

Konsep Fundamental TEKNOLOGI PEMBAKARAN -1

COMBUSTION TECHNOLOGY & THERMAL ANALYSIS

Instructor: Dr. Istadi (http://tekim.undip.ac.id/staf/istadi) Email: istadi@undip.ac.id

Instructor's Background

- BEng. (1995): Universitas Diponegoro
- Meng. (2000): Institut Teknologi Bandung
- PhD. (2006): Universiti Teknologi Malaysia
- Specialization:
 - Catalyst Design for Energy Conversion
 - Process Design for Energy Conversion
 - Combustion Engineering
 - Computational Fluid Dynamic (CFD)

SYLLABUS

- 1. Dasar-dasar Teknik Pembakaran (150')
- 2. Konsep Fundamental Kimia Sistem Pembakaran (2x150')
- 3. Konsep Perpindahan Panas dalam Sistem pembakaran (150')
- 4. Flame Impingement (150')
- 5. Perancangan Sistem Burner (2x150')
- 6. Troubleshooting Sistem Pembakaran (150')
- 7. Bahan Bakar untuk Proses Pembakaran (2x150')
- 8. Permodelan Proses Pembakaran (2x150')
- 9. Pengendalian Proses Pembakaran (150')
- 10. Keselamatan Proses Dalam Sistem Pembakaran (2x150')
- 11. Sistem Flare di Teknologi Pembakaran (150')

Definitions of Natural Gas, Gas Reservoir, Gas Drilling, and Gas Production

• What is Natural Gas?

- The gas obtained from natural underground reservoirs either as free gas or gas associated with crude oil
- Contains large amounts of methane (CH4) along with decreasing amounts of other hydrocarbon
- Impurities such as H₂S, N₂, and CO₂ are often found with the gas
- generally comes saturated with water vapor.

- Oil is liquid. Meaning that oil may be transported and delivered through pipe
- The primary use of **natural gas is as a fuel**, it is also a source of hydrocarbons for petrochemical feedstocks and a major source of elemental sulfur
- Natural gas presents many environmental advantages over petroleum and coal
- **Carbon dioxide**, a greenhouse gas linked to global warming, is produced from oil and coal at a rate of about 1.4 to 1.75 times higher than from natural gas

Typical gas Compositions

	Canada (Alberta)	Western Colorado	Southwest Kansas	Bach Ho Fieldª Vietnam	Miskar Field Tunisia	Rio Arriba County, New Mexico	Cliffside Field, Amarillo Texas
Helium	0.0	0.0	0.45	0.00	0.00	0.0	1.8
Nitrogen	3.2	26.10	14.65	0.21	16.903	0.68	25.6
Carbon dioxide	1.7	42.66	0.0	0.06	13.588	0.82	0.0
Hydrogen sulfide	3.3	0.0	0.0	0.00	0.092	0.0	0.0
Methane	77.1	29.98	72.89	70.85	63.901	96.91	65.8
Ethane	6.6	0.55	6.27	13.41	3.349	1.33	3.8
Propane	3.1	0.28	3.74	7.5	0.960	0.19	1.7
Butanes	2.0	0.21	1.38	4.02	0.544	0.05	0.8
Pentanes and	3.0	0.25	0.62	2.64	0.630	0.02	0.5
heavier * Tabular m	ol% data is	on a wet ba	sis (1.3 mol9	6 water)			
Source: U.S	S. Bureau of	f Mines (197	72) and Jones	s et al. (199	9).		

Typical gas Composition in Indonesia

Component	Terengganu (Malaysia) ¹⁾	Natuna (Indonesia) ²⁾	Terrell County (Texas USA) ³⁾	Arun (Indonesia) ⁴⁾	
Methane (CH ₄)	80.93	28.0 ^a	45.7	75	
Ethane (C ₂ H ₆)	5.54	-	0.2	5.5	
Propane (C ₃ H ₈)	2.96	-	-	3.4 ^b	
Butane (C ₄ H ₁₀)	1.40	-	-	-	
>=C ₅₊	-	-	-	0.8	
Nitrogen (N ₂)	0.10	0.5	0.2	0.3	
Carbon dioxide (CO ₂)	8.48	71.0	53.9	15	
Hidrogen Sulfida (H ₂ S)	-	0.5	-	0.01	

^a CH₄ + low C₂₊ hydrocarbons ^b C₃, C₄ hydrocarbons ¹⁾ Gordon et al. (2001)

²⁾ Suhartanto *et al.* (2001)

³⁾ Bitter (1997)

4) Centi et al. (2001)

COMBUSTION EQUIPMENT AND HEAT TRANSFER

- In the process industries, combustion powers gas turbines, process heaters, reactors, and boilers.
- The burner **combusts fuel** and generates products of combustion and heat.
- A firebox contains the **flame** envelope.
- The fire heats water in the tubes to boiling.
- The steam rises to a steam drum that separates the liquid and vapor phases, returning water to the tubes and passing steam.
- The steam may be further heated in a **superheater**.
- Superheaters raise the temperature of the steam above the boiling point, using either radiant and/or convective heat transfer mechanisms.

NET COMBUSTION CHEMISTRY OF HYDROCARBONS

• Consider the combustion of methane (CH4) and air. CH4 is the major component of natural gas. The combustion of CH4 produces carbon dioxide (CO2) and water vapor (H2O).

fuel + oxidizer \rightarrow CO₂ + H₂O + Other species

• Stoichiometric Equation:

 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

- In a stoichiometric equation, the subscripted numbers define the proportions of elements in a molecule:
 - the methane molecule comprises four hydrogen atoms for every carbon atom,
 - and that an oxygen molecule comprises two oxygen atoms
- A mole comprises 6.02 x 10²³ molecules → Avogadro's number

• A global combustion reaction using CH4 as the fuel can be written as:

 $CH_4 + (xO_2 + yN_2) \rightarrow CO, CO_2, H_2, H_2O, N_2, NOx, O_2, Trace species$

Note: Most combustion reactions do not conserve moles.

Common Name	Formula	Molecular Weight	O2 (moles)	CO ₂ (moles)	H ₂ O (moles)
Hydrogen	H ₂	2.02	0.5	0.0	1.0
Carbon monoxide	CO	28.01	0.5	1.0	0.0
Methane	CH ₄	16.05	2.0	1.0	2.0
Ethane	C2H6	30.08	5.0	2.0	3.0
Ethene, ethylene	C ₂ H ₄	28.06	4.0	2.0	2.0
Acetylene, ethyne	C,H,	26.04	3.0	2.0	1.0
Propane	C ₃ H ₈	44.11	7.0	3.0	4.0
Propene,					
propylene	C ₃ H ₆	42.09	6.0	3.0	3.0
Butane	C ₄ H ₁₀	58.14	7.0	4.0	5.0
Butene, butylene	C ₄ H ₈	56.12	8.0	4.0	4.0
Generic	- u				
hydrocarbon	C _x H _y	12.01 x + 1.01 y	x + y/2	х	y/2

TABLE 2.3 Molecular Weights and Stoichiometric Coefficients for Common Gaseous Fuels

- To account for any hydrocarbon fuel, the Equation is modified by **x** (the H/C molar ratio).
- The following Equation gives a generic equation for hydrocarbons with air:

CH_x + (1 +
$$\epsilon$$
)(1 + x/4)[O₂ + 79/21 N₂] →
CO₂ + x/2 H₂O + ϵ (1 + x/4) O₂

$$+(1+x/4)(1+\varepsilon)(79/21) N_2$$

- oxygen-to-fuel ratio (O/F): $O/F = (1 + x/4)(1 + \varepsilon)$
- air-to-fuel ratio (A/F): A/F = (100/21)(O/F)
- Total wet product (TWP): • Total dry product (TDP): TWP = A/F + x/4TDP = A/F - x/4
- In situ analyzers measure the flue gas species in the actual hot wet environment → wet
- extractive analyzers remove the flue gas, condense the water, and measure the concentration of the flue gas species in the dry gas → dry

• Volume fraction (f):

$$f_{O_2,wet} = \varepsilon(1 + x/4)/TWP \quad f_{O_2,dry} = \varepsilon(1 + x/4)/TDP$$

$$f_{CO_2,wet} = 1/TWP \quad f_{CO_2,dry} = 1/TDP$$

$$f_{N_2,wet} = 79/21(1 + \varepsilon)(1 + x/4)/TWP$$

$$f_{N_2,dry} = 79/21(1 + \varepsilon)(1 + x/4)/TDP$$

$$f_{H_2O,wet} = x/(2 \text{ TWP})$$

$$f_{O_2,wet} = \frac{0.21\varepsilon}{K_{wet} + \varepsilon} \qquad f_{O_2,dry} = \frac{0.21\varepsilon}{K_{dry} + \varepsilon}$$
$$K_{wet} = \frac{4 + 1.21x}{4 + x} \qquad K_{dry} = \frac{4 + 0.79x}{4 + x}$$

$$\varepsilon = K_{wet} \left(\frac{f_{\text{O}_2, wet}}{0.21 - f_{\text{O}_2, wet}} \right) \qquad \varepsilon = K_{dry} \left(\frac{f_{\text{O}_2, dry}}{0.21 - f_{\text{O}_2, dry}} \right)$$

Heat of Combustion

- One measure of the chemical energy of a fuel is the heat of combustion
- Heat of combustion is reported as either **net heating value** (lower heating value, LHV) or **gross heating value** (higher heating value, HHV).
- When methane burns, it produces two products: CO₂ and H₂O. The CO₂ → a gas, however, H₂O → either a liquid or a vapor, depending on how much heat is extracted from the process.
- If so much heat is extracted that the H2O condenses, then the combustion yields its HHV.
- If **water is released from the stack as a vapor**, then combustion yields the **LHV**. The LHV excludes the heat of vaporization
- The process industry usually uses the LHV. Boiler and turbine calculations usually use the HHV → must be consistent

• **Determination of the heating value** of a fuel involves two arbitrary but conventional standard states for the water formed in the reaction:

- All the water formed is a liquid (gross heating value, frequently called higher heating value [HHV])
- All the water formed is a gas (net heating value, frequently called lower heating value [LHV])
- The heating value is normally calculated at 60°F and 1 atm (15.6°C and 1.01 atm), standard conditions for the gas industry, and, thus at equilibrium, the water would be partially liquid and partially vapor.
- Heating values for custody transfer are determined either by direct measurement, in which bomb calorimetry is used, or by computation of the value on the basis of gas analysis

$$\begin{split} H_{v}^{id}(dry) &= \sum_{i=1}^{n} x_{i} H_{vi}^{id} \\ H_{v}^{id}(sat) &= (1-x_{w}) \sum_{i=1}^{n} x_{i} H_{vi}^{id} \end{split}$$

Example of Heating Value Calculation

• **Problem**: A natural gas has a volumetric analysis of 95% CH4, 3% C2H6, and 2% CO2. For conditions of 14.7 psia and 77°F, calculate (a) the higher heating value of the fuel, Btu/ft3 of gas; and (b) the lower heating value of the fuel, Btu/ft3 of gas.

```
• Solution:

• Stoichiometric equation:

[0.95 \text{ CH}_4 + 0.03 \text{ C}_2\text{H}_6 + 0.02 \text{ CO}_2] + a[\text{O}_2 + 3.76 \text{ N}_2]

\rightarrow b\text{CO}_2 + c\text{H}_2\text{O} + d\text{N}_2

Carbon atom balance:

0.02 + 0.95 + 0.06 = b = 1.03

Hydrogen atom balance:

(4)(0.95) + (6)(0.03) = 2c c = 1.99

Oxygen atom balance:

(2)(0.02) + 2a = (2)(1.03) + 1.99 a = 2.005

Nitrogen atom balance:

d = 3.76a = (3.76)(2.005) = 7.539
```


Density of Fuel:

$$\overline{\rho} = \frac{P}{\overline{R}T} = \frac{(14.7 \text{ lbf/in}^2)(144 \text{ in.}^2/\text{ft}^2)}{(1,545 \text{ ft} \cdot \text{lbf/lbmole} \cdot ^\circ\text{R})(537^\circ\text{R})}$$
$$= 0.00255 \text{ lbmole/ft}^3$$

• Higher heating value, water as liquid in product"

$$HHV = (384,033 \text{ Btu/lbmole})(0.00255 \text{ lbmole/ft}^3)$$

a.
$$HHV = 980 \text{ Btu/ft}^3$$

• Lower heating value, water as vapor in product:

 $LHV = HHV - 1.99 h_{fg} \langle 68^{\circ}F \rangle$ LHV = +384,033 Btu/lbmole fuel $- \left(1.99 \frac{\text{lbmole H}_2\text{O}}{\text{lbmole fuel}}\right) \left(1,054 \frac{\text{Btu}}{\text{lbm H}_2\text{O}}\right) \left(18 \frac{\text{lbm}}{\text{lbmole H}_2\text{O}}\right)$

b. LHV = 346,279 Btu/lbmole

- Heat (Q) <====> Temperature (T)\
- Heat is energy in transit. When a body absorbs heat, it stores it as another form of energy, increasing the body's temperature and expanding it.
- The same amount of heat absorbed in different materials will yield different temperature increases and expansions
 → depends on heat capacity (Cp)
- For a given mass of fuel, m. the total energy is:

$$Q = m\Delta H = mC_p\Delta T$$

O2: 0.30*(32.00/16.05) = 0.60

20.7

4.59

O2: 1.15*2*(32.00/16.05) =

- The highest possible flame temperature presumes no loss from the flame whatsoever. This is known as the **adiabatic flame temperature**.
- total energy from combustion of 1 lb of fuel: 1 lb * 22, 000 Btu/lb = 22, 000 Btu

$$\Delta T = \Delta H / m C_p$$

 Because there are several species in the flue gas, the contribution of each species must be used for mC_p.

$$mC_p = m_{\text{CO}_2} C_{p\text{CO}_2} + m_{\text{H}_2\text{O}} C_{p\text{H}_2\text{O}} + m_{\text{O}_2} C_{p\text{O}_2} + m_{\text{N}_2} C_{p\text{N}_2}$$

• If Cp = 0.30 BTU/lb.°F, then the **adiabatic flame temperature** becomes:

$$\Delta T = 22,000 \frac{Btu}{lb} \left(\frac{lb^{\circ}F}{0.30 Btu} \right) \left(\frac{1}{20.7 lb} \right) = 3543^{\circ}F$$

• For air and fuel at 60°F, the adiabatic fuel temperature becomes: AFT = 3543 + 60 = 3603 °F

 at high temperatures, CO₂ → CO + 0.5 O₂ and H₂O → H₂ + 0.5 O₂, reducing the adiabatic flame temperature.

NEXT ON "Sub-stoichiometric Combustion; equilibrium thermodynamics; Combustion Kinetics; Flame Properties"