PENGARUH ARAS PEMBERIAN TETES DAN LAMA PEMERAMAN YANG BERBEDA TERHADAP PROTEIN KASAR DAN SERAT KASAR SILASE HIJAUAN SORGUM

LAPORAN PENELITIAN

OLEH:
SRI SUMARSIH, SPt, MP
Ir. BAMANG WALUWO II E P, MS, MAgR

FAKULTAS PETERNAKAN
UNIVERSITAS DIPONEGORO
OKTOBER, 2002
HALAMAN PENGESAHAN
HASIL PENELITIAN DIK RUTIN

 b. Bidang Ilmu : Pertanian
 c. Kategori Penelitian : II

2. Ketua Peneliti
 a. Nama Lengkap : Sri Sumarsih, SPT, MP
 b. Jenis Kelamin : Perempuan
 c. Golongan/NIP : II/A/132164066
 d. Jabatan : Asisten Ahli
 e. Fakultas/Jurusan : Peternakan/Nutrisi dan Makanan Ternak
 f. Pusat Penelitian : Universitas Diponegoro

3. Jumlah Anggota Peneliti : 1 Orang

4. Lokasi Penelitian : Laboratorium Teknologi Makanan Ternak Fakultas Peternakan Universitas Diponegoro Semarang

5. Kerjasama dengan instansi lain : -

7. Biaya yang diperlukan : Rp. 3.000.000,- (Tergantung Rupiah)
 Sumber dari DIK Rutin UNDIP th Anggaran 2002

Semarang, Oktober 2002

Mengetahui
an. Dekan
Pembantu Dekan I
Fakultas Peternakan UNDIP

Dr. Ir. V. Priyo Bintoro, MAgr
NIP. 130895621

Menyetujui
Ketua Lembaga Penelitian UNDIP

Sri Sumarsih, SPT, MP
NIP. 132164066

Semenyogiro, Oktober 2002

Mengetahui
an. Dekan
Pembantu Dekan I
Fakultas Peternakan UNDIP

Dr. Ir. V. Priyo Bintoro, MAgr
NIP. 130895621

Menyetujui
Ketua Lembaga Penelitian UNDIP

Sri Sumarsih, SPT, MP
NIP. 132164066

Menyetujui
Ketua Lembaga Penelitian UNDIP

Prof. Dr. dr. Ign. Riwanto, SpBD
NIP. 130529454
HALAMAN PENGESEAHAN
HASIL PENELITIAN DIK RUTIN

2. b. Bidang Ilmu : Pertanian
 c. Kategori Penelitian : II
 d. Ketua Peneliti
 a. Nama Lengkap : Sri Sumarsih, SPI, MP
 b. Jenis Kelamin : Perempuan
 c. Golongan/NIP : HLA/132164066
 d. Jabatan : Asisten Ahli
 e. Fakultas/Jurusan : Peternakan/Nutrisi dan Makanan Ternak
 f. Pusat Penelitian : Universitas Diponegoro

3. Jumlah Anggota Peneliti : 1 Orang

4. Lokasi Penelitian : Laboratorium Teknologi Makanan Ternak Fakultas Peternakan Universitas Diponegoro Semarang

5. Kerjasama dengan instansi lain :

7. Biaya yang diperlukan : Rp. 3.000.000,- (Tiga Juta Rupiah)

Sumber dari DIK Rutin UNDIP th. Anggaran 2002

Mengetahui
Dekan

Semanang, Oktober 2002

Jr. Bambang Srigunung, MSc
NIP. 130241757

Sri Sumarsih, SPT, MP
NIP. 132164066

Menyetujui
Ketua Lembaga Penelitian UNDIP

Prof. Dr. dr. Iga. Riwanto, SpBD
NIP. 130529454
EFFECT OF DIFFERENT LEVEL OF MOLASSES AND TIME OF PERIOD FERMENTATION ON CRUDE PROTEIN AND CRUDE FIBER OF SOKGUM GREEN FORAGE AS SILAGE (SRI SUMARSIH AND BAMBANG WHEP, 2002, P:18)

ABSTRACT

The objective of the research was to determine the effect of different level of molasses and time of period fermentation on crude protein and crude fiber of sorgum green forage silage.

Research was conducted in Technology Animal Nutrition Department, Animal Science Faculty of Diponegoro University. Level of molasses was 0, 2, 4, 6% weight/weight and time period of fermentation was 14, 21 and 28 day. Data collection consist of crude protein and crude fiber. Data, then, were analyzed using analysis of variance (ANOVA) based on completely randomized design. To compare among treatment means using Duncan Multiple Range Test.

Result of this research showed that there were interaction effect between level of molasses and time of period on the crude protein and crude fiber content. Level of molasses significantly increased crude protein on the different time period of fermentation. Crude fiber significantly decreased on the time period of fermentation at 14 and 21 day but increased on the time period of fermentation at 28 day.

The utilization of added molasses 6% and 21 day time of period showing the best crude protein content.
EFFECT OF DIFFERENT LEVEL OF MOLASSES AND TIME OF PERIODE
FERMENTATION ON CRUDE PROTEIN AND CRUDE FIBER OF SORGUM
GREEN FORAGE AS SILAGE* (SRI SUMARSINI AND BAMBANG WHEP,
2002, P:18)

ABSTRACT

The Objective of the research was to determine the effect of different level
of molasses and time of period fermentation on crude protein and crude fiber of
sorgum green forage silage.

Research was conducted in Technology Animal Nutrition Departement,
Animal Science Faculty of Diponegoro University. Level of molasses was 0, 2, 4,
6% weight/weight an time period of fermentation was 14, 21 and 28 day. Data
collection consist of crude protein and crude fiber. Data, then, were analyzed
using analysis of variance (Anova) based on the completely randomized design.
To Compare among treatment means using Duncan Multiple Range Test.

Result of this research showed that there were interaction effect between
level of molasses and time of period on the crude protein and crude fiber content.
Level of molasses significantly increased crude protein on the different time
period of fermentation. Crude fiber significantly decreased on the time period of
fermentation at 14 and 21 day but increased on the time period of fermentation at
28 day.

The utilization of added molasses 6% and 21 day time of period showing
the best crude protein content.
PENGARUH ARAS PEMBERIAN TETES DAN LAMA PEMERAMAN YANG BERBEDA TERHADAP PROTEIN KASAR DAN SERAT KASAR SILASE HIJAUAN SORGUM (SRI SUMARSIH DAN BAMBANG WIEP, 2002, 18 HAL.)

ABSTRAK

Tujuan penelitian adalah untuk mengkaji pengaruh aras penambahan tetes dan lama pemeraman yang berbeda terhadap kandungan protein kasar dan serat kasar silase hijauan sorgum.

Penelitian dilaksanakan di Laboratorium Teknologi Makanan Ternak Fakultas Pertanian Universitas Diponegoro. Aras tetes yang digunakan adalah 0, 2, 4, dan 6 % (bobot/bobot). Lama pemeraman adalah 14, 21 dan 28 hari. Parameter yang diuji adalah kandungan protein kasar dan serat kasar. Data yang diperoleh dilakukan analisis regresi dengan menggunakan Analisis Variance (ANOVA) menggunakan bantuan program software SPSS. Perbedaan antar perakaran diuji dengan uji wilayah ganda Duncan.

Hasil Penelitian memperlihatkan bahwa terdapat pengaruh interaksi antara factor aras tetes dan lama pemeraman terhadap kandungan protein kasar dan serat kasar silase hijauan sorgum. Penambahan aras tetes nyata meningkatkan kandungan protein kasar silase hijauan sorgum pada setiap lama pemeraman. Serat kasar nyata memerlukan penambahan aras tetes yang semakin meningkat pada lama fermentasi 14 dan 21 hari tetapi nyata meningkat pada lama fermentasi 28 hari.

Kesimpulan penelitian ini adalah penggunaan tetes 6% dan lama pemeraman 21 hari menunjukkan kandungan protein kasar terbaik.
KATA PENGANTAR

Allahuakbar, puji syukur kami panjatkan kehadirat Allah SWT. yang telah memberikan taufik serta hidayah-Nya sehingga laporan penelitian ini bisa terselesaikan.

Laporan penelitian ini diasumsi dari serangkaian penelitian yang dilaksanakan di Laboratorium Teknologi Makanan Ternak Jurusan Nutrisi dan Makanan Ternak atas dukungan dana dari dana DIK Rutin Universitas Diponegoro Tahun Anggaran 2002.

Penyusun mengucapkan terima kasih kepada yang terhormat Prof. Dr. dr. I..st. Riwanto, SpBd selaku ketua Lembaga Penelitian UNDIP, Ir. Bambang Sriyudoso, MSc, selaku Dekan Fakultas Peternakan, Dr. Ir. Vitas Dwi Yuniarto, MSc, selaku Ketua Jurusan Nutrisi dan Makanan Ternak, Prof. Dr. Ir. C. Inam Sutrisno selaku Kepala Laboratorium Teknologi Makanan Ternak serta Ir. Bambang Waluyo HEP, MS, MAgr selaku anggota peneliti atas dukungan, bimbing, serta saran yang telah diberikan.

Penyusun menyadari bahwa laporan ini masih jauh dari sempurna, sehingga perlu adanya saran untuk perbaikan laporan ini. Semoga laporan ini memberikan manfaat bagi semua pihak yang membutuhkan.

Semarang, Oktober 2002
Penyusun
<table>
<thead>
<tr>
<th>Bab/Isi</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>KATA PENGANTAR</td>
<td>iv</td>
</tr>
<tr>
<td>DAFTAR ISI</td>
<td>v</td>
</tr>
<tr>
<td>DAFTAR TABEL</td>
<td>vi</td>
</tr>
<tr>
<td>BAB I. PENDAHULUAN</td>
<td>1</td>
</tr>
<tr>
<td>BAB II. TINJAUAN PUSTAKA</td>
<td>3</td>
</tr>
<tr>
<td>2.1. Bahan Pakan</td>
<td>3</td>
</tr>
<tr>
<td>2.2. Silase</td>
<td>4</td>
</tr>
<tr>
<td>2.3. Kualitas Silase</td>
<td>5</td>
</tr>
<tr>
<td>2.4. Sorghum</td>
<td>6</td>
</tr>
<tr>
<td>2.5. Tetes</td>
<td>7</td>
</tr>
<tr>
<td>BAB III. METODOLOGI</td>
<td>9</td>
</tr>
<tr>
<td>3.1. Materi</td>
<td>9</td>
</tr>
<tr>
<td>3.2. Metode</td>
<td>9</td>
</tr>
<tr>
<td>3.2.1. Tahap Pembustan Silase</td>
<td>9</td>
</tr>
<tr>
<td>3.2.2. Tahap Pengujian Protein Kasar dan Serat Kasar</td>
<td>10</td>
</tr>
<tr>
<td>BAB IV. HASIL DAN PEMBAHASAN</td>
<td>12</td>
</tr>
<tr>
<td>4.1. Pengaruh Pemberian Aras Tetes dan Lama Pemeraman yang Berbeda terhadap Protein Kasar Silase</td>
<td>12</td>
</tr>
<tr>
<td>4.2. Pengaruh Pemberian Aras Tetes dan Lama Pemeraman yang Berbeda terhadap Serat Kasar Silase</td>
<td>13</td>
</tr>
<tr>
<td>BAB V. KESIMPULAN</td>
<td>14</td>
</tr>
<tr>
<td>DAFTAR PUSTAKA</td>
<td>15</td>
</tr>
<tr>
<td>No</td>
<td>Deskripsi</td>
</tr>
<tr>
<td>----</td>
<td>-----------</td>
</tr>
<tr>
<td>1.</td>
<td>Protein Kasar Silase Hijauan Sorghum dengan Pemberian Aras Tetes dan Lima Pemeraman yang Berbeda</td>
</tr>
</tbody>
</table>
BAB I
PENDAHULUAN

Sorgum merupakan salah satu bahan pakan unggas sebagai pengganti jagung kuning dalam memenuhi kebutuhan energi bagi unggas pedaging. Selama ini pemanfaatan hijauan sorgum belum banyak dilakukan oleh para peternak. Pembuatan silase hijauan sorgum merupakan salah satu alternatif yang dapat dilakukan guna memenuhi kebutuhan ternak rumianitasia pada musim kemarau.

Keberhasilan proses pembuatan silase tergantung tiga faktor utama, yaitu ada tidaknya serta besarnya populasi bakteri asam laktat, sifat-sifat fisik dan kimiswi bahan hijauan yang digunakan serta keadaan lingkungan. Penggunaan "additive" dapat membuat kualitas silase menjadi lebih baik (parakasi, 1999). Tujuan pemberian "additive" dalam pembuatan silase antara lain: mempercepat pembentukan asam laktat dan metabolisme angka mencegah fermentasi berlebihan, mempercepat penurunan pH sehingga mencegah terbentuknya fermentasi yang tidak dikehendaki, merupakan suplemen untuk zat gizi dalam hijauan yang digunakan.
Tetes merupakan hasil samping pabrik gula tebu yang berbentuk cairan hitam kental dan berenergi tinggi (Susanto et al., 1985). Tetes sering digunakan sebagai "additive" dalam pembuatan silase.

Penelitian mengenai kualitas kimia (khususnya protein kasar dan serat kasar) hijauan Sorghum pada aras pemberian tetes dan lama peneraman yang berbeda perlu dilakukan, mengingat belum adaunya publikasi silase hijauan Sorghum. Protein Kasar dan serat kasar pada hijauan yang diawetkan merupakan konstituen yang penting dan dapat digunakan sebagai indikasi kualitas produk dan kondisi pengawetan (Wilkinson, 1985). McDonald et al. (1994) menyatakan bahwa saat hijauan diensilase, bakteri asam laktat mengakut jumlahnya dan memfermentasi karbohidrat terlarut air ("water soluble carbohydrate") menjadi asam-asam organik, terutama asam laktat yang akan menurunkan pH dan pada aras kritis pH tertentu asam-asam yang ada akan menghambat pertumbuhan bakteri lain serta pada pH 3,8 sampai 4,0 aktivitas mikroba akan berhenti dan material yang diensilase menjadi stabil (tidak terjadi penurunan kadar protein kasar dan peningkatan serat kasar) sepanjang kondisi anaerob terjaga. Penelitian ini bertujuan untuk mengkaji kualitas kimia (protein kasar dan serat kasar) silase hijauan sorghum pada aras pemberian tetes dan lama peneraman yang berbeda.
BAB II

TINJAUAN PUSTAKA

2.1. Bahan Pakan

Secara garis besar bahan pakan dibedakan menjadi dua golongan yaitu bahan pakan yang berasal dari hewan dan bahan pakan yang berasal dari tanaman (Rasyaf, 1994). Menurut Sukistyono (1976), bahan pakan yang berasal dari hewan antara lain tepung ikan, tepung dagging, tepung tulang, sedangkan bahan pakan yang berasal dari tanaman antara lain biji-bijian, hijauan segar, hijauan kering, umbi-umbian, sira, hasil ikutan perusahaan pertanian dan pabrik serta limbah pertanian.

Beberapa hal yang perlu dipertimbangkan dalam memilih sumber bahan pakan adalah kemudahan mendapatkan atau tersedia bahan pakan, disukai oleh ternak, mutu atau kualitas gizi yang baik, tidak berbahaya bagi ternak, dalam penggunaannya tidak bersaing dengan manusia dan harganya relatif murah.
Kualitas bahan pakan dikaitkan dengan peran bahan pakan itu sebagai bagian dari dari formulasi rumus (Rasyaf, 1994).

2.7. Silase

Silase adalah hijauan pakan yang diawetkan dalam suatu tempat yang kedap udara. Hijauan tersebut masih dalam kondisi segar dan dapat diberikan pada ternak tanpa mengganggu proses pencernaan dan mempunyai nilai gizi yang cukup tinggi (Susanto et al. dan Soeradi, 1978).

Tujuan pembuatan silase adalah meningkatkan nilai gizi pakan, mengawetkan pakan dan mencegah agar tidak banyak nilai gizi yang hilang. Prinsip pembuatan silase adalah menurunkan derajat keasaman (pH) seendah mungkin, sehingga mircoba yang bersifat patogen tidak tumbuh dan disikatkan pada tempat anaerob (Lacconi, 1997). Ensilase dipengaruhi oleh tiga faktor yaitu sururan hijauan dalam silo, jumlah udara yang masuk dalam silo dan kandungan bakteri yang berperan dalam ensilase (Heath et al. yang ditemui oleh Nastiti, 1997).

Menurut Foley et al. (1973), ensilase dapat dibagi dalam lima tahap yaitu 1), hijauan akan menghasilkan panas dan CO2 sampai proses respirasi terhenti. Respirasi aerob hijauan menguapi udara dalam silo akan menyebabkan kondisi

2.3. Kualitas Silase

Menurut Soedjatmono (1976), penentuan kualitas silase dapat ditentukan secara organoleptis yaitu meliputi warna, bau, tekstur, rasa dan analisis laboratorium (kadar protein, asetik asam, lemak, asu dan BEIN). Silase secara laboratorium banyak mengandung asam laktat dan tidak mengandung asam butirat. Lebih lanjut dijelaskan bahwa silase yang baik mempunyai ciri-ciri sebagai berikut : tekstur tidak berubah, tidak menggumpal, warna hijau seperti daun direbus, rasa dan bau asam, tidak ada asam butirat dan tidak ada lendir. Lacosi
(1997) menambahkan bahwa kriteria silase yang baik mempunyai bau asam dengan pH 4.5 atau kurang, kandungan asam laktat 3 – 13% dari bahan kering, tidak ada jazuur, warna seragam kecoklatan atau hijau layu, tidak berbau amonia dan kandungan ammonia rendah yaitu 5% dari total nitrogen.

Faktor-faktor yang mempengaruhi kualitas silase antara lain keadaan bahan yang akan dibuat silase, perlakuan terhadap bahan dengan pemotongan dan pelayan, keadaan lingkungan utama dengan ada tidaknya oksigen dalam silo dan penambahan bahan aktif (Susetyo et al., 1969). Ditambahkan oleh Crowder dan Chheda (1982), kualitas silase tergantung dari umur tanaman, kandungan bahan kering tanaman dan kandungan nutrisi kuatnya karbohidrat tanaman. Guna memproduksi silase yang baik, rumput sebaiknya dipanen pada fase vegetatif dan tidak lebih dari awal fase generatif (fase bersenget). Kadar gula yang rendah dan kadar air tanaman yang tinggi menyebabkan fermentasi dan perombakan anaerob menjadi tidak memuaskan.

Kehilangan bahan kering dan nilai nutrisi hijauan yang dibuat silase secara normal berkisar antara 10 – 20% dan dan lebih tinggi (Cowder and Chheda, 1982). Kehilangan bahan kering dan nitrogen selama ensilase masing-masing adalah 16.1 dan 15.2% sedangkan kehilangan energi yang tidak dapat dihidari selama ensilase kurang lebih 7% (McDonald yang diterbiti oleh Nasiti, 1997).

2.4. Sorgum

Tanaman sorgum berasal dari daerah timur laut Afrika. Tanaman ini termasuk famili graminae yang dapat tumbuh di daerah tropis dan subtropis, dari

Hijuan Sorghum menurut Hartadi et al. (1990) dalam 100% bahan kering mengandung lemak kasar 1,9%, serat kasar 28,8% BETN 50,4% protein kasar 7,7% dan abu 11,2%. Chaves et al. (1966) menambahkan bahwa Sorghum mempunyai komposisi asam lemak antara lain asam palmitat 16,1% asam palmitoleat 1% asam oleat 35% asam linolenat 44,7%, asam ioxolenat 1,5% dan asam lemak lain 0,3% dari lemak total.

Sorgum mempunyai daya cerna protein lebih rendah dibanding hijauan lain. Rendahnya daya cerna protein hijauan Sorghum disebabkan oleh tanis pada kulit biji Sorghum yang bervariasi antara 0,2 – 2% (Wahju, 1997). Lapisan kulit Sorghum, (pericarp) terdapat epicarp yang mengandung zat warna yang menentukan warna dari biji Sorghum. Zat warna tersebut dapat mengandung tanin dan biji Sorghum coklat yang banyak mengandung tanin umurnya tidak disukai ternak (Rismonandar, 1986)

2.5. Tetes

Tetes adalah larutan kental yang mengandung gula dan mineral, merupakan hasil ikutan proses pengolahan sebu menjadi gula yang umurnya berwarna coklat kereraht-menahan dan mengkristal (Muridiyo, 1987). Tetes
mengandung 700-750 g/kg bahan kering dari karbohidrat terlarut asetikat 650 g/kg bahan kering dengan komponen utama sukrosa (McDonald, 1981 yang disitas oleh Nastiti, 1997). Komposisi tetes dalam 100% bahan kering menurut Hartadi et al. (1990) adalah serat kasar 10,4% lemak kasar 0,3% serat kasar 10% BETN 74% protein kasar 5,4% dan abu 10,4% (Hartadi et al., 1990).

Tetes dapat digunakan sebagai bahan aditif dalam pembuatan silase karena kandungan gula yang tinggi sehingga dapat meningkatkan jumlah gula yang diubah menjadi asam laktat (Catchpoole yang disitas oleh Nastiti, 1997). Menurut Gunawan et al. (1988), bahan aditif mempunyai fungsi untuk meningkatkan ketonedefian zat nutrisi, memperbaiki nilai gizi silase, meningkatkan polastibilitas, mempercepat tercapainya kondisi asam, memacu tercentyana asam laktat dan asam atra, merupakan sumber karbohidrat mudah tercecer sebagai sumber energi bagi mikroba yang berperan dalam proses fermentasi.

BAB III

MATERI DAN METODE

3.1. MATERI

Materi yang digunakan adalah bijian sorghum, tetes dan air. Alat yang digunakan adalah, termometer, pH meter, timbangan masal dengan kapasitas 2 kg, timbangari elektrik, ovens, eksikator, pisau, plastik, ember, pompa vakum dan tali.

3.2. METODE

Pelaksanaan penelitian terdiri dari dua tahap yaitu 1) Tahap pembuatan silase; 2) Tahap pengujian kadar protein dan serat kasar.

3.2.1. Tahap Pembuatan Silase

Perlakuan dalam pembuatan silase ini meliputi dua faktor, yaitu ars aditif (tetes) dan lama pemeraman. Aras aditif yang dipakai sebagai perlakuan adalah T0 : 0% tetes; T1 : 2% tetes T2 : 4% tetes; T3 : 6% tetes. Waktu
pemeraman yang dipakai sebagai perlakuan yaitu P1 pemeraman 14 hari; P2: pemeraman 21 hari dan P3: pemeraman 28 hari.

Hijauan Sorghum diletakkan debu, kemudian dipotong-potong kurang lebih 5 cm. Hijauan yang telah dipersiapkan tersebut kemudian dicampur dengan air sampai kadar air 70%. Campuran tersebut dimasukkan ke dalam kantong plastik vakum dua, kemudian dipadatkan. Satu kantong plastik diberi termometer untuk mengontrol suhu silase. Sebelum kantong ditutup dengan karet gelang, udara dalam plastik dihisap dengan pompa vakum untuk menciptakan suasana anaerob. Silase tersebut dipan seusai perlakuan.

3.2.2. Tahap Pengujian Kadar Protein Kasar dan Serat Kasar Silase

BAB IV

HASIL DAN PEMBAHASAN

4.1. Pengaruh Pemberian Aras Tetes Dan Lama Pemeraman yang Berbeda terhadap Protein Kasar Silase

Pengaruh pemberian aras tetes dan lama pemeraman yang berbeda terhadap protein kasar silase dapat dilihat pada Tabel 1.

Tabel 1. Protein Kasar Silase Hijauan Sorghum dengan Pemberian Aras Tetes dan Lama Pemeraman yang Berbeda

<table>
<thead>
<tr>
<th>Aras tetes (%bobot/bobot)</th>
<th>Lama Pemeraman</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14 hari</td>
<td>21 hari</td>
</tr>
<tr>
<td>0</td>
<td>16,3409<sup>a</sup></td>
<td>16,1440<sup>b</sup></td>
</tr>
<tr>
<td>2</td>
<td>16,4012<sup>b</sup></td>
<td>16,4534<sup>b</sup></td>
</tr>
<tr>
<td>4</td>
<td>16,6230<sup>c</sup></td>
<td>17,1953<sup>c</sup></td>
</tr>
<tr>
<td>6</td>
<td>16,6332<sup>d</sup></td>
<td>18,7052<sup>d</sup></td>
</tr>
<tr>
<td>rata-rata</td>
<td>16,7496</td>
<td>17,1245</td>
</tr>
</tbody>
</table>

Keterangan: Angka dalam kolom yang sama diikuti huruf yang berbeda menunjukkan berbeda nyata (p<0,05)

Berdasarkan Tabel 1 terdapat interaksi diantara faktor aras penggunaan tetes (0, 2, 4, 6%) dengan faktor lama pemeraman (14, 21 dan 28 hari) terhadap kandungan protein kasaranya. Berdasarkan pada pandangan bahwa kandungan protein kasar yang tinggi merupakan indikasi kualitas silase yang baik, maka aras
penggunaan 6% tetes dan lama p seweran 21 hari menghasilkan kriteria mutu yang terbaik (protein kasar PK : 18,7052%). Terdapat Kecenderungan peningkatan protein kasar dengan bertambahnya ars tetes yang ditambahkan pada setiap perlakuan. Tetes merupakan sumber energi yang mudah dicerna oleh mikroba (data bentuk bahan ekstrak tanpa nitrogen = BETN) sehingga memungkinkan terjadinya aktivitas mikroba selama proses fermentasi berlangsung dan menyebabkan penurunan pH yang dapat menghambat aktivitas bakteri pembuuk (clostridia). Setelah kondisi optimum fermentasi tercapai (pada pH 3,8 sampai 4,0) maka aktivitas mikroba akan berhenti dan material yang dihasilkan menjadi stabil sepanjang kondisi anaerob terjaga (McDonald et al., 1994). Pada kondisi dimurkikmen terjadi peningkatan kandungan protein kasar selose hijauan sorgum dalam bentuk protein mikroba.

4.2. Pengaruh Pemberian Aras Tetes dan Lama Perneran Yang Berbeda Terhadap Serat Kasar Silase Hijauan Sorgum

Pengaruh pemberian ars tetes dan lama perneran yang berbeda terhadap serat kasar silase hijauan Sorgum dapat dilihat pada Tabel 2. Tabel 2 memperlihatkan bahwa terdapat interaksi antara faktor ars penggunaan tetes (0, 2, 4, 6%) dengan faktor lama perneran (14, 21 dan 28 hari) terhadap kandungan serat kasarnya. Terdapat kecenderungan menurunnya kadar serat kasar silase hijauan sorgum dengan bertambahnya ars pernerian tetes pada lama perneran 14 hari dan 21 hari. Tetes yang ditambahkan merupakan sumber energi bagi mikroba terutama mikroba amilolitik. Mikroba amilolitik menghasilkan enzim amilase untuk merosak presi karida mudah dicerna menjadi gula-gula.
<table>
<thead>
<tr>
<th>Aras tetes (%) bobot/bobot</th>
<th>Lama Pemaraman 14 hari</th>
<th>21 hari</th>
<th>28 hari</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>0</td>
<td>33,0598<sup>a</sup></td>
<td>32,0584<sup>a</sup></td>
<td>31,4996<sup>a</sup></td>
<td>32,2059<sup>a</sup></td>
</tr>
<tr>
<td>2</td>
<td>32,7556<sup>b</sup></td>
<td>31,9136<sup>b</sup></td>
<td>31,7110<sup>b</sup></td>
<td>32,1267<sup>b</sup></td>
</tr>
<tr>
<td>4</td>
<td>32,0291<sup>c</sup></td>
<td>31,8082<sup>c</sup></td>
<td>31,9009<sup>c</sup></td>
<td>32,0202<sup>c</sup></td>
</tr>
<tr>
<td>6</td>
<td>31,9248<sup>d</sup></td>
<td>31,7560<sup>d</sup></td>
<td>32,2754<sup>d</sup></td>
<td>31,8780<sup>d</sup></td>
</tr>
<tr>
<td>rata-rata</td>
<td>32,4423</td>
<td>31,8841</td>
<td>31,8467</td>
<td>31,8780</td>
</tr>
</tbody>
</table>

Keterangan: Angka dalam kolom yang sama diikuti huruf yang berbeda menunjukkan berbeda nyata (p<0,05).

BAB V
KESIMPULAN

Berdasarkan hasil penelitian dapat disimpulkan bahwa perlakuan kombinasi pemberian arus tetes 6% dan lama fermentasi 21 hari menghasilkan kandungan protein kasar yang tertinggi (PK=18,7052%). Pemberian arus tetes yang semakin meningkat pada lama pemeraman 14 dan 21 hari menurunkan kadar serat kasar sedangkan pada lama pemeraman 28 hari meningkatkan kadar serat kasar silase hijauan sorgum.
DAFTAR PUSTAKA

