang ada

Commented [BS22R21]: Pada bagian kesimpulan, CC yang dijelaskan sebesar 30,601 AU. Ini merupakan CC dari ketiga wilayah prioritas pengembangan ternak sapi potong (Bringin, Bancak, Banyubiru).

Perhitungan CC mengikuti persamaan 4.

Commented [MP23]: Di kesimpulan land suitable 5760 jika ditanami jagung (penghasil limbah terbanyak di persamaan 1), produksinya hanya:

5760*3*0.5= 8640 ton /1.82 = 4747 AU. Jauh dibawah kesimpulan 30601 AU

Commented [BS24R23]: Berdasarkan hasil perhitungan pada Tabel 6, luas lahan yang sesuai untuk pengembangan peternakan sapi potong (di tiga wilayah prioritas) yaitu 5,760.1 Ha. Untuk menghitung daya dukung (CC) tidak bisa hanya menggunakan asumsi potensi limbah tanaman jagung. CC dihitung menggunakan persamaan 4.

Sebelum menghitung CC, produksi bahan kering hijauan (Forage dry matter production/F dmp) perlu dihitung. F dmp merupakan hasil penjumlahan antara potensi limbah pertanian dan potensi hijauan alami (satuan ton).

375	The authors confirm that there are no conflicts of interest with any financial,						
376	personal, or other relationships with other people or organization related to the material						
377	discussed in the manuscript.						
378							
379	REFERENCES						
380							
381	Agus, A. & T. S. M. Widi. 2018. Current situation and future prospects for beef cattle						
382	production in Indonesia - A review. Asian-Australas. J. Anim. Sci. 31:976-983.						
383	https://doi.org/10.5713/ajas.18.0233						
384	Ariningsih, E. 2014. Performance of national beef self-sufficiency policy. Forum						
385	Penelitian Agro Ekonomi 32:137-156.						
386	https://doi.org/10.21082/fae.v32n2.2014.137-156						
387	Astier, M., L. G. Barrios, Y. G. Miyoshi, Carlos. E. G. Esquivel, & O. R. Masera.						
388	2012. Assessing the sustainability of small farmer natural resource management						
389	systems. A critical analysis of the MESMIS program 1995-2010. Ecology and						
390	Society 17:25. https://doi.org/10.5751/ES-04910-170325						
391	Atanga, N. L., A. C. Treydte, & R. Birner. 2013. Assessing the sustainability of						
392	different small-scale livestock production systems in the Afar Region, Ethiopia.						
393	Land. 2:726-755. https://doi.org/10.3390/land2040726						
394	Berman, A. 2005. Estimates of heat stress relief needs for Holstein dairy cows. Journal						
395	Animal Science 83:1377-1384. <u>https://doi.org/10.2527/2005.8361377x</u>						
396	BPS Kabupaten Semarang. 2018. Kabupaten Semarang dalam Angka. Badan Pusat						
397	Statistik, Semarang.						

402	Ciptayasa, I. N., Hermansyah, & M. Yasin. 2016. Analisis potensi ternak kambing di							
403	Kabupaten Lombok Barat. Jurnal Ilmu dan Teknologi Peternakan Indonesia							
404	2:110-115. https://doi.org/10.29303/jitpi.v2i1.20							
405	Darnhofer, I., J. Fairweather, & H. Moller. 2010. Assessing a farm's sustainability:							
406	insights from resilience thinking. Int. J. Agric. Sustain. 8:186-198.							
407	https://doi.org/10.3763/ijas.2010.0480							
408	DeLonge, M. S., A. Miles, & L. Carlisle. 2016. Investing in the transition to sustainable							
409	agriculture. Environ. Sci. Policy. 55:266-273.							
410	https://doi.org/10.1016/j.envsci.2015.09.013							
411	Eirich, R. 2018. Beef cattle temperature humidity chart. University of Nebraska.							
412	Available at: https://bqa.unl.edu/heat-stress-resources. [28 December 2018].							
413	Herbut, P. & S. Angrecka. 2012. Forming of temperature-humidity index (THI) and							
414	milk production of cows in the free-stall barn during the period of summer heat.							
415	Nim. Sci. Pap. Rep. 30:363-372.							
416	Kadarsih, S. 2004. Performans sapi Bali berdasarkan ketinggian tempat di daerah							
417	transmigrasi Bengkulu. Jurnal Ilmu-Ilmu Pertanian Indonesia 6:50-56.							
418	Keesstra, S. D., J. Bouma, J. Wallinga, P. Tittonell, P. Smith, A. Cerda, L.							
419	Montararella, J. N. Quinton, Y. Pachepsky, W. H. Putten, R. D. Bardgett, S.							
420	Moolenaar, G. Mol, B. Jansen, & L. O. Fresco. 2016. The significance of soils							
421	and soil science towards realization of the United Nations sustainable							
422	development goals. Soil 2:111-128. https://doi.org/10.5194/soil-2-111-2016							

Broom, D. M., F. A. Galindo, & E. Murgueitio. 2013. Sustainable, efficient livestock

280: 20132025. https://doi.org/10.1098/rspb.2013.2025

production with high biodiversity and good welfare for animals. Proc. R. Soc. B.

423	Kementan. 2016. Outlook Daging Sapi. Kementerian Pertanian Republik Indonesia,							
424	Jakarta.							
425	Mulyono, J. & K. Munibah. 2016. Pendekatan location quotient dan shift share analisis							
426	dalam penentuan komoditas unggulan tanaman pangan di Kabupaten Bantul.							
427	Informatika Pertanian 25:221-230. https://doi.org/10.21082/ip.v25n2.2016.p221-							
428	<u>230</u>							
429	Muta'ali, L. 2015. Teknik Analisis Regional untuk Perencanaan Wilayah, Tata Ruang,							
430	dan Lingkungan. Badan Penerbit Fakultas Geografi UGM, Yogyakarta.							
431	Nardone, A., B. Ronchi, N. Lacetera, M. S. Ranieri, & U. Bernabucci. 2010. Effects							
432	of climate changes on animal production and sustainability of livestock systems.							
433	Livest. Sci. 130:57-69. https://doi.org/10.1016/j.livsci.2010.02.011							
434	Nuhung, I. A. 2015. Kinerja, kendala, dan strategi pencapaian swasembada daging sapi.							
435	Forum Penelitian Agro Ekonomi 33:63-80.							
	https://doi.org/10.21082/fae.v33n1.2015.63-80							
436	https://doi.org/10.21082/fae.v33n1.2015.63-80							
436 437	https://doi.org/10.21082/fae.v33n1.2015.63-80 Paly, B., A. Natsir, S. Rasyid, & I. M. Fahmid. 2013. Interconnectivity multi criteria							
436 437 438	https://doi.org/10.21082/fae.v33n1.2015.63-80 Paly, B., A. Natsir, S. Rasyid, & I. M. Fahmid. 2013. Interconnectivity multi criteria for sustainable development of beef cattle. International Journal of Scientific and							
436 437 438 439	https://doi.org/10.21082/fae.v33n1.2015.63-80 Paly, B., A. Natsir, S. Rasyid, & I. M. Fahmid. 2013. Interconnectivity multi criteria for sustainable development of beef cattle. International Journal of Scientific and Technology Research 2:115-121.							
436 437 438 439 440	https://doi.org/10.21082/fae.v33n1.2015.63-80Paly, B., A. Natsir, S. Rasyid, & I. M. Fahmid. 2013. Interconnectivity multi criteriafor sustainable development of beef cattle. International Journal of Scientific andTechnology Research 2:115-121.Parmawati, R., Mashudi, A. Budiarto, Suyadi, & A. S. Kurnianto. 2018. Developing							
436 437 438 439 440 441	https://doi.org/10.21082/fae.v33n1.2015.63-80Paly, B., A. Natsir, S. Rasyid, & I. M. Fahmid. 2013. Interconnectivity multi criteriafor sustainable development of beef cattle. International Journal of Scientific andTechnology Research 2:115-121.Parmawati, R., Mashudi, A. Budiarto, Suyadi, & A. S. Kurnianto. 2018. Developingsustainable livestock production by feed adequacy map : A case study in Pasuruan,							
436 437 438 439 440 441 442	https://doi.org/10.21082/fae.v33n1.2015.63-80Paly, B., A. Natsir, S. Rasyid, & I. M. Fahmid. 2013. Interconnectivity multi criteriafor sustainable development of beef cattle. International Journal of Scientific andTechnology Research 2:115-121.Parmawati, R., Mashudi, A. Budiarto, Suyadi, & A. S. Kurnianto. 2018. Developingsustainable livestock production by feed adequacy map : A case study in Pasuruan,Indonesia. Trop. Anim. Sci. J. 41:67-76. https://doi.org/10.5398/tasj.2018.41.1.67							
436 437 438 439 440 441 442 443	https://doi.org/10.21082/fae.v33n1.2015.63-80Paly, B., A. Natsir, S. Rasyid, & I. M. Fahmid. 2013. Interconnectivity multi criteria for sustainable development of beef cattle. International Journal of Scientific and Technology Research 2:115-121.Parmawati, R., Mashudi, A. Budiarto, Suyadi, & A. S. Kurnianto. 2018. Developing sustainable livestock production by feed adequacy map : A case study in Pasuruan, Indonesia. Trop. Anim. Sci. J. 41:67-76. https://doi.org/10.5398/tasj.2018.41.1.67 Pasandaran, E., Haryono, & Suherman. 2014. Memperkuat Daya Saing Produk							
436 437 438 439 440 441 442 443 444	 https://doi.org/10.21082/fae.v33n1.2015.63-80 Paly, B., A. Natsir, S. Rasyid, & I. M. Fahmid. 2013. Interconnectivity multi criteria for sustainable development of beef cattle. International Journal of Scientific and Technology Research 2:115-121. Parmawati, R., Mashudi, A. Budiarto, Suyadi, & A. S. Kurnianto. 2018. Developing sustainable livestock production by feed adequacy map : A case study in Pasuruan, Indonesia. Trop. Anim. Sci. J. 41:67-76. https://doi.org/10.5398/tasj.2018.41.1.67 Pasandaran, E., Haryono, & Suherman. 2014. Memperkuat Daya Saing Produk Pertanian. Perspektif Daya Saing Wilayah. IAARD Press, Jakarta. 							

446 practitioner-researcher divide: Indicators to track environmental, economic, and

447	sociocultural sustainability of agricultural commodity production. Glob. Environ.							
448	Change 42:33-46. https://doi.org/10.1016/j.gloenvcha.2016.12.001							
449	Rouf, A. A., Daryanto, & A. Fariyanti. 2014. Daya saing usaha sapi potong di							
450	Indonesia: Pendekatan domestic resources cost. Wartazoa 24:97-107.							
451	https://doi.org/10.14334/wartazoa.v24i2.1053							
452	Rusmana, N., Atmiyati, & Ridwan. 2006. Pembuatan peta kesesuaian ekologis untuk							
453	ternak ruminansia pada skala tinjau. Pusat Penelitian dan Pengembangan							
454	Peternakan, Bogor. pp. 175-178.							
455	Sabaghi, M., C. Mascle, P. Baptiste, & R. Rostamzadeh. 2016. Sustainability							
456	assessment using fuzzy-inference technique (SAFT): A methodology toward							
457	green products. Expert Syst. Appl. 56:69-79.							
458	https://doi.org/10.1016/j.eswa.2016.02.038							
459	Santos, S. A., H. P. de Lima, Silvia. M. F. S. Massruha, Urbano. G. P. de Abreu, W.							
460	M. Tomas, S. M. Salis, E. L. Cardoso, M. D. de Oliveira, Marcia. T. S. Soares,							
461	A. dos Santos Jr, L. O. F. de Oliveira, D. F. Calheiros, S. M. A. Crispim, B.							
462	M. A. Soriano, C. O. G. Amancio, A. P. Nunes, & L. A. Pellegrin. 2017. A							
463	fuzzy logic-based tool to assess beef cattle ranching sustainability in complex							
464	environmental systems. Journal of Environmental Management 198:95-106.							
465	https://doi.org/10.1016/j.jenvman.2017.04.076							
466	Saputra, J. I., Liman, & Y. Widodo. 2016. Analisis potensi pengembangan peternakan							
467	sapi potong di Kabupaten Pesawaran. Jurnal Ilmiah Peternakan Terpadu 4:115-							
468	123.							
469	Sarwanto, D. & E. Hendarto. 2011. Analisis kualitas air minum sapi perah rakyat di							
470	Kabupaten Banyumas Jawa Tengah. Med. Pet. 13:1-5.							

472	Suhaema, E., Widiatmaka, & B. Tjahjono. 2014. The regional development of beef						
473	cattle based on physical and forage land suitability in Cianjur Regency. Tanah						
474	Lingkungan 16:53-60. https://doi.org/10.29244/jitl.16.2.53-60						
475	Sumarto, S. & R. Koneri. 2016. Ekologi Hewan. Cv. Patra Media Grafindo, Bandung.						
476	Sutanto, A. & L. Hendraningsih. 2011. Analisis keberlanjutan usaha sapi perah di						
477	Kecamatan Ngantang Kabupaten Malang. Gamma 7:1-12.						
478	Syarifuddin, H. 2009. Indeks keberlanjutan integrasi tanaman dengan ternak (crop						
479	livestock system) di Kuamang Kuning. Jurnal Ilmiah Ilmu-Ilmu Peternakan						
480	XII:41-49.						
481	Taiwo, F. J. & O. O. Feyisara. 2017. Understanding the concept of carrying capacity						
482	and its relevance to urban and regional planning. Journal of Environmental Studies						
483	3:1-5.						
484	Thornton, P. K. 2010. Livestock production: recent trends, future prospects.						
485	Philosophical Transactions of the Royal Society B: Biological Sciences.						
486	365:2853-2867. https://doi.org/10.1098/rstb.2010.0134						
487	Tongco, M. D. C. 2007. Purposive sampling as a tool for informant selection.						
488	Ethnobotany Research and Applications 5:147-158.						
489	https://doi.org/10.17348/era.5.0.147-158						
490	Wasike, C. B., T. M. Magothe, A. K. Kahi, & K. J. Peters. 2011. Factors that influence						
491	the efficiency of beef and dairy cattle recording system in Kenya: A SWOT-AHP						
492	analysis. Trop. Anim. Health Prod. 43:141-152. https://doi.org/10.1007/s11250-						

493 <u>010-9666-3</u>

494	Yuniar, P. S., A. M. Fuah, & Widiatmaka. 2016. Carrying capacity and priority region					
495	for development of beef cattle production in South Tangerang. Jurnal Ilmu					
496	Produksi dan Teknologi Hasil Peternakan 4:64-268.					
497	https://doi.org/10.29244/jipthp.4.1.264-268					
498	Zakiah, A. Saleh, & K. Matindas. 2017. Gaya kepemimpinan dan perilaku komunikasi					
499	GPPT dengan kapasitas kelembagaan sekolah peternakan rakyat di Kabupaten					
500	Muara Enim. Jurnal Penyuluhan 13:133-142.					
501	https://doi.org/10.25015/penyuluhan.v13i2.14977					
502 503						
504						
505						

Table 1. Environmental parameters that influence the growth of beef cattle with intensive maintenance patterns

Parameter	Order of environme	ental suitability of beel attle
	S (Suitable)	N (Unsuitable)
Temperature Humidity Index (THI)	70-80	<70, >80
Water availability (w)		
Dry month (<100 mm rainfall/month)	<8 months	>8 months
Rainfall/year (mm)	< 4,000	> 4,000
The existence of a water source	Available	Not Available
Water Quality (q)		
pH water	6.5-9.0	<6.5; >9.0
Slope (%)	<40	>40

508 Source: (Suhaema et al., 2014; Yuniar et al., 2016).

509 Table 2. Growth of livestock populations in Semarang Regency

T			Number (head))	
Type of investock	2013	2014	2015	2016	2017
Pig	32,640	17,300	18,431	15,971	15,850
Goat	197,029	136,999	123,294	117,003	117,373
Sheep	290,764	191,346	172,211	167,374	162,694
Rabbit	20,352	9,375	10,462	11,629	11,916
Horse	1,711	497	515	524	581
Beef cattle	51,901	53,135	49,172	46,238	48,444
Dairy cows	22,308	27,609	25,780	25,690	25,557
Buffalo	2,941	3,168	2,614	2,629	2,589
Laying Chicken	1,821,286	1,813,049	1,452,019	1,331,528	1,572,463
Broiler Chicken	12,046,319	7,501,700	10,144,846	10,754,602	11,812,311
Chicken Breed	819,067	860,408	818,568	861,989	823,226
Duck	206,882	92,963	80,801	127,859	125,261
Quail	122,200	238,930	227,737	176,730	142,856
Muscovy Duck	102,966	72,227	63,889	61,963	54,402

510 Source: (BPS Kabupaten Semarang, 2018).

NO	SUB-DISTRICT	BEEF CATTLE							
		LQ	RS	PS	DF	SS			
1	Getasan	0.63	-0.052	-0.014	-0.359	-0.425			
2	Tengaran	0.55	-0.052	-0.014	0.092	0.026			
3	Susukan	1.11	-0.052	-0.014	-0.137	-0.203			
4	Kaliwungu	1.22	-0.052	-0.014	0.048	-0.018			
5	Suruh	0.88	-0.052	-0.014	-0.213	-0.279			
6	Pabelan	1.75	-0.052	-0.014	0.501	0.435			
7	Tuntang	0.28	-0.052	-0.014	-0.689	-0.755			
8	Banyubiru	3.97	-0.052	-0.014	0.536	0.47			
9	Jambu	0.42	-0.052	-0.014	-0.417	-0.483			
10	Sumowono	0.95	-0.052	-0.014	-0.234	-0.3			
11	Ambarawa	3.92	-0.052	-0.014	0.006	-0.06			
12	Bandungan	1.01	-0.052	-0.014	0.269	0.203			
13	Bawen	2.34	-0.052	-0.014	0.0009	-0.0651			
14	Bringin	2.82	-0.052	-0.014	0.105	0.039			
15	Bancak	4.93	-0.052	-0.014	0.143	0.077			
16	Pringapus	1.38	-0.052	-0.014	-0.312	-0.378			
17	Bergas	0.77	-0.052	-0.014	-0.106	-0.172			
18	Ungaran Barat	0.77	-0.052	-0.014	1.352	1.286			
19	Ungaran Timur	0.3	-0.052	-0.014	-0.62	-0.686			

Table 3. Value of LQ and SS of beef cattle in Semarang Regency in 2018

shift.

514

SD	Bcp 2017	Bcp 2017 (AU)	Rm	R Bc	F Dmp	CC	CCI	AV	
А	b	с	d	$e = c \ge d$	f	g = f/d	h = g/c		
Getasan	2,085	1,459.5	1.82	2,656.29	7,802.45	4,287.1	2.94	S	
Tengaran	4,881	3,416.7	1.82	6,218.39	10,526.78	5,783.9	1.69	V	
Susukan	2,905	2,033.5	1.82	3,700.97	15,301.29	8,407.3	4.13	S	
Kaliwungu	4,650	3,255	1.82	5,924.1	13,231.72	7,270.2	2.23	S	
Suruh	ruh 3,335 2,334.5 1.82 4,248.79		4,248.79	19,522.03	10,726.4	4.59	S		
Pabelan	Pabelan 4,251		1.82	5,415.77	12,690.04	6,972.5	2.34	S	
Tuntang	211	147.7	1.82	268.81	9,458.6	5,197.03	35.19	S	
Banyubiru	3,840	2,688	1.82	4,892.16	11,493.54	6,315.1	2.35	S	
Jambu	741	518.7	1.82	944.03	8,816.47	4,844.2	9.34	S	
Sumowono	2,228	1,559.6	1.82	2,838.47	10,921.51	6,000.8	3.85	S	
Ambarawa	1,661	1,162.7	1.82	2,116.11	4,935.95	2,712.05	2.33	S	
Bandungan	4,140	2,898	1.82	5,274.36	4,327.55	2,377.8	0.82	VC	
Bawen	2,717	1,901.9	1.82	3,461.46	7,241.14	3,978.6	2.09	S	
Bringin	2,349	1,644.3	1.82	2,992.63	28,808.63	15,828.9	9.63	S	
Bancak	2,820	1,974	1.82	3,592.68	15,391.55	8,456.9	4.28	S	
Pringapus	1,333	933.1	1.82	1,698.24	23,509.36	12,917.2	13.84	S	
Bergas	1,828	1,279.6	1.82	2,328.87	7,593.47	4,172.2	3.26	S	
Ungaran Barat	2,105	1,473.5	1.82	2,681.77	5,400.34	2,967.2	2.01	S	
Ungaran Timur	364	254.8	1.82	463.74	6,387.01	3,509.3	13.77	S	
Jumlah	48,444	33,910.8		61,717.64	223,359.43	122,724.7	120.68		

Table 4. Carrying capacity and carrying capacity index of forage in Semarang Regency
 in 2018

SD = sub-district, Bcp = beef cattle population, Bcp (AU) = beef cattle population in livestock units, Rm =
 minimum feed requirements for beef cattle (ton DDM /year /AU), R bc = beef cattle feed requirements (tons /DDM/year), F Dmp = forage dry matter production (ton DDM), CC = carrying capacity (AU), CCI
 carrying capacity index of forage, AV = forage availability status; S = safe, V = vurnerable, VC = very critical.

524

525

Subdistrict	Sample (Village)	Tem perat ure (°C)	Tem perat ure (°F)	Humidit y (%)	THI	Rainfall (mm/year)	Dry months	Water pH
Getasan	Samirono	31	87.8	51	79.77	3,403	3	7
Tengaran	Duren	30	86	65	80.61	2,591	3	5.8
Susukan	Timpik	32	89.6	57	82.13	2,618	3	6.5
Kaliwungu	Mukiran	32	89.6	56	81.95	2,618	0	5.5
Suruh	Dadapayam	32	89.6	65	83.52	2,680	4	6.3
Pabelan	Terban	32	89.6	58	82.3	1,927	4	6.5
Tuntang	Tlumpakan	35	95	46	84.01	2,676	0	7
Banyubiru	Wirogomo	30	86	51	78.45	2,066	3	8
Jambu	Genting	31	87.8	49	79.44	2,489	0	6.2
Sumowono	Candi Garon	28	82.4	58	76.76	1,383	4	6.3
Ambarawa	Pasekan	30	86	51	78.45	1,291	3	6.8
Bandungan	Candi	29	84.2	54	77.57	1,291	0	6.7
Bawen	Polosiri	35	95	49	84.62	2,061	4	6.1
Bringin	Banding	35	95	54	85.64	2,211	3	7.9
Bancak	Pucung	33	91.4	58	83.68	2,091	0	6.5
Pringapus	Penawangan	32	89.6	56	81.95	2,290	3	4
Bergas	Munding	32	89.6	48	80.56	3,802	2	5.9
Ungaran Barat	Gogik	32	89.6	49	80.74	3,316	0	7.7
Ungaran Timur	Kawengen	33	91.4	51	82.4	3,316	0	6.6

Table 5. Results of measurements of environmental factors that influence the growth of
 beef cattle in Semarang Regency in 2018

 $THI = T - \{0.55 (1-RH / 100) (T-58)\},$ where T = temperature (°F), RH = relative humidity.

Table 6. Extent of suitability of ecological environment map of beef cattle farms in
 Bancak, Banyubiru, and Bringin sub-districts

NO	SUBDISTRICT		Total					
		S 1	S1p	S2	S2p	S 3	S3p	Total
1	Bancak	0	40.26	0.06	1,342.25	0	167.51	1,550.079
2	Banyubiru	17.10	0	1,434.10	0	0	0	1,451.2
3	Bringin	0	36.01	0	2,327.42	0	395.43	2,758.862
	TOTAL	17.10	76.27	1,434.16	3,669.67	0	562.94	5,760.141

 $\overline{S1}$ = very suitable, S2 = quite suitable, S3 = according to marginal, P = limiting factor in the form of 535 temperature humidity index (THI).

TASJ-1928

538

 $\label{eq:Figure 1.} Figure 1. The suitability of ecological environment map for beef cattle farms in$

540 Semarang Regency
1 2	The Regional Analysis of Beef Cattle Farm Development in Semarang Regency
3	Budi Santoso ^a , & B. W. H. E. Prasetiyono ^{b,*}
4	^a Master Program in Environmental Science, Diponegoro University
5	^b Faculty of Animal and Agricultural Sciences, Diponegoro University
6	Jl. Prof. Soedarto, Kampus Tembalang Semarang 50275, Indonesia
7	*Corresponding author: <u>bambangwhep63@gmail.com</u>
8	
9	ABSTRACT
10	One of the reasons for the low production and productivity of beef cattle in
11	Indonesia is that information on the allocation of livestock areas development is not yet
12	clear. This study aims to determine the priority areas for developing beef cattle farm in
13	Semarang Regency based on the concept of sustainability. Sustainability was analyzed
14	through the determination of leading commodities (analysis of Location Quotient and
15	Shift Share), optimization of regional potential (analysis of carrying capacity and carrying
16	capacity index of forage, and assessment of suitability of ecological environment of beef
17	cattle). The process of spatial analysis used GIS software. Comprehensive planning for
18	the development of beef cattle farm was directed in three sub-districts, namely: Bringin,
19	Bancak, and Banyubiru. The results of the analysis showed that the three sub-districts
20	were beef cattle base areas (LQ>1), had business growth (positive SS), and had a safe
21	status for forage availability (>2). Other results showed that the carrying capacity for beef
22	cattle farms in Bringin sub-district was 15,829 AU, Bancak was 8,457 AU, and Banyubiru
23	was 6,315 AU. The land area suitable for beef cattle farm from the three priority sub-
24	districts was 5,760.141 Ha. It can be concluded that the development of beef cattle farm
25	in Semarang Regency is focused on three priority sub-districts, namely: Bringin, Bancak,

26	and Banyubiru. The results of this study can be an input for local governments in
27	determining the direction and pattern of beef cattle farm development to be more
28	sustainable.
29	Keywords: beef cattle, regional analysis, sustainability of livestock sector
30	
31	INTRODUCTION
32	The directed and sustainable development of the livestock sector is believed to be
33	able to contribute positively to regional development. Along with the increase in
34	population, there is an increasing demand for food from animal protein, such as beef.
35	Beef consumption in developing countries such as in Indonesia tends to increase every
36	year (Thornton, 2010; Agus & Widi, 2018), however the population of beef cattle in some
37	regions actually decreases due to the complexity of technical and non-technical problems
38	(Paly et al., 2013; Ariningsih, 2014; Nuhung, 2015). There is a gap between demand
39	and supply of beef products, which is increasingly widening. Many factors causing this
40	gap, including the domestic production of beef cattle is still low because information on
41	the allocation of livestock development areas is not yet clear.
42	Cattle farmings in Indonesia are categorized as unsustainable (Syarifuddin, 2009;
43	Sutanto & Hendraningsih, 2011). The number of available beef cattle has not been able
44	to meet the high meat consumption of people. The consumption of beef in 2020 is
45	estimated to reach 3.36 kg per capita per year, but beef production is still not able to fulfill
46	it; there is a deficit in beef supply by 198,350 tons (Kementan, 2016; Agus & Widi, 2018).
47	Most of the beef production in Indonesia, 78% comes from traditional livestock, 5% from
48	imports, and 17% from live livestock imports, especially from Australia (Zakiah et al.,
49	2017). Imports of beef are indeed relatively larger compared to the other types of meat

imports, contributing 21.44% to the total import value of livestock, while the import value
of livestock is 18.29% of the total value of agricultural imports nationally (Rouf *et al.*,
2014).

Policy efforts to reduce beef imports must be studied, by strengthening domestic 53 production that is beneficial for farmers (Pasandaran et al., 2014). The development of 54 55 beef cattle farms in potential areas is an effort to strengthen meat production in the country so that the implementation must be carried out with a comprehensive assessment. 56 57 Semarang Regency is a region in Central Java Province that has the potential to develop beef cattle farms because it has natural resources in the form of land as a place for 58 59 livestock keeping and forage production. Good quality and forage availability can increase production, especially for increasing body weight of cattle (Suhaema et al., 60 2014). Forage producing areas in Semarang Regency include gardens (25,562.04 Ha), 61 62 rice fields (23,745.96 Ha), and forests (6,032.77 Ha). The beef cattle population in this region during the 2014-2016 period continued to decline, ranging from 53,135; 49,172; 63 and 46,238 (BPS Kabupaten Semarang, 2018). 64

The development of beef cattle farms in Semarang Regency needs to adopt the 65 concept of sustainability. The concept of sustainability is the achievement of economic, 66 environmental, and social goals simultaneously which is represented by various 67 performance indicators (Darnhofer et al., 2010). Sustainability is also defined as the 68 concept of multidimensional (economic, ecological, and social) and multiscale (micro, 69 meso, and macro), although in its application, it is often limited to one particular aspect 70 (Santos et al., 2017). Economic sustainability is closely related to the value of 71 comparative and competitive advantages of certain commodities (Broom et al., 2013; 72

```
73 Sabaghi et al., 2016), while environmental sustainability includes optimizing the
74 availability and efficient use of natural resources (Atanga et al., 2013).
```

75 The sustainability of beef cattle farms can be identified through a regional approach, by considering the existence of leading commodities and the potential of the 76 region concerned (Mulyono & Munibah, 2016; Parmawati et al., 2018). Determination 77 of leading commodities characterized by the existence of comparative and competitive 78 79 advantages is the first step towards the efficient development of livestock sector. The 80 potential of the region to support the development of beef cattle farms is determined by optimizing the carrying capacity and carrying capacity index of forage, as well as by 81 82 assessing the suitability of the land where the livestocks are raised. Land suitability for beef cattle farms with intensive production systems considers several environmental 83 factors that affect the growth of these cattle. 84

Mapping activities based on the determination of leading commodities and optimization of regional potential are needed as a basis for planning sustainable development of beef cattle farms. This study aims to determine the priority areas for developing beef cattle farms in Semarang Regency. The results of this study are expected to be one of the considerations in determining the direction and development policy of the beef cattle farms sector in Semarang Regency.

91

92

MATERIALS AND METHODS

93 This research was a type of quantitative research and applied the concept of 94 sustainability. Sustainabilities assessed were economic and environmental sustainabilities 95 for beef cattle farm in Semarang Regency. Economic sustainability was identified through 96 the determination of the leading commodity of livestock, while environmental

97 sustainability was identified through the calculation of the carrying capacity and carrying
98 capacity index of forage, and the assessment of suitability of ecological environment of
99 beef cattle. In detail, each step of the analysis was outlined below.

100

Leading Commodity

Determination of leading livestock commodities in an area used Location Quotient 101 102 (LQ) and Shift Share (SS) analysis. The rationale for the two methods was the economic 103 basis theory. LQ analysis was relatively simple, but the benefits were large enough for 104 the initial identification of the ability of a sector in regional development. The shift in the structure of economic activity in beef cattle business, whether experiencing growth or 105 106 decline was analyzed using Shift Share (SS). SS analysis can be used to see the growth of the economic sectors of a region for two-time points (Muta'ali, 2015). LQ and SS 107 analysis used the following equations (Ciptayasa et al., 2016; Mulyono & Munibah, 108

109 2016).

110
$$LQ_{ij} = \frac{Xij / Xi.}{X.j / X..}$$
 (Equation 1)

111 $(X_{ij} = Beef cattle population in the sub-district A, X_i$. = Population of all types of livestock in the sub-

district A, X_j = Beef cattle population in Semarang Regency, X_i = Population of all types of livestock in
Semarang Regency).

114 SS =
$$\left[\frac{X.(t1)}{X.(t0)} - 1\right] + \left[\frac{X.i(t1)}{X.i((t0)} - \frac{X.(t1)}{X.(t0)}\right] + \left[\frac{Xij(t1)}{Xij(t0)} - \frac{X.i(t1)}{X.i((t0)}\right]$$
 (Equation 2)

(Regional share, Proportional shift, Differential shift, X ..= Population of all types of livestock in Semarang
Regency, Xi= Beef cattle population in Semarang Regency, Xij= Beef cattle population in sub-district A,
t0= Early 2013 year point, t1= End of year 2017).

118

119 Carrying Capacity and Carrying Capacity Index of Forage

120 The carrying capacity of the region for livestock development is indicated by the

ability of the region to produce forage that can accommodate and meet the needs of a

124	index of forage was conducted to assess the availability of animal feed in a region,	
125	whether it was classified as safe, vulnerable, critical, or very critical.	
126	The carrying capacity of beef cattle farms was calculated based on the production	
127	of forage dry matter against the minimum feed requirements of cattle (1 AU) in one year.	
128	The animal unit (AU) was a unit for the ruminant livestock population multiplied by the	
129	conversion factor. The conversion factor for beef cattle was 0.7 (Muta'ali, 2015; Saputra	Co
130	et al., 2016). Forage dry matter production was the amount of potential agricultural waste	Co
131	and natural forage potential, using equations that refer to Suhaema et al. (2014) and	aya dar
132	Yuniar et al. (2016).	Fak (CC
133	Potential of agricultural waste $(ton) = {(wr x 0.4) + (fr x 3 x 0.4) + (cn x 3 x 0.5) + (sb x (sb x 0.4)) + (sb x 0.4) +$	Co
134	3 x 0.55) + (pt x 2 x 0.55) + (sp x 0.25/6) + (cs x 0.25/4)} x 0.65	Co Fo
135	(wr is wetland rice, fr is field rice, cn is corn, sb is soybean, pt is peanuts, sp is sweet	agr An
136	potatoes, cs is cassava. The numbers in the formula are assumptions about the potential	dih
137	waste produced from the production of each type of plant food).	
138	Natural forage potential (ton) = {(Ga x 2.875) + (Fa x 0.6) + (Cpa x 10) + (Cfa x 0.5) +	Co
139	(Cla x 5)} x 0.5	Co
140	(Ga is garden area, Fa is forest area, Cpa is coconut plant area, Cfa is coffee plant area,	
141	Cla is clove plant area. The numbers in the formula are assumed to be natural forage	

number of beef cattle populations. Forages were divided into two types, namely fresh

forage (grass, legume) and dry forage (straw). An assessment of the carrying capacity

142 potential produced per hectare of land use area).

143 Minimum cattle feed requirements (R) = $2.5\% \times 50\% \times 365 \times 400 \text{ kg} = 1.82 \text{ ton}$

144 DDM/year/AU (Equation 3)

122

123

Commented [MP1]: bagaimana dengan konversi AU ivestock lainnya (kelinci, ayam babi dll)?

Commented [BS2R1]: Penelitian ini hanya berfokus untuk pengembangan ternak sapi potong. AU jenis ternak lainnya (kelinci, ayam, dll) tidak diperhitungkan, sesuai dengan penelitian terdahulu dari Suhaema (2014), Yuniar (2016).

Faktor konversi AU (0.7) digunakan untuk perhitungan daya dukung (CC) ternak sapi potong dan indeks daya dukung hijauan (CCI). Secara lebih lengkap dijabarkan pada Tabel 4.

Commented [MP3]: fresh forage or dry matter?

Commented [BS4R3]: Jawabannya adalah fresh forage

Forage dry matter production (ton of DDM/year) = Potential of agricultural waste + Natural forage potential

Angka-angka dalam rumus adalah asumsi potensi limbah yang dihasilkan dari **produksi setiap jenis tanaman pangan**.

Commented [MP5]: fresh or dry matter?
Commented [BS6R5]: Fresh forage

Commented [MP7]: daya cerna 50%, maka pengalinya menjadi 100/50; bukan 50%

Commented [BS8R7]: Menghitung R berdasar penelitian terdahulu dari Suhaema (2014), Muta'ali (2015), Yuniar (2016). 2.5% X 50% = 0.0125 atau 1.25%

1.25% X 365 X 400 = 1,825 kg = 1.82 Ton DDM/year/AU

145	(R is minimum cattle feed requirements (1 AU) in tons of digestible dry matter	
146	for 1 year, 2.5% is minimum requirement for the number of forage rations (dry matter)	
147	on livestock weight, 50% is average value digestibility power of various types of plants,	
148	365 is number of days in 1 year, 400 kg is live weight of 1 AU of beef cattle in Semarang	
149	Regency). Equations that refer to Suhaema et al. (2014) and Yuniar et al. (2016).	
150	The results of the calculation of forage dry matter production were then used to	
151	determine the carrying capacity of beef cattle farms using the following equations	
152	(Suhaema et al., 2014; Yuniar et al., 2016).	
153	CC (AU) = <u>Forage Dry Matter Production (tons of DDM / year)</u> <u>Minimum Cattle Feed Requirement (tons of DDM / year / AU)</u> (Equation 4)	
154	The level of animal feed security in a region was measured by forage carrying	
155	capacity index. Carrying capacity index values were values that indicated the status of	
156	the availability of forage for beef cattle, namely: very critical (\leq 1), critical (>1-1.5),	
157	vulnerable (> 1.5-2), and safe (>2).	
158	Forage carrying capacity index = $\frac{\text{Carrying capacity (AU)}}{\text{Amount of Beef Cattle Population in 2017 (AU)}}$ (Equation 5)	
159		
160	Suitability of the Ecological Environment of Beef Cattle	
161	The research sample for the assessment of the suitability ecological environment	
162	of beef cattle farms in Semarang Regency was 19 points spreading throughout the sub-	
163	district area (Table 5). The determination of the sample was using purposive sampling	
164	technique. The purposive sampling technique was also called judgment sampling	
165	(Tongco, 2007), which was used to determine the sample based on research	
166	considerations. In each sub-district, one village was taken which had the most beef cattle	
167	population.	

Commented [MP9]: kalau daya cerna 50%; maka kebutuhannya menjadi dikali 100/50, bukan dikali 50%

Commented [BS10R9]: Sudah terjawab dalam komentar sebelumnya.

Commented [MP11]: Penghitungan AU menggunakan konversi 0.7 semua. Padahal populasi sapi ada yg muda dan anak2, seharusnya berdasarkan struktur populasi.

Commented [BS12R11]: Menurut Muta'ali (2015), Saputra (2016), faktor konversi untuk ternak sapi 0.7, mewakili populasi sapi yang terdiri dari induk betina, induk jantan, dan anak dengan berbagai tingkatan umur. Penelitian lebih detail untuk perhitungan AU ternak sapi potong (berdasar struktur populasi), memungkinkan untuk dilakukan di masa mendatang.

Lands available for the development of beef cattle farms are gardens, grasslands, open land, rice fields, and dryland agriculture. The fields are assumed to be able to be used for building housing for beef cattle. The assessment of land suitable for beef cattle farming with intensive maintenance patterns also takes into account several environmental parameters that influence the growth of livestock.

Land suitability assessment for beef cattle farms began by making a map of land 173 174 units. Maps of beef cattle land units referred to research of Rusmana et al. (2006) which 175 stated that there were four maps needed for overlaying, namely: land type maps, agroclimate maps, regional altitude maps, and slope maps. The final step was to make a 176 177 "suitability map of the ecological environment of beef cattle". The method used was by overlaying between land unit maps with environmental parameters that affected the 178 growth of beef cattle (Table 1). Land suitability was classified into 4 levels or strata, 179 180 namely: very suitable (S-1), quite suitable (S-2), according to marginal (S-3), and nonsuitable (NS) (Rusmana et al., 2006; Suhaema et al., 2014; Yuniar et al., 2016). The entire 181 process was created and analyzed using GIS software. 182

183

185

186

RESULTS

Leading Commodity

The leading commodity of livestock in an area was determined based on 187 comparative advantage (location quotient analysis) and competitive advantage (shift-188 share analysis). Beef cattle commodities that had LQ>1 and SS (+) values were the 189 leading commodities in the region. The interpretation of the value of LQ>1, was a base 190 or leading sector, beef cattle products (meat) were able to meet markets inside and outside 191 the region. The value of LQ<1 implied a non-base sector, livestock products had not been 192 able to meet markets inside and outside the region. The value of LQ=1 implied that the 193 194 sector was balanced with the reference region, livestock products were only able to meet markets in the area. The basis for calculating LQ analysis for livestock commodities was 195 livestock population data (Hendayana, 2003). Data bias in calculations could be 196 197 minimized by using a minimum 5 year data series (Table 2).

Shift share analysis started from the basic assumption that economic growth or 198 199 added value of an activity in a particular region was influenced by three main components which were interconnected with each other, namely: regional growth, sectoral growth, 200 and growth in share or regional competitiveness (Ciptayasa et al., 2016). Through these 201 three components, it could be seen which elements had encouraged regional economic 202 203 growth. The value of each component could be positive or negative, but the total number (shift-share) would always be positive if the regional economic growth were positive, and 204 vice versa. 205

The results of the LQ and SS analysis calculations for beef cattle commodities in Semarang Regency are shown in Table 3. Based on the results of the analysis conducted, the subdistrict areas becoming the beef cattle base sector (LQ> 1) were Bancak (4.93), **Commented [MP13]:** Data 5 tahun untuk LQ metodenya bagaimana? dirata2, dijumlah atau bagaimana?

Commented [BS14R13]: Perhitungan analisis LQ merupakan penjumlahan populasi masing-masing jenis ternak yang terdapat di Kabupaten Semarang (dari tahun 2013-2017).

Setelah data 5 tahun tersebut dijumlahkan, kemudian perhitungan LQ mengikuti pada persamaan 1.

Banyubiru (3.97), Ambarawa (3.92), Bringin (2.82), and Bawen (2.34). Beef cattle
keeping was concentrated in these areas or in the other words the economic density of
beef cattle was higher than that of in the other regions.

Beef cattle commodities that had competitive advantages were seen based on 212 positive shift-share (SS) values. Sub-districts with a positive SS value means 213 214 experiencing growth (competitiveness) related to keeping beef cattle. On the other hand, sub-districts with negative SS value means that the area is not growing (stagnant) and can 215 even experience setbacks. The results of the analysis conducted in Table 3 showed that 216 sub-districts with positive SS values were in Ungaran Barat (1.286), Banyubiru (0.47), 217 218 Pabelan (0.435), Bandungan (0.203), Bancak (0.077), Bringin (0.039), and Tengaran (0.026).219

The development of beef cattle farms in Semarang Regency is prioritized in the
sub-districts with LQ>1 and SS (+) values. The sub-districts are Bringin, Bancak, and
Banyubiru.

223

224

Carrying Capacity and Carrying Capacity Index of Forage

The potential availability of feed for beef cattle was seen based on the amount of forage dry matter production (tons of DDM) that could be produced by the region concerned. Dry matter is the total feed ingredients without water content, which can come from forages. The region with the largest forage dry matter production has the highest carrying capacity for the development of beef cattle farms, and vice versa. Forage is one of the production inputs that determine the success of livestock business because it directly affects productivity and efficiency (Yuniar *et al.*, 2016). Table 4 shows the

233 in Semarang Regency. Based on the results of the analysis conducted in Table 4, it was known that there 234 were three sub-districts with the highest production of forage dry matter, namely Bringin 235 (28,808.63 tons DDM), Pringapus (23,509.36 tons DDM), and Suruh (19,522.03 tons 236 DDM). Sub-district area with the lowest forage dry matter production was Bandungan 237 (4,327.55 tons DDM). The status of the availability of forage in Bandungan sub-district 238 was categorized as very critical (0.82), while in Tengaran sub-district it was categorized 239 as vulnerable (1.69). Therefore, these two sub-districts are not recommended for the 240 241 development of beef cattle farms. Sub-district areas with carrying capacity index value >2 (safe) means that the areas can be recommended for the development of beef cattle 242 farms. The advantage obtained by the area with this safe category is that farmers can 243 244 reduce the amount of production costs for beef cattle feed. 245 Semarang Regency had a carrying capacity for beef cattle farms of 122,725 AU. The population of beef cattle in 2017 was 33,911 AU, so the Semarang Regency area was 246 assumed to still be able to accommodate 88,814 AU beef cattle in 2018. 247 248 249 The Suitability of Ecological Environment of Beef Cattle The results of field measurements and secondary data collection conducted on 250 several environmental factors that influence the growth of beef cattle are shown in Table 251 5. The factors that limited the assessment of the suitability of the ecological environment 252 of beef cattle farming in Semarang Regency were the Temperature Humidity Index (THI) 253 and water pH. Annual rainfall (<4000 mm) and dry months (<8) were in the appropriate 254 255 category.

calculation of carrying capacity and carrying capacity index of forage for beef cattle farms

232

Commented [MP15]: penambahan cattle; tidak hanya berdasarkan populasi sapi yg ada, tetapi juga AU ruminansia lain (Table 2) yg menggunakan hijauan (kebau, kuda, domba/kambing)

Commented [BS16R15]: Asumsi penambahan sapi potong dalam penelitian ini berdasar perhitungan daya dukung (CC) pada Tabel 4, yang mengacu pada penelitian terdahulu dari Suhaema (2014) dan Yuniar (2016).

256	The suitability of the ecological environment map for beef cattle farms in
257	Semarang Regency is shown in Figure 1. The white area was an area that was not assessed
258	because it was designated as land for settlements, plantations, tourism, and forests. Based
259	on data in Figure 1, the level of suitability of the produced beef cattle ecological
260	environment was: very suitable (S-1), quite suitable (S-2), and according to marginal (S-
261	3). Non-suitable (NS) categories were not assessed because the area had a slope $>40\%$
262	(steep - very steep).

263 The symbol "p" indicated that there was a limiting factor in the area assessed. The limiting factors were the Temperature Humidity Index (THI) and the pH of the water for 264 265 beef cattle consumption (Table 5). Semarang Regency consists of 19 sub-districts. The development of beef cattle farms will be prioritized in sub-districts having LQ>1, positive 266 SS (+) value, and carrying capacity index of forage >2, namely Bringin, Bancak, and 267 268 Banyubiru. Banyubiru sub-district was not constrained by the limiting factors, while Bringin and Bancak were constrained by THI values that exceed the comfort zone for 269 growing cattle (>80). The extent suitability of the ecology of beef cattle farms from the 270 three priority sub-districts is shown in Table 6. 271

Based on the results of the analysis conducted in Table 6, the sub-districts with 272 the largest land area for the development of beef cattle farms with intensive production 273 systems were Bringin (2,758.86 Ha), Bancak (1,550.08 Ha), and Banyubiru (1,451.2 Ha). 274 The limiting factor in the form of temperature humidity index (THI) or water pH can be 275 minimized through the engineering design of livestock housing and the provision of 276 materials or neutralizing water acidity solvent (Yani et al., 2007; Sarwanto & Hendarto, 277 2011). Cattle with intensive production systems are generally more susceptible to heat 278 stress than cattle with extensive production systems. Efforts that can be done to reduce 279

Commented [MP17]: dalam menghitung forage, daerah putih seharusnya menjadi pengurang.

Commented [BS18R17]: Wilayah berwarna putih tidak diperhitungkan dalam penelitian ini karena:

 Merupakan penggunaan lahan yang tidak potensial untuk pengembangan peternakan sapi potong karena berupa lahan permukiman, industri & pariwisata, badan air, perkebunan, hutan,
 Mempunyai kemiringan lereng >40% (curam-sangat terjal), sehingga tidak memungkinkan mengambil hijauan (misal dari hutan) di wilayah ini.

280	heat stress in beef cattle include: adding shade around the housing location, install a
281	sprinkle tool or add straw that works to lower the surface temperature of the floor, regulate
282	feed, feed additives, and medicine, etc (Suhaema et al., 2014).
283	
284	DISCUSSION
285	Semarang Regency is a potential area for the development of beef cattle farming
286	because it has abundant natural resources in the form of land for livestock raising and
287	forage production. The mapping activity is based on the determination of leading
288	livestock commodities, and optimization of regional potential can be one of the
289	benchmarks in realizing sustainable development of beef cattle farms. The concept of
290	sustainable development is to meet the needs of the current generation, without sacrificing
291	future generations and this concept has become a reference for welfare in almost all
292	sectors, including the livestock sector (Wasike et al., 2011). The concept of sustainability
293	was widely debated throughout the world over the past few years (De Longe et al., 2016;
294	Keesstra et al., 2016; Rasmussen et al., 2017), not only concerning environmental and
295	social issues, but also discussing economic issues to gain certain market or commodity
296	advantages (Broom et al., 2013; Sabaghi et al., 2016). Sustainability assessment is
297	achieved by evaluating the relative contribution of each of the economic, environmental,
298	and social factors to the overall goal (Astier & García-Barrios, 2012). Sustainability
299	assessed in this study is economical and environmental sustainability for beef cattle
300	farms.
301	Economic sustainability was assessed based on the results of the analysis of the

leading commodity. The leading livestock commodity in an area was determined basedon the comparative advantage (LQ analysis) and competitive advantage (SS analysis).

304 The concept of comparative advantage is economic feasibility. Commodities that have a comparative advantage (LQ>1) show that the commodity (beef cattle) is supported by the 305 existence of adequate natural resources so that the population level is higher than in other 306 regions (Mulyono & Munibah, 2016). Beef cattle commodity in the base sub-district is a 307 prominent or dominant livestock business compared to the other livestock businesses, so 308 309 the effort for future development is easier (Yuniar et al., 2016; Mulyono & Munibah, 2016). On the other hand, the concept of competitive advantage is financial feasibility. 310 Beef cattle commodities are keeping in effective and efficient ways so that they have 311 competitiveness from the aspects of quality, quantity, continuity, and price (Muta'ali, 312 313 2015; Mulyono & Munibah, 2016). The results presented in Table 3 show that the Bringin, Bancak, and Banyubiru sub-districts are regions with a leading commodity of 314 beef cattle. Accordingly, the three sub-districts are a priority for the development of beef 315 316 cattle farms in Semarang Regency.

317 Environmental sustainability for beef cattle farms was assessed based on the results of the carrying capacity analysis and carrying capacity index of forage, and 318 analysis of the suitability of the ecological environment of beef cattle. Carrying capacity 319 320 is defined as the maximum population that can be supported by an ecosystem from time to time. The carrying capacity of an area is not static, there is a kind of reciprocal 321 322 relationship between organism and their environments. The carrying capacity of a region can vary for different species and change over time due to various factors (Taiwo & 323 Feyisara, 2017). Regional carrying capacity for livestock development is the size of the 324 region's ability to support the livelihoods of a number of livestock populations optimally 325 through the role of forage availability. Based on the results of the analysis presented in 326

Table 4, it is known that the Bringin, Bancak, and Banyubiru sub-districts have a foragecarrying capacity index in the safe category.

The production systems of beef cattle that is often found in Semarang Regency is 329 an intensive production system. Beef cattle are able to show optimal physical conditions 330 if they have superior genetic traits, and are supported by the suitability of their ecological 331 332 environment (Suhaema et al., 2014). Animal ecology is the study of the interactions between animals and their environments. Environmental factors tend to have a greater 333 effect on the production and productivity of livestock (Sumarto & Koneri, 2016). Some 334 environmental factors that influence the growth of beef cattle with intensive production 335 336 systems are: soil type, length of dry season, altitude, slope (Rusmana et al., 2006), temperature and relative humidity, rainfall, and water pH (Herbut & Angrecka, 2012; 337 Suhaema et al., 2014; Yuniar et al., 2016; Eirich, 2018). 338

339 The results of the analysis in Table 5 show that environmental factors that are limiting the development of beef cattle farms in Semarang Regency are air temperature 340 and humidity, as well as pH of water used by livestock for drinking. The relationship 341 between the amount of air temperature and humidity is called the Temperature Humidity 342 Index (THI). If THI exceeds the threshold (>80), it can cause stress or heat stress in beef 343 cattle (Eirich, 2018). Long-term heat stress has an impact on increasing drinking water 344 consumption, increasing urine volume, and decreasing feed consumption. The direct 345 effect of heat stress on livestock production causes a decrease in the productivity of beef 346 cattle. This effect is due to the increasing need for livestock maintenance during stress 347 conditions (Berman, 2005). Furthermore, the THI value that exceeds the threshold will 348 decrease the daily body weight gain, increase the depletion of the thickness of meat fat, 349 and increase the potential for disease occurrence, especially in male cattle (Nardone et 350

al., 2010). Hydrogen potential (pH) characterizes the balance between acidic and alkaline
solvent in water. If the pH of drinking water for beef cattle is below the quality standard
or acid (<6,5), the water becomes sour and can cause physiological and digestive
disorders in livestock. On the other hand, if the pH of water is too alkaline (>9), the water
becomes bitter and causes a decrease in the consumption of drinking water which has an
impact on decreasing livestock productivity (Sarwanto & Hendarto, 2011).

The synthesis of the assessment results of leading commodity, calculation of carrying capacity and carrying capacity index of forage, as well as land suitability assessment, shows that there are three sub-districts (Bringin, Bancak, and Banyubiru) which have high priorities for the development of beef cattle farms in Semarang Regency.

361

362

CONCLUSION

363 Planning for the development of beef cattle farming with intensive production systems in Semarang Regency is recommended in three sub-districts, namely: Bringin, 364 Bancak, and Banyubiru. The assumption of forage production produced from these three 365 sub-districts reaches 55,693.72 tons of DDM. The total carrying capacity for beef cattle 366 farms is 30,601 AU. The total land area suitable for beef cattle farming in the three priority 367 sub-districts is 5,760.141 Ha. The development of beef cattle farms in the priority sub-368 369 districts is expected to increase livestock production and productivity. Governments, communities (cattleman), and the private sector (investors) must coordinate and 370 cooperate with each other so that the development of sustainable beef cattle farms can be 371 372 achieved.

373

374

CONFLICT OF INTEREST

Commented [MP19]: CC semarang 33,911 AU; sementara 3 kecamatan 30,601 AU (????)

Commented [BS20R19]: angka 33,911 bukan CC, tapi merupakan jumlah seluruh populasi sapi potong di Kabupaten Semarang (dalam AU) pada tahun 2017. Sementara estimasi CC ternak sapi potong pada tahun 2018 di tiga wilayah prioritas pengembangan (Bringin, Bancak, & Banyubiru) yaitu 30,601 AU. Angka yang dihasilkan tersebut berdasar hasil perhitungan (equation 4 dan Tabel 4).

Commented [MP21]: perhitungan CC berdasarkan struktur populasi sapi

tambahan sapi dikoreksi dengan populasi ruminansia yang ada

Commented [BS22R21]: Pada bagian kesimpulan, CC yang dijelaskan sebesar 30,601 AU. Ini merupakan CC dari ketiga wilayah prioritas pengembangan ternak sapi potong (Bringin, Bancak, Banyubiru).

Perhitungan CC mengikuti persamaan 4.

Commented [MP23]: Di kesimpulan land suitable 5760 jika ditanami jagung (penghasil limbah terbanyak di persamaan 1), produksinya hanya:

5760*3*0.5= 8640 ton /1.82 = 4747 AU. Jauh dibawah kesimpulan 30601 AU

Commented [BS24R23]: Berdasarkan hasil perhitungan pada Tabel 6, luas lahan yang sesuai untuk pengembangan peternakan sapi potong (di tiga wilayah prioritas) yaitu 5,760.1 Ha. Untuk menghitung daya dukung (CC) tidak bisa hanya menggunakan asumsi potensi limbah tanaman jagung. CC dihitung menggunakan persamaan 4.

Sebelum menghitung CC, produksi bahan kering hijauan (Forage dry matter production/F dmp) perlu dihitung. F dmp merupakan hasil penjumlahan antara potensi limbah pertanian dan potensi hijauan alami (satuan ton).

375	The authors confirm that there are no conflicts of interest with any financial,
376	personal, or other relationships with other people or organization related to the material
377	discussed in the manuscript.
378	
379	REFERENCES
380	
381	Agus, A. & T. S. M. Widi. 2018. Current situation and future prospects for beef cattle
382	production in Indonesia - A review. Asian-Australas. J. Anim. Sci. 31:976-983.
383	https://doi.org/10.5713/ajas.18.0233
384	Ariningsih, E. 2014. Performance of national beef self-sufficiency policy. Forum
385	PenelitianAgroEkonomi32:137-156.
386	https://doi.org/10.21082/fae.v32n2.2014.137-156
387	Astier, M., L. G. Barrios, Y. G. Miyoshi, Carlos. E. G. Esquivel, & O. R. Masera.
388	2012. Assessing the sustainability of small farmer natural resource management
389	systems. A critical analysis of the MESMIS program 1995-2010. Ecology and
390	Society 17:25. https://doi.org/10.5751/ES-04910-170325
391	Atanga, N. L., A. C. Treydte, & R. Birner. 2013. Assessing the sustainability of
392	different small-scale livestock production systems in the Afar Region, Ethiopia.
393	Land. 2:726-755. https://doi.org/10.3390/land2040726
394	Berman, A. 2005. Estimates of heat stress relief needs for Holstein dairy cows. Journal
395	Animal Science 83:1377-1384. https://doi.org/10.2527/2005.8361377x
396	BPS Kabupaten Semarang. 2018. Kabupaten Semarang dalam Angka. Badan Pusat
397	Statistik, Semarang.

402	Ciptayasa, I. N., Hermansyah, & M. Yasin. 2016. Analisis potensi ternak kambing di
403	Kabupaten Lombok Barat. Jurnal Ilmu dan Teknologi Peternakan Indonesia
404	2:110-115. https://doi.org/10.29303/jitpi.v2i1.20
405	Darnhofer, I., J. Fairweather, & H. Moller. 2010. Assessing a farm's sustainability:
406	insights from resilience thinking. Int. J. Agric. Sustain. 8:186-198.
407	https://doi.org/10.3763/ijas.2010.0480
408	DeLonge, M. S., A. Miles, & L. Carlisle. 2016. Investing in the transition to sustainable
409	agriculture. Environ. Sci. Policy. 55:266-273.
410	https://doi.org/10.1016/j.envsci.2015.09.013
411	Eirich, R. 2018. Beef cattle temperature humidity chart. University of Nebraska.
412	Available at: https://bqa.unl.edu/heat-stress-resources. [28 December 2018].
413	Herbut, P. & S. Angrecka. 2012. Forming of temperature-humidity index (THI) and
414	milk production of cows in the free-stall barn during the period of summer heat.
415	Nim. Sci. Pap. Rep. 30:363-372.
416	Kadarsih, S. 2004. Performans sapi Bali berdasarkan ketinggian tempat di daerah
417	transmigrasi Bengkulu. Jurnal Ilmu-Ilmu Pertanian Indonesia 6:50-56.
418	Keesstra, S. D., J. Bouma, J. Wallinga, P. Tittonell, P. Smith, A. Cerda, L.
419	Montararella, J. N. Quinton, Y. Pachepsky, W. H. Putten, R. D. Bardgett, S.
420	Moolenaar, G. Mol, B. Jansen, & L. O. Fresco. 2016. The significance of soils
421	and soil science towards realization of the United Nations sustainable
422	development goals. Soil 2:111-128. https://doi.org/10.5194/soil-2-111-2016

Broom, D. M., F. A. Galindo, & E. Murgueitio. 2013. Sustainable, efficient livestock

280: 20132025. https://doi.org/10.1098/rspb.2013.2025

production with high biodiversity and good welfare for animals. Proc. R. Soc. B.

423	Kementan. 2016. Outlook Daging Sapi. Kementerian Pertanian Republik Indonesia,
424	Jakarta.
425	Mulyono, J. & K. Munibah. 2016. Pendekatan location quotient dan shift share analisis
426	dalam penentuan komoditas unggulan tanaman pangan di Kabupaten Bantul.
427	Informatika Pertanian 25:221-230. https://doi.org/10.21082/ip.v25n2.2016.p221-
428	230
429	Muta'ali, L. 2015. Teknik Analisis Regional untuk Perencanaan Wilayah, Tata Ruang,
430	dan Lingkungan. Badan Penerbit Fakultas Geografi UGM, Yogyakarta.
431	Nardone, A., B. Ronchi, N. Lacetera, M. S. Ranieri, & U. Bernabucci. 2010. Effects
432	of climate changes on animal production and sustainability of livestock systems.
433	Livest. Sci. 130:57-69. https://doi.org/10.1016/j.livsci.2010.02.011
434	Nuhung, I. A. 2015. Kinerja, kendala, dan strategi pencapaian swasembada daging sapi.
435	Forum Penelitian Agro Ekonomi 33:63-80.
436	https://doi.org/10.21082/fae.v33n1.2015.63-80
436 437	https://doi.org/10.21082/fae.v33n1.2015.63-80 Paly, B., A. Natsir, S. Rasyid, & I. M. Fahmid. 2013. Interconnectivity multi criteria
436 437 438	https://doi.org/10.21082/fae.v33n1.2015.63-80 Paly, B., A. Natsir, S. Rasyid, & I. M. Fahmid. 2013. Interconnectivity multi criteria for sustainable development of beef cattle. International Journal of Scientific and
436 437 438 439	https://doi.org/10.21082/fae.v33n1.2015.63-80 Paly, B., A. Natsir, S. Rasyid, & I. M. Fahmid. 2013. Interconnectivity multi criteria for sustainable development of beef cattle. International Journal of Scientific and Technology Research 2:115-121.
436 437 438 439 440	https://doi.org/10.21082/fae.v33n1.2015.63-80Paly, B., A. Natsir, S. Rasyid, & I. M. Fahmid. 2013. Interconnectivity multi criteriafor sustainable development of beef cattle. International Journal of Scientific andTechnology Research 2:115-121.Parmawati, R., Mashudi, A. Budiarto, Suyadi, & A. S. Kurnianto. 2018. Developing
436 437 438 439 440 441	https://doi.org/10.21082/fae.v33n1.2015.63-80Paly, B., A. Natsir, S. Rasyid, & I. M. Fahmid. 2013. Interconnectivity multi criteriafor sustainable development of beef cattle. International Journal of Scientific andTechnology Research 2:115-121.Parmawati, R., Mashudi, A. Budiarto, Suyadi, & A. S. Kurnianto. 2018. Developingsustainable livestock production by feed adequacy map : A case study in Pasuruan,
436 437 438 439 440 441 442	https://doi.org/10.21082/fae.v33n1.2015.63-80Paly, B., A. Natsir, S. Rasyid, & I. M. Fahmid. 2013. Interconnectivity multi criteriafor sustainable development of beef cattle. International Journal of Scientific andTechnology Research 2:115-121.Parmawati, R., Mashudi, A. Budiarto, Suyadi, & A. S. Kurnianto. 2018. Developingsustainable livestock production by feed adequacy map : A case study in Pasuruan,Indonesia. Trop. Anim. Sci. J. 41:67-76. https://doi.org/10.5398/tasj.2018.41.1.67
436 437 438 439 440 441 442 443	https://doi.org/10.21082/fae.v33n1.2015.63-80Paly, B., A. Natsir, S. Rasyid, & I. M. Fahmid. 2013. Interconnectivity multi criteria for sustainable development of beef cattle. International Journal of Scientific and Technology Research 2:115-121.Parmawati, R., Mashudi, A. Budiarto, Suyadi, & A. S. Kurnianto. 2018. Developing sustainable livestock production by feed adequacy map : A case study in Pasuruan, Indonesia. Trop. Anim. Sci. J. 41:67-76. https://doi.org/10.5398/tasj.2018.41.1.67 Pasandaran, E., Haryono, & Suherman. 2014. Memperkuat Daya Saing Produk
436 437 438 439 440 441 442 443 444	 https://doi.org/10.21082/fae.v33n1.2015.63-80 Paly, B., A. Natsir, S. Rasyid, & I. M. Fahmid. 2013. Interconnectivity multi criteria for sustainable development of beef cattle. International Journal of Scientific and Technology Research 2:115-121. Parmawati, R., Mashudi, A. Budiarto, Suyadi, & A. S. Kurnianto. 2018. Developing sustainable livestock production by feed adequacy map : A case study in Pasuruan, Indonesia. Trop. Anim. Sci. J. 41:67-76. https://doi.org/10.5398/tasj.2018.41.1.67 Pasandaran, E., Haryono, & Suherman. 2014. Memperkuat Daya Saing Produk Pertanian. Perspektif Daya Saing Wilayah. IAARD Press, Jakarta.

446 practitioner-researcher divide: Indicators to track environmental, economic, and

447	sociocultural sustainability of agricultural commodity production. Glob. Environ.
448	Change 42:33-46. https://doi.org/10.1016/j.gloenvcha.2016.12.001
449	Rouf, A. A., Daryanto, & A. Fariyanti. 2014. Daya saing usaha sapi potong di
450	Indonesia: Pendekatan domestic resources cost. Wartazoa 24:97-107.
451	https://doi.org/10.14334/wartazoa.v24i2.1053
452	Rusmana, N., Atmiyati, & Ridwan. 2006. Pembuatan peta kesesuaian ekologis untuk
453	ternak ruminansia pada skala tinjau. Pusat Penelitian dan Pengembangan
454	Peternakan, Bogor. pp. 175-178.
455	Sabaghi, M., C. Mascle, P. Baptiste, & R. Rostamzadeh. 2016. Sustainability
456	assessment using fuzzy-inference technique (SAFT): A methodology toward
457	green products. Expert Syst. Appl. 56:69-79.
458	https://doi.org/10.1016/j.eswa.2016.02.038
459	Santos, S. A., H. P. de Lima, Silvia. M. F. S. Massruha, Urbano. G. P. de Abreu, W.
460	M. Tomas, S. M. Salis, E. L. Cardoso, M. D. de Oliveira, Marcia. T. S. Soares,
461	A. dos Santos Jr, L. O. F. de Oliveira, D. F. Calheiros, S. M. A. Crispim, B.
462	M. A. Soriano, C. O. G. Amancio, A. P. Nunes, & L. A. Pellegrin. 2017. A
463	fuzzy logic-based tool to assess beef cattle ranching sustainability in complex
464	environmental systems. Journal of Environmental Management 198:95-106.
465	https://doi.org/10.1016/j.jenvman.2017.04.076
466	Saputra, J. I., Liman, & Y. Widodo. 2016. Analisis potensi pengembangan peternakan
467	sapi potong di Kabupaten Pesawaran. Jurnal Ilmiah Peternakan Terpadu 4:115-
468	123.
469	Sarwanto, D. & E. Hendarto. 2011. Analisis kualitas air minum sapi perah rakyat di
470	Kabupaten Banyumas Jawa Tengah. Med. Pet. 13:1-5.

472	Suhaema, E., Widiatmaka, & B. Tjahjono. 2014. The regional development of beef
473	cattle based on physical and forage land suitability in Cianjur Regency. Tanah
474	Lingkungan 16:53-60. https://doi.org/10.29244/jitl.16.2.53-60
475	Sumarto, S. & R. Koneri. 2016. Ekologi Hewan. Cv. Patra Media Grafindo, Bandung.
476	Sutanto, A. & L. Hendraningsih. 2011. Analisis keberlanjutan usaha sapi perah di
477	Kecamatan Ngantang Kabupaten Malang. Gamma 7:1-12.
478	Syarifuddin, H. 2009. Indeks keberlanjutan integrasi tanaman dengan ternak (crop
479	livestock system) di Kuamang Kuning. Jurnal Ilmiah Ilmu-Ilmu Peternakan
480	XII:41-49.
481	Taiwo, F. J. & O. O. Feyisara. 2017. Understanding the concept of carrying capacity
482	and its relevance to urban and regional planning. Journal of Environmental Studies
483	3:1-5.
484	Thornton, P. K. 2010. Livestock production: recent trends, future prospects.
485	Philosophical Transactions of the Royal Society B: Biological Sciences.
486	365:2853-2867. https://doi.org/10.1098/rstb.2010.0134
487	Tongco, M. D. C. 2007. Purposive sampling as a tool for informant selection.
488	Ethnobotany Research and Applications 5:147-158.
489	https://doi.org/10.17348/era.5.0.147-158
490	Wasike, C. B., T. M. Magothe, A. K. Kahi, & K. J. Peters. 2011. Factors that influence
491	the efficiency of beef and dairy cattle recording system in Kenya: A SWOT-AHP
492	analysis. Trop. Anim. Health Prod. 43:141-152. https://doi.org/10.1007/s11250-

493 <u>010-9666-3</u>

494	Yuniar, P. S., A. M. Fuah, & Widiatmaka. 2016. Carrying capacity and priority region
495	for development of beef cattle production in South Tangerang. Jurnal Ilmu
496	Produksi dan Teknologi Hasil Peternakan 4:64-268.
497	https://doi.org/10.29244/jipthp.4.1.264-268
498	Zakiah, A. Saleh, & K. Matindas. 2017. Gaya kepemimpinan dan perilaku komunikasi
499	GPPT dengan kapasitas kelembagaan sekolah peternakan rakyat di Kabupaten
500	Muara Enim. Jurnal Penyuluhan 13:133-142.
501	https://doi.org/10.25015/penyuluhan.v13i2.14977
502 503	
504	
505	

Table 1. Environmental parameters that influence the growth of beef cattle with intensive maintenance patterns

Parameter	Order of environme	ental suitability of beel attle
	S (Suitable)	N (Unsuitable)
Temperature Humidity Index (THI)	70-80	<70, >80
Water availability (w)		
Dry month (<100 mm rainfall/month)	<8 months	>8 months
Rainfall/year (mm)	< 4,000	> 4,000
The existence of a water source	Available	Not Available
Water Quality (q)		
pH water	6.5-9.0	<6.5; >9.0
Slope (%)	<40	>40

508 Source: (Suhaema et al., 2014; Yuniar et al., 2016).

509 Table 2. Growth of livestock populations in Semarang Regency

T			Number (head))	
Type of investock	2013	2014	2015	2016	2017
Pig	32,640	17,300	18,431	15,971	15,850
Goat	197,029	136,999	123,294	117,003	117,373
Sheep	290,764	191,346	172,211	167,374	162,694
Rabbit	20,352	9,375	10,462	11,629	11,916
Horse	1,711	497	515	524	581
Beef cattle	51,901	53,135	49,172	46,238	48,444
Dairy cows	22,308	27,609	25,780	25,690	25,557
Buffalo	2,941	3,168	2,614	2,629	2,589
Laying Chicken	1,821,286	1,813,049	1,452,019	1,331,528	1,572,463
Broiler Chicken	12,046,319	7,501,700	10,144,846	10,754,602	11,812,311
Chicken Breed	819,067	860,408	818,568	861,989	823,226
Duck	206,882	92,963	80,801	127,859	125,261
Quail	122,200	238,930	227,737	176,730	142,856
Muscovy Duck	102,966	72,227	63,889	61,963	54,402

510 Source: (BPS Kabupaten Semarang, 2018).

NO	CUD DISTRICT	BEEF CATTLE					
NU	SUB-DISTRICT	LQ	RS	PS	DF	SS	
1	Getasan	0.63	-0.052	-0.014	-0.359	-0.425	
2	Tengaran	0.55	-0.052	-0.014	0.092	0.026	
3	Susukan	1.11	-0.052	-0.014	-0.137	-0.203	
4	Kaliwungu	1.22	-0.052	-0.014	0.048	-0.018	
5	Suruh	0.88	-0.052	-0.014	-0.213	-0.279	
6	Pabelan	1.75	-0.052	-0.014	0.501	0.435	
7	Tuntang	0.28	-0.052	-0.014	-0.689	-0.755	
8	Banyubiru	3.97	-0.052	-0.014	0.536	0.47	
9	Jambu	0.42	-0.052	-0.014	-0.417	-0.483	
10	Sumowono	0.95	-0.052	-0.014	-0.234	-0.3	
11	Ambarawa	3.92	-0.052	-0.014	0.006	-0.06	
12	Bandungan	1.01	-0.052	-0.014	0.269	0.203	
13	Bawen	2.34	-0.052	-0.014	0.0009	-0.0651	
14	Bringin	2.82	-0.052	-0.014	0.105	0.039	
15	Bancak	4.93	-0.052	-0.014	0.143	0.077	
16	Pringapus	1.38	-0.052	-0.014	-0.312	-0.378	
17	Bergas	0.77	-0.052	-0.014	-0.106	-0.172	
18	Ungaran Barat	0.77	-0.052	-0.014	1.352	1.286	
19	Ungaran Timur	0.3	-0.052	-0.014	-0.62	-0.686	

Table 3. Value of LQ and SS of beef cattle in Semarang Regency in 2018

shift.

514

SD	Вср 2017	Bcp 2017 (AU)	Rm	R Bc	F Dmp	CC	CCI	AV
А	b	с	d	$e = c \ge d$	f	g = f/d	h = g/c	
Getasan	2,085	1,459.5	1.82	2,656.29	7,802.45	4,287.1	2.94	S
Tengaran	4,881	3,416.7	1.82	6,218.39	10,526.78	5,783.9	1.69	V
Susukan	2,905	2,033.5	1.82	3,700.97	15,301.29	8,407.3	4.13	S
Kaliwungu	4,650	3,255	1.82	5,924.1	13,231.72	7,270.2	2.23	S
Suruh	3,335	2,334.5	1.82	4,248.79	19,522.03	10,726.4	4.59	S
Pabelan	4,251	2,975.7	1.82	5,415.77	12,690.04	6,972.5	2.34	S
Tuntang	211	147.7	1.82	268.81	9,458.6	5,197.03	35.19	S
Banyubiru	3,840	2,688	1.82	4,892.16	11,493.54	6,315.1	2.35	S
Jambu	741	518.7	1.82	944.03	8,816.47	4,844.2	9.34	S
Sumowono	2,228	1,559.6	1.82	2,838.47	10,921.51	6,000.8	3.85	S
Ambarawa	1,661	1,162.7	1.82	2,116.11	4,935.95	2,712.05	2.33	S
Bandungan	4,140	2,898	1.82	5,274.36	4,327.55	2,377.8	0.82	VC
Bawen	2,717	1,901.9	1.82	3,461.46	7,241.14	3,978.6	2.09	S
Bringin	2,349	1,644.3	1.82	2,992.63	28,808.63	15,828.9	9.63	S
Bancak	2,820	1,974	1.82	3,592.68	15,391.55	8,456.9	4.28	S
Pringapus	1,333	933.1	1.82	1,698.24	23,509.36	12,917.2	13.84	S
Bergas	1,828	1,279.6	1.82	2,328.87	7,593.47	4,172.2	3.26	S
Ungaran Barat	2,105	1,473.5	1.82	2,681.77	5,400.34	2,967.2	2.01	S
Ungaran Timur	364	254.8	1.82	463.74	6,387.01	3,509.3	13.77	S
Jumlah	48,444	33,910.8		61,717.64	223,359.43	122,724.7	120.68	

Table 4. Carrying capacity and carrying capacity index of forage in Semarang Regency
 in 2018

SD = sub-district, Bcp = beef cattle population, Bcp (AU) = beef cattle population in livestock units, Rm =
 minimum feed requirements for beef cattle (ton DDM /year /AU), R bc = beef cattle feed requirements (tons /DDM/year), F Dmp = forage dry matter production (ton DDM), CC = carrying capacity (AU), CCI
 carrying capacity index of forage, AV = forage availability status; S = safe, V = vurnerable, VC = very critical.

524

525

Subdistrict	Sample (Village)	Tem perat ure (°C)	Tem perat ure (°F)	Humidit y (%)	THI	Rainfall (mm/year)	Dry months	Water pH
Getasan	Samirono	31	87.8	51	79.77	3,403	3	7
Tengaran	Duren	30	86	65	80.61	2,591	3	5.8
Susukan	Timpik	32	89.6	57	82.13	2,618	3	6.5
Kaliwungu	Mukiran	32	89.6	56	81.95	2,618	0	5.5
Suruh	Dadapayam	32	89.6	65	83.52	2,680	4	6.3
Pabelan	Terban	32	89.6	58	82.3	1,927	4	6.5
Tuntang	Tlumpakan	35	95	46	84.01	2,676	0	7
Banyubiru	Wirogomo	30	86	51	78.45	2,066	3	8
Jambu	Genting	31	87.8	49	79.44	2,489	0	6.2
Sumowono	Candi Garon	28	82.4	58	76.76	1,383	4	6.3
Ambarawa	Pasekan	30	86	51	78.45	1,291	3	6.8
Bandungan	Candi	29	84.2	54	77.57	1,291	0	6.7
Bawen	Polosiri	35	95	49	84.62	2,061	4	6.1
Bringin	Banding	35	95	54	85.64	2,211	3	7.9
Bancak	Pucung	33	91.4	58	83.68	2,091	0	6.5
Pringapus	Penawangan	32	89.6	56	81.95	2,290	3	4
Bergas	Munding	32	89.6	48	80.56	3,802	2	5.9
Ungaran Barat	Gogik	32	89.6	49	80.74	3,316	0	7.7
Ungaran Timur	Kawengen	33	91.4	51	82.4	3,316	0	6.6

Table 5. Results of measurements of environmental factors that influence the growth of
 beef cattle in Semarang Regency in 2018

 $THI = T - \{0.55 (1-RH / 100) (T-58)\},$ where T = temperature (°F), RH = relative humidity.

Table 6. Extent of suitability of ecological environment map of beef cattle farms in
 Bancak, Banyubiru, and Bringin sub-districts

NO	CURDICEDICE	Extent of Land Suitability (Ha)						Tatal
NO	SUDDISTRICT	S 1	S1p	S2	S2p	S 3	S3p	Totai
1	Bancak	0	40.26	0.06	1,342.25	0	167.51	1,550.079
2	Banyubiru	17.10	0	1,434.10	0	0	0	1,451.2
3	Bringin	0	36.01	0	2,327.42	0	395.43	2,758.862
	TOTAL	17.10	76.27	1,434.16	3,669.67	0	562.94	5,760.141

 $\overline{S1}$ = very suitable, S2 = quite suitable, S3 = according to marginal, P = limiting factor in the form of 535 temperature humidity index (THI).

TASJ-1928

538

 $\label{eq:Figure 1.} Figure 1. The suitability of ecological environment map for beef cattle farms in$

540 Semarang Regency

Tropical Animal Science

Faculty of Animal Science Building, IPB University (Bogor Agricultural University) JIn. Agatis, Kampus IPB Darmaga, Bogor Indonesia 16680 Phone/Fax: +62 251 8421692 E-mail: mediapeternakan@apps.ipb.ac.id; mediapeternakan@yahoo.co.id Website: http://journal.ipb.ac.id/index.php/tasj

Bogor, February 4, 2020

Subject: Final Decision of Your Manuscript

Dear B. Santoso & B. W. H. E. Prasetiyono:

I am pleased to inform you that your article submitted to Tropical Animal Science Journal, entitled: "The Regional Analysis of Beef Cattle Farm Development in Semarang Regency" has been approved to be published in Tropical Animal Science Journal Vol. 43 No. 1 Year 2020 (March Edition). Please find the PROOF of your manuscript in the attached file. If there are still any corrections in the manuscript, please give us the revised article before February 11, 2020.

The author(s) are obliged to:

- a) Pay publication fee for IDR 2,000,000.
- b) Please pay the invoice through BRI KCP KAMPUS IPB No. 0595-01-005208-53-3, o.b. Media Peternakan, SWIFT CODE: BRINIDJA
- c) Please pay the invoice before February 18, 2020, and e-mail the scanned wire transfer slip to mediapeternakan@apps.ipb.ac.id or mediapeternakan@yahoo.co.id.

The corresponding author will receive one exemplar journal.

Thank you for your article submission, and we are looking forward to receive your incoming articles.

Yours sincerely,

Prof. Dr. Ir. Komang G. Wiryawan Chief Editor Tropical Animal Science Journal http://journal.ipb.ac.id/index.php/tasj

Tropical Animal Science

INVOICE

Invoice number	:	INV-20005
Invoice date	:	November 4, 2020
Due date	:	November 18, 2020

Bill to:

B. Santoso & B. W. H. E. Prasetiyono

Descriptian	Edition	Quantity	Rate (IDR)	Amount (IDR)
Article publishing charges	Tropical Animal	1	2,000,000	2,000,000
	Science Journal			
Title:	Vol. 43 No. 1			
The Regional Analysis of Beef	Year 2020			
Cattle Farm Development in				
Semarang Regency				
Total				2,000,000

Please pay the invoice to: BRI KCP KAMPUS IPB Acct. No. 0595-01-005208-53-3 SWIFT CODE: BRINIDJA Address: Kampus Institut Pertanian Bogor, Dramaga, Bogor, Indonesia

Recipient: Media Peternakan Faculty of Animal Science Building, IPB University (Bogor Agricultural University) Jln. Agatis, Kampus IPB Darmaga, Bogor Indonesia 16680 Phone/Fax: +62 251 8421692

Please e-mail the scanned wire transfer slip to: mediapeternakan@apps.ipb.ac.id or mediapeternakan@yahoo.co.id

0101 0101053 2111 44 05/02/20 10:49:04 CASH IDR 2,000,000.00 Dr 0595-01-005208-53-3 MEDIA PETERNAKAN IDR 2,000,000 Cr Charges IDR 0.00

REK SMA ENYETOR

apab

atugas b

- 0595-01-005208-53-3 MEDIA PETERNAKAN
- BUDI
- IDR 5,000.00

Teller

DISAHKAN

TELLER

BANK BRI

05/02

TTD. PENYETOP

Melayani Dengan Setulus Bat

05/02/2020

TANDA BUKTI PENYETORAN

The Regional Analysis of Beef Cattle Farm Development in Semarang Regency

B. Santoso^a & B. W. H. E. Prasetiyono^{b,*}

^aMaster Program in Environmental Science, Diponegoro University
 ^bFaculty of Animal and Agricultural Sciences, Diponegoro University
 Jl. Prof. Soedarto, Kampus Tembalang Semarang 50275, Indonesia
 *Corresponding author: bambangwhep63@gmail.com
 (Received 10-06-2019; Revised 20-09-2019; Accepted 23-09-2019)

ABSTRACT

One of the reasons for the low production and productivity of beef cattle in Indonesia is that information on the allocation of livestock areas development is not yet clear. This study aimed to determine the priority areas for developing beef cattle farm in Semarang Regency based on the concept of sustainability. Sustainability was analyzed through the determination of leading commodities (analysis of Location Quotient and Shift Share), optimization of regional potential (analysis of carrying capacity and carrying capacity index of forage, and assessment of suitability of ecological environment of beef cattle). The process of spatial analysis used GIS software. Comprehensive planning for the development of beef cattle farm was directed in three sub-districts, namely: Bringin, Bancak, and Banyubiru. The results of the analysis showed that the three subdistricts were beef cattle base areas (LQ>1), had business growth (positive SS), and had a safe status for forage availability (>2). Other results showed that the carrying capacity for beef cattle farms in Bringin sub-district was 15,829 AU, Bancak was 8,457 AU, and Banyubiru was 6,315 AU. The land area suitable for beef cattle farm from the three priority sub-districts was 5,760.141 Ha. It can be concluded that the development of beef cattle farm in Semarang Regency is focused on three priority subdistricts, namely: Bringin, Bancak, and Banyubiru. The results of this study can be an input for local governments in determining the direction and pattern of beef cattle farm development to be more sustainable.

Keywords: beef cattle, regional analysis, sustainability of livestock sector

INTRODUCTION

The directed and sustainable development of the livestock sector is believed to be able to contribute positively to regional development. Along with the increase in population, there is an increasing demand for food from animal protein, such as beef. Beef consumption in developing countries such as in Indonesia tends to increase every year (Thornton, 2010; Agus & Widi, 2018), however the population of beef cattle in some regions actually decreases due to the complexity of technical and non-technical problems (Paly et al., 2013; Ariningsih, 2014; Nuhung, 2015). There is a gap between demand and supply of beef products, which is increasingly widening. Many factors causing this gap, including the domestic production of beef cattle is still low because information on the allocation of livestock development areas is not yet clear.

Cattle farmings in Indonesia are categorized as unsustainable (Syarifuddin, 2009; Sutanto & Hendraningsih, 2011). The number of available beef cattle has not been able to meet the high meat consumption of people. The consumption of beef in 2020 is estimated to reach 3.36 kg per capita per year, but beef production is still not able to fulfill it; there is a deficit in beef supply by 198,350 tons (Kementan, 2016; Agus & Widi, 2018). Most of the beef production in Indonesia, 78% comes from traditional livestock, 5% from imports, and 17% from live livestock imports, especially from Australia (Zakiah *et al.*, 2017). Imports of beef are indeed relatively larger compared to the other types of meat imports, contributing 21.44% to the total import value of livestock, while the import value of livestock is 18.29% of the total value of agricultural imports nationally (Rouf *et al.*, 2014).

Policy efforts to reduce beef imports must be studied, by strengthening domestic production that is beneficial for farmers (Pasandaran *et al.*, 2014). The development of beef cattle farms in potential areas is an effort to strengthen meat production in the country so that the implementation must be carried out with a comprehensive assessment. Semarang Regency is a region in Central Java Province that has the potential to develop beef cattle farms because it has natural resources in the form of land as a place for livestock keeping and forage production. Good quality and forage availability can increase production, especially for increasing body weight of cattle (Suhaema *et al.*, 2014). Forage producing areas in Semarang Regency include gardens (25,562.04 Ha), rice fields (23,745.96 Ha), and forests (6,032.77 Ha). The

beef cattle population in this region during the 2014-2016 period continued to decline, ranging from 53,135; 49,172; and 46,238 (BPS Kabupaten Semarang, 2018).

The development of beef cattle farms in Semarang Regency needs to adopt the concept of sustainability. The concept of sustainability is the achievement of economic, environmental, and social goals simultaneously which is represented by various performance indicators (Darnhofer *et al.*, 2010). Sustainability is also defined as the concept of multidimensional (economic, ecological, and social) and multiscale (micro, meso, and macro), although in its application, it is often limited to one particular aspect (Santos *et al.*, 2017). Economic sustainability is closely related to the value of comparative and competitive advantages of certain commodities (Broom *et al.*, 2013; Sabaghi *et al.*, 2016), while environmental sustainability includes optimizing the availability and efficient use of natural resources (Atanga *et al.*, 2013).

The sustainability of beef cattle farms can be identified through a regional approach, by considering the existence of leading commodities and the potential of the region concerned (Mulyono & Munibah, 2016; Parmawati *et al.*, 2018). Determination of leading commodities characterized by the existence of comparative and competitive advantages is the first step towards the efficient development of livestock sector. The potential of the region to support the development of beef cattle farms is determined by optimizing the carrying capacity and carrying capacity index of forage, as well as by assessing the suitability of the land where the livestocks are raised. Land suitability for beef cattle farms with intensive production systems considers several environmental factors that affect the growth of these cattle.

Mapping activities based on the determination of leading commodities and optimization of regional potential are needed as a basis for planning sustainable development of beef cattle farms. This study aims to determine the priority areas for developing beef cattle farms in Semarang Regency. The results of this study are expected to be one of the considerations in determining the direction and development policy of the beef cattle farms sector in Semarang Regency.

MATERIALS AND METHODS

This research was a type of quantitative research and applied the concept of sustainability. Sustainabilities assessed were economic and environmental sustainabilities for beef cattle farm in Semarang Regency. Economic sustainability was identified through the determination of the leading commodity of livestock, while environmental sustainability was identified through the calculation of the carrying capacity and carrying capacity index of forage, and the assessment of suitability of ecological environment of beef cattle. In detail, each step of the analysis was outlined below.

Leading Commodity

Determination of leading livestock commodities in an area used Location Quotient (LQ) and Shift Share

(SS) analysis. The rationale for the two methods was the economic basis theory. LQ analysis was relatively simple, but the benefits were large enough for the initial identification of the ability of a sector in regional development. The shift in the structure of economic activity in beef cattle business, whether experiencing growth or decline was analyzed using Shift Share (SS). SS analysis can be used to see the growth of the economic sectors of a region for two-time points (Muta'ali, 2015). LQ and SS analysis used the following equations (Ciptayasa *et al.*, 2016; Mulyono & Munibah, 2016).

 $LQ_{ii} = (Xij / Xi.)/(X.j / X..)$ (Equation 1)

where X_{ij} is Beef cattle population in the sub-district A, X_i , is Population of all types of livestock in the subdistrict A, X_{ij} is Beef cattle population in Semarang Regency, and X_{ij} is Population of all types of livestock in Semarang Regency).

 $\begin{aligned} SS &= [(X..(t1))/(X..(t0))-1] + [(X.i(t1))/(X.i(t0)) - (X..(t1))/(X..(t0))] + [(Xij(t1))/(Xij(t0)) - (X.i(t1))/(X.i((t0)))] \\ (Equation 2) \end{aligned}$

(Regional share, Proportional shift, Differential shift, X.. is Population of all types of livestock in Semarang Regency, Xi is Beef cattle population in Semarang Regency, Xij is Beef cattle population in sub-district A, t0 is Early 2013 year point, and t1 is End of year 2017).

Carrying Capacity and Carrying Capacity Index of Forage

The carrying capacity of the region for livestock development is indicated by the ability of the region to produce forage that can accommodate and meet the needs of a number of beef cattle populations. Forages were divided into two types, namely fresh forage (grass, legume) and dry forage (straw). An assessment of the carrying capacity index of forage was conducted to assess the availability of animal feed in a region, whether it was classified as safe, vulnerable, critical, or very critical.

The carrying capacity of beef cattle farms was calculated based on the production of forage dry matter against the minimum feed requirements of cattle (1 AU) in one year. The animal unit (AU) was a unit for the ruminant livestock population multiplied by the conversion factor. The conversion factor for beef cattle was 0,7 (Muta'ali, 2015; Saputra *et al.*, 2016). Forage dry matter production was the amount of potential agricultural waste and natural forage potential, using equations that refer to Suhaema *et al.* (2014) and Yuniar *et al.* (2016). Potential of agricultural waste (ton) =

 $\{(wr x 0.4) + (fr x 3 x 0.4) + (cn x 3 x 0.5) + (sb x 3 x 0.55) + (pt x 2 x 0.55) + (sp x 0.25/6) + (cs x 0.25/4)\} x 0.65$

where wr is wetland rice, fr is field rice, cn is corn, sb is soybean, pt is peanuts, sp is sweet potatoes, cs is cassava. The numbers in the formula are assumptions about the potential waste produced from the production of each type of plant food. Natural forage potential (ton) =

{(Ga x 2.875) + (Fa x 0.6) + (Cpa x 10) + (Cfa x 0.5) + (Cla x 5)} x 0.5

where Ga is garden area, Fa is forest area, Cpa is coconut plant area, Cfa is coffee plant area, Cla is clove plant area. The numbers in the formula are assumed to be natural forage potential produced per hectare of land use area.

Minimum cattle feed requirements (R)=

2.5% x 50% x 365 x 400 kg = 1.82 ton DDM/year/AU (Equation 3)

where R is minimum cattle feed requirements (1 AU) in tons of digestible dry matter for 1 year, 2.5% is minimum requirement for the number of forage rations (dry matter) on livestock weight, 50% is average value digestibility power of various types of plants, 365 is number of days in 1 year, 400 kg is live weight of 1 AU of beef cattle in Semarang Regency. Equations that refer to Suhaema *et al.* (2014) and Yuniar *et al.* (2016).

The results of the calculation of forage dry matter production were then used to determine the carrying capacity of beef cattle farms using the following equations (Suhaema *et al.,* 2014; Yuniar *et al.,* 2016).

CC (AU)= Forage dry matter production (tons of DDM/ year) / Minimum cattle feed requirement (tons of DDM/year/AU) (Equation 4)

The level of animal feed security in a region was measured by forage carrying capacity index. Carrying capacity index values were values that indicated the status of the availability of forage for beef cattle, namely: very critical (\leq 1), critical (>1-1.5), vulnerable (> 1.5-2), and safe (>2).

Forage carrying capacity index=

Carrying capacity (AU) / Amount of beef cattle population in 2017 (AU) (Equation 5)

Suitability of the Ecological Environment of Beef Cattle

The research sample for the assessment of the suitability ecological environment of beef cattle farms in Semarang Regency was 19 points spreading throughout the sub-district area (Table 5). The determination of the sample was using purposive sampling technique. The purposive sampling technique was also called judgment sampling (Tongco, 2007), which was used to determine the sample based on research considerations. In each sub-district, one village was taken which had the most beef cattle population.

Lands available for the development of beef cattle farms are gardens, grasslands, open land, rice fields, and dryland agriculture. The fields are assumed to be able to be used for building housing for beef cattle. The assessment of land suitable for beef cattle farming with intensive maintenance patterns also takes into account several environmental parameters that influence the growth of livestock.

Land suitability assessment for beef cattle farms began by making a map of land units. Maps of beef cattle land units referred to research of Rusmana *et al.* (2006) which stated that there were four maps needed for overlaying, namely: land type maps, agro-climate maps, regional altitude maps, and slope maps. The final step was to make a "suitability map of the ecological environment of beef cattle". The method used was by overlaying between land unit maps with environmental parameters that affected the growth of beef cattle (Table 1). Land suitability was classified into 4 levels or strata, namely: very suitable (S-1), quite suitable (S-2), according to marginal (S-3), and non-suitable (NS) (Rusmana *et al.*, 2006; Suhaema *et al.*, 2014; Yuniar *et al.*, 2016). The entire process was created and analyzed using GIS software.

RESULTS

Leading Commodity

The leading commodity of livestock in an area was determined based on comparative advantage (location quotient analysis) and competitive advantage (shiftshare analysis). Beef cattle commodities that had LQ>1 and SS (+) values were the leading commodities in the region. The interpretation of the value of LQ>1, was a base or leading sector, beef cattle products (meat) were able to meet markets inside and outside the region. The value of LQ<1 implied a non-base sector, livestock products had not been able to meet markets inside and outside the region. The value of LQ=1 implied that the sector was balanced with the reference region, livestock products were only able to meet markets in the area. The basis for calculating LQ analysis for livestock commodities was livestock population data (Hendayana, 2003). Data bias in calculations could be minimized by using a minimum 5 year data series (Table 2).

Shift share analysis started from the basic assumption that economic growth or added value of an activity in a particular region was influenced by three main components which were interconnected with each other, namely: regional growth, sectoral growth, and growth in share or regional competitiveness (Ciptayasa *et al.*, 2016). Through these three components, it could be seen which elements had encouraged regional economic

Table 1. Environmental parameters that influence the growth of beef cattle with intensive maintenance patterns

Order of environmental suitability of beef cattle				
S (Suitable)	N (Unsuitable)			
70-80	<70,>80			
<8 months	>8 months			
< 4,000	>4,000			
Available	Not Available			
6.5-9.0	<6.5;>9.0			
<40	>40			
	Order of e suitability S (Suitable) 70-80 <8 months < 4,000 Available 6.5-9.0 <40			

Source: (Suhaema et al., 2014; Yuniar et al., 2016).

growth. The value of each component could be positive or negative, but the total number (shift-share) would always be positive if the regional economic growth were positive, and vice versa.

The results of the LQ and SS analysis calculations for beef cattle commodities in Semarang Regency are shown in Table 3. Based on the results of the analysis conducted, the subdistrict areas becoming the beef cattle base sector (LQ> 1) were Bancak (4.93), Banyubiru (3.97), Ambarawa (3.92), Bringin (2.82), and Bawen (2.34). Beef cattle keeping was concentrated in these areas or in the other words the economic density of beef cattle was higher than that of in the other regions. Beef cattle commodities that had competitive advantages were seen based on positive shift-share (SS) values. Sub-districts with a positive SS value means experiencing growth (competitiveness) related to keeping beef cattle. On the other hand, sub-districts with negative SS value means that the area is not growing (stagnant) and can even experience setbacks. The results of the analysis conducted in Table 3 showed that subdistricts with positive SS values were in West Ungaran (1.286), Banyubiru (0.47), Pabelan (0.435), Bandungan (0.203), Bancak (0.077), Bringin (0.039), and Tengaran (0.026).

Turno of livestock			Year		
Type of fivestock	2013	2014	2015	2016	2017
Pig	32,640	17,300	18,431	15,971	15,850
Goat	197,029	136,999	123,294	117,003	117,373
Sheep	290,764	191,346	172,211	167,374	162,694
Rabbit	20,352	9,375	10,462	11,629	11,916
Horse	1,711	497	515	524	581
Beef cattle	51,901	53,135	49,172	46,238	48,444
Dairy cows	22,308	27,609	25,780	25,690	25,557
Buffalo	2,941	3,168	2,614	2,629	2,589
Laying chicken	1,821,286	1,813,049	1,452,019	1,331,528	1,572,463
Broiler chicken	12,046,319	7,501,700	10,144,846	10,754,602	11,812,311
Chicken breed	819,067	860,408	818,568	861,989	823,226
Duck	206,882	92,963	80,801	127,859	125,261
Quail	122,200	238,930	227,737	176,730	142,856
Muscovy duck	102,966	72,227	63,889	61,963	54,402

Table 2. Growth of livestock populations in Semarang Regency (heads)

Source: (BPS Kabupaten Semarang, 2018).

Table 3. Value of LQ and SS of beef cattle in Semaran	g Regency in 2018
---	-------------------

No	Sub-district	LQ	RS	PS	DF	SS
1	Getasan	0.63	-0.052	-0.014	-0.359	-0.425
2	Tengaran	0.55	-0.052	-0.014	0.092	0.026
3	Susukan	1.11	-0.052	-0.014	-0.137	-0.203
4	Kaliwungu	1.22	-0.052	-0.014	0.048	-0.018
5	Suruh	0.88	-0.052	-0.014	-0.213	-0.279
6	Pabelan	1.75	-0.052	-0.014	0.501	0.435
7	Tuntang	0.28	-0.052	-0.014	-0.689	-0.755
8	Banyubiru	3.97	-0.052	-0.014	0.536	0.47
9	Jambu	0.42	-0.052	-0.014	-0.417	-0.483
10	Sumowono	0.95	-0.052	-0.014	-0.234	-0.3
11	Ambarawa	3.92	-0.052	-0.014	0.006	-0.06
12	Bandungan	1.01	-0.052	-0.014	0.269	0.203
13	Bawen	2.34	-0.052	-0.014	0.0009	-0.0651
14	Bringin	2.82	-0.052	-0.014	0.105	0.039
15	Bancak	4.93	-0.052	-0.014	0.143	0.077
16	Pringapus	1.38	-0.052	-0.014	-0.312	-0.378
17	Bergas	0.77	-0.052	-0.014	-0.106	-0.172
18	West Ungaran	0.77	-0.052	-0.014	1.352	1.286
19	East Ungaran	0.30	-0.052	-0.014	-0.62	-0.686

Note: LQ= Location quotient, SS= Shift share, RS= Regional share, PS= Proportional shift, DS= Differential shift.

The development of beef cattle farms in Semarang Regency is prioritized in the sub-districts with LQ>1 and SS (+) values. The sub-districts are Bringin, Bancak, and Banyubiru.

Carrying Capacity and Carrying Capacity Index of Forage

The potential availability of feed for beef cattle was seen based on the amount of forage dry matter production (tons of DDM) that could be produced by the region concerned. Dry matter is the total feed ingredients without water content, which can come from forages. The region with the largest forage dry matter production has the highest carrying capacity for the development of beef cattle farms, and vice versa. Forage is one of the production inputs that determine the success of livestock business because it directly affects productivity and efficiency (Yuniar *et al.*, 2016). Table 4 shows the calculation of carrying capacity and carrying capacity index of forage for beef cattle farms in Semarang Regency.

Based on the results of the analysis conducted in Table 4, it was known that there were three sub-districts with the highest production of forage dry matter, namely Bringin (28,808.63 tons DDM), Pringapus (23,509.36 tons DDM), and Suruh (19,522.03 tons DDM). Subdistrict area with the lowest forage dry matter production was Bandungan (4,327.55 tons DDM). The status of the availability of forage in Bandungan sub-district was categorized as very critical (0.82), while in Tengaran sub-district it was categorized as vulnerable (1.69). Therefore, these two sub-districts are not recommended for the development of beef cattle farms. Sub-district areas with carrying capacity index value >2 (safe) means that the areas can be recommended for the development of beef cattle farms. The advantage obtained by the area with this safe category is that farmers can reduce the amount of production costs for beef cattle feed.

Semarang Regency had a carrying capacity for beef cattle farms of 122,725 AU. The population of beef cattle in 2017 was 33,911 AU, so the Semarang Regency area was assumed to still be able to accommodate 88,814 AU beef cattle in 2018.

The Suitability of Ecological Environment of Beef Cattle

The results of field measurements and secondary data collection conducted on several environmental factors that influence the growth of beef cattle are shown in Table 5. The factors that limited the assessment of the suitability of the ecological environment of beef cattle farming in Semarang Regency were the Temperature Humidity Index (THI) and water pH. Annual rainfall (<4000 mm) and dry months (<8) were in the appropriate category.

The suitability of the ecological environment map for beef cattle farms in Semarang Regency is shown in Figure 1. The white area was an area that was not assessed because it was designated as land for settlements, plantations, tourism, and forests. Based on data in Figure 1, the level of suitability of the produced beef

SD	Bcp 2017	Bcp 2017 (AU)	Rm	R Bc	F Dmp	CC	CCI	AV
А	b	С	d	$e = c \times d$	f	g = f/d	h = g/c	
Getasan	2,085	1,459.5	1.82	2,656.29	7,802.45	4,287.1	2.94	S
Tengaran	4,881	3,416.7	1.82	6,218.39	10,526.78	5,783.9	1.69	V
Susukan	2,905	2,033.5	1.82	3,700.97	15,301.29	8,407.3	4.13	S
Kaliwungu	4,650	3,255	1.82	5,924.10	13,231.72	7,270.2	2.23	S
Suruh	3,335	2,334.5	1.82	4,248.79	19,522.03	10,726.4	4.59	S
Pabelan	4,251	2,975.7	1.82	5,415.77	12,690.04	6,972.5	2.34	S
Tuntang	211	147.7	1.82	268.81	9,458.60	5,197.03	35.19	S
Banyubiru	3,840	2,688.0	1.82	4,892.16	11,493.54	6,315.1	2.35	S
Jambu	741	518.7	1.82	944.03	8,816.47	4,844.2	9.34	S
Sumowono	2,228	1,559.6	1.82	2,838.47	10,921.51	6,000.8	3.85	S
Ambarawa	1,661	1,162.7	1.82	2,116.11	4,935.95	2,712.05	2.33	S
Bandungan	4,140	2,898	1.82	5,274.36	4,327.55	2,377.8	0.82	VC
Bawen	2,717	1,901.9	1.82	3,461.46	7,241.14	3,978.6	2.09	S
Bringin	2,349	1,644.3	1.82	2,992.63	28,808.63	15,828.9	9.63	S
Bancak	2,820	1,974	1.82	3,592.68	15,391.55	8,456.9	4.28	S
Pringapus	1,333	933.1	1.82	1,698.24	23,509.36	12,917.2	13.84	S
Bergas	1,828	1,279.6	1.82	2,328.87	7,593.47	4,172.2	3.26	S
West Ungaran	2,105	1,473.5	1.82	2,681.77	5,400.34	2,967.2	2.01	S
East Ungaran	364	254.8	1.82	463.74	6,387.01	3,509.3	13.77	S
Total	48,444	33,910.8		61,717.64	223,359.43	122,724.7	120.68	

Table 4. Carrying capacity and carrying capacity index of forage in Semarang Regency in 2018

Note: SD = sub-district, Bcp= beef cattle population, Bcp (AU)= beef cattle population in livestock units, Rm= minimum feed requirements for beef cattle (ton DDM /year /AU), R bc= beef cattle feed requirements (tons /DDM/year), F Dmp= forage dry matter production (ton DDM), CC= carrying capacity (AU), CCI= carrying capacity index of forage, AV= forage availability status; S= safe, V= vurnerable, VC= very critical.

Subdistrict	Sample (Village)	Temperature (°C)	Temperature (°F)	Humidity (%)	THI	Rainfall (mm/year)	Dry months	Water pH
Getasan	Samirono	31	87.8	51	79.77	3,403	3	7
Tengaran	Duren	30	86	65	80.61	2,591	3	5.8
Susukan	Timpik	32	89.6	57	82.13	2,618	3	6.5
Kaliwungu	Mukiran	32	89.6	56	81.95	2,618	0	5.5
Suruh	Dadapayam	32	89.6	65	83.52	2,680	4	6.3
Pabelan	Terban	32	89.6	58	82.3	1,927	4	6.5
Tuntang	Tlumpakan	35	95	46	84.01	2,676	0	7
Banyubiru	Wirogomo	30	86	51	78.45	2,066	3	8
Jambu	Genting	31	87.8	49	79.44	2,489	0	6.2
Sumowono	Candi Garon	28	82.4	58	76.76	1,383	4	6.3
Ambarawa	Pasekan	30	86	51	78.45	1,291	3	6.8
Bandungan	Candi	29	84.2	54	77.57	1,291	0	6.7
Bawen	Polosiri	35	95	49	84.62	2,061	4	6.1
Bringin	Banding	35	95	54	85.64	2,211	3	7.9
Bancak	Pucung	33	91.4	58	83.68	2,091	0	6.5
Pringapus	Penawangan	32	89.6	56	81.95	2,290	3	4
Bergas	Munding	32	89.6	48	80.56	3,802	2	5.9
West Ungaran	Gogik	32	89.6	49	80.74	3,316	0	7.7
East Ungaran	Kawengen	33	91.4	51	82.4	3,316	0	6.6

Table 5. Results of measurements of environmental factors that influence the growth of beef cattle in Semarang Regency in 2018

Note: THI= T - {0.55 (1-RH / 100) (T-58)}, where T= temperature (°F), RH= relative humidity.

Figure 2. The suitability of ecological environment map for beef cattle farms in Semarang Regency
cattle ecological environment was: very suitable (S-1), quite suitable (S-2), and according to marginal (S-3). Non-suitable (NS) categories were not assessed because the area had a slope >40% (steep - very steep).

The symbol "p" indicated that there was a limiting factor in the area assessed. The limiting factors were the Temperature Humidity Index (THI) and the pH of the water for beef cattle consumption (Table 5). Semarang Regency consists of 19 sub-districts. The development of beef cattle farms will be prioritized in sub-districts having LQ>1, positive SS (+) value, and carrying capacity index of forage >2, namely Bringin, Bancak, and Banyubiru. Banyubiru sub-district was not constrained by the limiting factors, while Bringin and Bancak were constrained by THI values that exceed the comfort zone for growing cattle (>80). The extent suitability of the ecology of beef cattle farms from the three priority sub-districts is shown in Table 6.

Based on the results of the analysis conducted in Table 6, the sub-districts with the largest land area for the development of beef cattle farms with intensive production systems were Bringin (2,758.86 Ha), Bancak (1,550.08 Ha), and Banyubiru (1,451.2 Ha). The limiting factor in the form of temperature humidity index (THI) or water pH can be minimized through the engineering design of livestock housing and the provision of materials or neutralizing water acidity solvent (Yani et al., 2007; Sarwanto & Hendarto, 2011). Cattle with intensive production systems are generally more susceptible to heat stress than cattle with extensive production systems. Efforts that can be done to reduce heat stress in beef cattle include: adding shade around the housing location, install a sprinkle tool or add straw that works to lower the surface temperature of the floor, regulate feed, feed additives, and medicine, etc (Suhaema et al., 2014).

DISCUSSION

Semarang Regency is a potential area for the development of beef cattle farming because it has abundant natural resources in the form of land for livestock raising and forage production. The mapping activity is based on the determination of leading livestock commodities, and optimization of regional potential can be one of the benchmarks in realizing sustainable development of beef cattle farms. The concept of sustainable development is to meet the needs of the current generation, without sacrificing future generations and this concept has become a reference for welfare in almost all sectors, including the livestock sector (Wasike *et al.*, 2011). The concept of sustainability was widely debated throughout the world over the past few years (De Longe *et al.*, 2016; Keesstra *et al.*, 2016; Rasmussen *et al.*, 2017), not only concerning environmental and social issues, but also discussing economic issues to gain certain market or commodity advantages (Broom *et al.*, 2013; Sabaghi *et al.*, 2016). Sustainability assessment is achieved by evaluating the relative contribution of each of the economic, environmental, and social factors to the overall goal (Astier & García-Barrios, 2012). Sustainability assessed in this study is economical and environmental sustainability for beef cattle farms.

Economic sustainability was assessed based on the results of the analysis of the leading commodity. The leading livestock commodity in an area was determined based on the comparative advantage (LQ analysis) and competitive advantage (SS analysis). The concept of comparative advantage is economic feasibility. Commodities that have a comparative advantage (LQ>1) show that the commodity (beef cattle) is supported by the existence of adequate natural resources so that the population level is higher than in other regions (Mulyono & Munibah, 2016). Beef cattle commodity in the base sub-district is a prominent or dominant livestock business compared to the other livestock businesses, so the effort for future development is easier (Yuniar et al., 2016; Mulyono & Munibah, 2016). On the other hand, the concept of competitive advantage is financial feasibility. Beef cattle commodities are keeping in effective and efficient ways so that they have competitiveness from the aspects of quality, quantity, continuity, and price (Muta'ali, 2015; Mulyono & Munibah, 2016). The results presented in Table 3 show that the Bringin, Bancak, and Banyubiru sub-districts are regions with a leading commodity of beef cattle. Accordingly, the three sub-districts are prioritized for the development of beef cattle farms in Semarang Regency.

Environmental sustainability for beef cattle farms was assessed based on the results of the carrying capacity analysis and carrying capacity index of forage, and analysis of the suitability of the ecological environment of beef cattle. Carrying capacity is defined as the maximum population that can be supported by an ecosystem from time to time. The carrying capacity of an area is not static, there is a kind of reciprocal relationship between organism and their environments. The carrying capacity of a region can vary for different species and change over time due to various factors (Taiwo & Feyisara, 2017). Regional carrying capacity for livestock development is the size of the region's ability to support the livelihoods of a number of livestock populations optimally through the role of forage availability. Based

Table 6. Extent of suitability of ecological environment map of beef cattle farms in Bancak, Banyubiru, and Bringin sub-districts

No	Subdistrict	Extent of land suitability (Ha)						Tatal
		S1	S1p	S2	S2p	S3	S3p	- 10tai
1	Bancak	0	40.26	0.06	1,342.25	0	167.51	1,550.079
2	Banyubiru	17.10	0	1,434.10	0	0	0	1,451.2
3	Bringin	0	36.01	0	2,327.42	0	395.43	2,758.862
	Total	17.10	76.27	1,434.16	3,669.67	0	562.94	5,760.141

Note: S1= very suitable, S2= quite suitable, S3= according to marginal, P= limiting factor in the form of temperature humidity index (THI).

on the results of the analysis presented in Table 4, it is known that the Bringin, Bancak, and Banyubiru subdistricts have a forage carrying capacity index in the safe category.

The production systems of beef cattle that is often found in Semarang Regency is an intensive production system. Beef cattle are able to show optimal physical conditions if they have superior genetic traits, and are supported by the suitability of their ecological environment (Suhaema et al., 2014). Animal ecology is the study of the interactions between animals and their environments. Environmental factors tend to have a greater effect on the production and productivity of livestock (Sumarto & Koneri, 2016). Some environmental factors that influence the growth of beef cattle with intensive production systems are: soil type, length of dry season, altitude, slope (Rusmana et al., 2006), temperature and relative humidity, rainfall, and water pH (Herbut & Angrecka, 2012; Suhaema et al., 2014; Yuniar et al., 2016; Eirich, 2018).

The results of the analysis in Table 5 show that environmental factors that are limiting the development of beef cattle farms in Semarang Regency are air temperature and humidity, as well as pH of water used by livestock for drinking. The relationship between the amount of air temperature and humidity is called the Temperature Humidity Index (THI). If THI exceeds the threshold (>80), it can cause stress or heat stress in beef cattle (Eirich, 2018). Long-term heat stress has an impact on increasing drinking water consumption, increasing urine volume, and decreasing feed consumption. The direct effect of heat stress on livestock production causes a decrease in the productivity of beef cattle. This effect is due to the increasing need for livestock maintenance during stress conditions (Berman, 2005). Furthermore, the THI value that exceeds the threshold will decrease the daily body weight gain, increase the depletion of the thickness of meat fat, and increase the potential for disease occurrence, especially in male cattle (Nardone et al., 2010). Hydrogen potential (pH) characterizes the balance between acidic and alkaline solvent in water. If the pH of drinking water for beef cattle is below the quality standard or acid (<6,5), the water becomes sour and can cause physiological and digestive disorders in livestock. On the other hand, if the pH of water is too alkaline (>9), the water becomes bitter and causes a decrease in the consumption of drinking water which has an impact on decreasing livestock productivity (Sarwanto & Hendarto, 2011).

The synthesis of the assessment results of leading commodity, calculation of carrying capacity and carrying capacity index of forage, as well as land suitability assessment, shows that there are three sub-districts (Bringin, Bancak, and Banyubiru) which have high priorities for the development of beef cattle farms in Semarang Regency.

CONCLUSION

Planning for the development of beef cattle farming with intensive production systems in Semarang Regency is recommended in three sub-districts, namely: Bringin, Bancak, and Banyubiru. The development of beef cattle farms in the priority sub-districts is expected to increase livestock production and productivity. Governments, communities (cattleman), and the private sector (investors) must coordinate and cooperate with each other so that the development of sustainable beef cattle farms can be achieved.

CONFLICT OF INTEREST

The authors confirm that there are no conflicts of interest with any financial, personal, or other relationships with other people or organization related to the material discussed in the manuscript.

REFERENCES

- Agus, A. & T. S. M. Widi. 2018. Current situation and future prospects for beef cattle production in Indonesia - A review. Asian-Australas. J. Anim. Sci. 31:976-983. https://doi. org/10.5713/ajas.18.0233
- Ariningsih, E. 2014. Performance of national beef self-sufficiency policy. Forum Penelitian Agro Ekonomi 32:137-156. https://doi.org/10.21082/fae.v32n2.2014.137-156
- Astier, M., L. G. Barrios, Y. G. Miyoshi, Carlos. E. G. Esquivel, & O. R. Masera. 2012. Assessing the sustainability of small farmer natural resource management systems. A critical analysis of the MESMIS program 1995-2010. Ecology and Society 17:25. https://doi.org/10.5751/ES-04910-170325
- Atanga, N. L., A. C. Treydte, & R. Birner. 2013. Assessing the sustainability of different small-scale livestock production systems in the Afar Region, Ethiopia. Land. 2:726-755. https://doi.org/10.3390/land2040726
- Berman, A. 2005. Estimates of heat stress relief needs for Holstein dairy cows. Journal Animal Science 83:1377-1384. https://doi.org/10.2527/2005.8361377x
- **BPS Kabupaten Semarang.** 2018. Kabupaten Semarang dalam Angka. Badan Pusat Statistik, Semarang.
- Broom, D. M., F. A. Galindo, & E. Murgueitio. 2013. Sustainable, efficient livestock production with high biodiversity and good welfare for animals. Proc. R. Soc. B. 280: 20132025. https://doi.org/10.1098/rspb.2013.2025
- Ciptayasa, I. N., Hermansyah, & M. Yasin. 2016. Analisis potensi ternak kambing di Kabupaten Lombok Barat. Jurnal Ilmu dan Teknologi Peternakan Indonesia 2:110-115. https://doi.org/10.29303/jitpi.v2i1.20
- Darnhofer, I., J. Fairweather, & H. Moller. 2010. Assessing a farm's sustainability: insights from resilience thinking. Int. J. Agric. Sustain. 8:186-198. https://doi.org/10.3763/ ijas.2010.0480
- DeLonge, M. S., A. Miles, & L. Carlisle. 2016. Investing in the transition to sustainable agriculture. Environ. Sci. Policy. 55:266-273. https://doi.org/10.1016/j.envsci.2015.09.013
- Eirich, R. 2018. Beef cattle temperature humidity chart. University of Nebraska. Available at: https://bqa.unl.edu/ heat-stress-resources. [28 December 2018].
- Herbut, P. & S. Angrecka. 2012. Forming of temperature-humidity index (THI) and milk production of cows in the free-stall barn during the period of summer heat. Nim. Sci. Pap. Rep. 30:363-372.
- Kadarsih, S. 2004. Performans sapi Bali berdasarkan ketinggian tempat di daerah transmigrasi Bengkulu. Jurnal Ilmu-Ilmu Pertanian Indonesia 6:50-56.
- Keesstra, S. D., J. Bouma, J. Wallinga, P. Tittonell, P. Smith, A. Cerda, L. Montararella, J. N. Quinton, Y. Pachepsky, W. H. Putten, R. D. Bardgett, S. Moolenaar, G. Mol, B.

Jansen, & L. O. Fresco. 2016. The significance of soils and soil science towards realization of the United Nations sustainable development goals. Soil 2:111-128. https://doi.org/10.5194/soil-2-111-2016

- Kementan. 2016. Outlook Daging Sapi. Kementerian Pertanian Republik Indonesia, Jakarta.
- Mulyono, J. & K. Munibah. 2016. Pendekatan location quotient dan shift share analisis dalam penentuan komoditas unggulan tanaman pangan di Kabupaten Bantul. Informatika Pertanian 25:221-230. https://doi.org/10.21082/ ip.v25n2.2016.p221-230
- **Muta'ali, L.** 2015. Teknik Analisis Regional untuk Perencanaan Wilayah, Tata Ruang, dan Lingkungan. Badan Penerbit Fakultas Geografi UGM, Yogyakarta.
- Nardone, A., B. Ronchi, N. Lacetera, M. S. Ranieri, & U. Bernabucci. 2010. Effects of climate changes on animal production and sustainability of livestock systems. Livest. Sci. 130:57-69. https://doi.org/10.1016/j.livsci.2010.02.011
- Nuhung, I. A. 2015. Kinerja, kendala, dan strategi pencapaian swasembada daging sapi. Forum Penelitian Agro Ekonomi 33:63-80. https://doi.org/10.21082/fae.v33n1.2015.63-80
- Paly, B., A. Natsir, S. Rasyid, & I. M. Fahmid. 2013. Interconnectivity multi criteria for sustainable development of beef cattle. International Journal of Scientific and Technology Research 2:115-121.
- Parmawati, R., Mashudi, A. Budiarto, Suyadi, & A. S. Kurnianto. 2018. Developing sustainable livestock production by feed adequacy map : A case study in Pasuruan, Indonesia. Trop. Anim. Sci. J. 41:67-76. https://doi. org/10.5398/tasj.2018.41.1.67
- Pasandaran, E., Haryono, & Suherman. 2014. Memperkuat Daya Saing Produk Pertanian. Perspektif Daya Saing Wilayah. IAARD Press, Jakarta.
- Rasmussen, L. V., R. Bierbaum, J. A. Oldekop, & A. Agrawal. 2017. Bridging the practitioner-researcher divide: Indicators to track environmental, economic, and sociocultural sustainability of agricultural commodity production. Glob. Environ. Change 42:33-46. https://doi.org/10.1016/j. gloenvcha.2016.12.001
- Rouf, A. A., Daryanto, & A. Fariyanti. 2014. Daya saing usaha sapi potong di Indonesia: Pendekatan domestic resources cost. Wartazoa 24:97-107. https://doi.org/10.14334/wartazoa.v24i2.1053
- Rusmana, N., Atmiyati, & Ridwan. 2006. Pembuatan peta kesesuaian ekologis untuk ternak ruminansia pada skala tinjau. Pusat Penelitian dan Pengembangan Peternakan, Bogor. pp. 175-178.
- Sabaghi, M., C. Mascle, P. Baptiste, & R. Rostamzadeh. 2016. Sustainability assessment using fuzzy-inference technique (SAFT): A methodology toward green products. Expert Syst. Appl. 56:69-79. https://doi.org/10.1016/j. eswa.2016.02.038
- Santos, S. A., H. P. de Lima, Silvia. M. F. S. Massruha, Urbano. G. P. de Abreu, W. M. Tomas, S. M. Salis, E. L. Cardoso,

M. D. de Oliveira, Marcia. T. S. Soares, A. dos Santos Jr, L. O. F. de Oliveira, D. F. Calheiros, S. M. A. Crispim, B. M. A. Soriano, C. O. G. Amancio, A. P. Nunes, & L. A. Pellegrin. 2017. A fuzzy logic-based tool to assess beef cattle ranching sustainability in complex environmental systems. Journal of Environmental Management 198:95-106. https://doi.org/10.1016/j.jenvman.2017.04.076

- Saputra, J. I., Liman, & Y. Widodo. 2016. Analisis potensi pengembangan peternakan sapi potong di Kabupaten Pesawaran. Jurnal Ilmiah Peternakan Terpadu 4:115-123.
- Sarwanto, D. & E. Hendarto. 2011. Analisis kualitas air minum sapi perah rakyat di Kabupaten Banyumas Jawa Tengah. Media Peternakan 13:1-5.
- Suhaema, E., Widiatmaka, & B. Tjahjono. 2014. The regional development of beef cattle based on physical and forage land suitability in Cianjur Regency. Tanah Lingkungan 16:53-60. https://doi.org/10.29244/jitl.16.2.53-60
- Sumarto, S. & R. Koneri. 2016. Ekologi Hewan. Cv. Patra Media Grafindo, Bandung.
- Sutanto, A. & L. Hendraningsih. 2011. Analisis keberlanjutan usaha sapi perah di Kecamatan Ngantang Kabupaten Malang. Gamma 7:1-12.
- Syarifuddin, H. 2009. Indeks keberlanjutan integrasi tanaman dengan ternak (crop livestock system) di Kuamang Kuning. Jurnal Ilmiah Ilmu-Ilmu Peternakan XII:41-49.
- Taiwo, F. J. & O. O. Feyisara. 2017. Understanding the concept of carrying capacity and its relevance to urban and regional planning. Journal of Environmental Studies 3:1-5.
- Thornton, P. K. 2010. Livestock production: recent trends, future prospects. Philosophical Transactions of the Royal Society B: Biological Sciences. 365:2853-2867. https://doi. org/10.1098/rstb.2010.0134
- Tongco, M. D. C. 2007. Purposive sampling as a tool for informant selection. Ethnobotany Research and Applications 5:147-158. https://doi.org/10.17348/era.5.0.147-158
- Wasike, C. B., T. M. Magothe, A. K. Kahi, & K. J. Peters. 2011. Factors that influence the efficiency of beef and dairy cattle recording system in Kenya: A SWOT-AHP analysis. Trop. Anim. Health Prod. 43:141-152. https://doi.org/10.1007/ s11250-010-9666-3
- Yani, A., H. Suhardiyanto, R. Hasbullah, & B. P. Purwanto. 2007. Analisis dan simulasi distribusi suhu udara pada kandang sapi perah menggunakan computational fluid dynamics (CFD). Med. Pet. 30:218–228.
- Yuniar, P. S., A. M. Fuah, & Widiatmaka. 2016. Carrying capacity and priority region for development of beef cattle production in South Tangerang. Jurnal Ilmu Produksi dan Teknologi Hasil Peternakan 4:64-268. https://doi. org/10.29244/jipthp.4.1.264-268
- Zakiah, A. Saleh, & K. Matindas. 2017. Gaya kepemimpinan dan perilaku komunikasi GPPT dengan kapasitas kelembagaan sekolah peternakan rakyat di Kabupaten Muara Enim. Jurnal Penyuluhan 13:133-142. https://doi. org/10.25015/penyuluhan.v13i2.14977