ABSTRAK

Dalam Tugas Akhir ini dibahas mengenai masalah pada logika substruktural nonkomutatif, khususnya masalah eliminasi cut. Teorema eliminasi cut telah dibuktikan berlaku pada FL, (Surarso, 1995). Akan ditunjukan bahwa teorema eliminasi cut berlaku pada sistem logika LBB'I dan perluasannya. Pada pembuktian teorema eliminasi cut pada sistem logika LBB'I dan perluasannya digunakan metode pembuktian eliminasi cut pada FL atau suatu modifikasi dari metode tersebut, terutama pembuktian teorema eliminasi cut pada LBB'I ditambah aturan contraction, dimana dikenalkan sebuah aturan baru yang disebut aturan multi-cut*.
BAB I
PENDAHULUAN

1.1 Latar Belakang

Pada tahun 1935 Gentzen mengenalkan formulasi suatu logika yang
disebut logika intuisionistik (intuitionistic logics). Formulasi tersebut yang
kemudian lebih dikenal sebagai sistem sequent tipe-Gentzen LJ memuat aturan
struktural yaitu aturan weakening, contraction dan exchange. Sedangkan logika
substruktural adalah logika yang tidak memuat salah satu atau beberapa aturan-
aturan struktural tersebut. Pada umumnya, sistem sequent tipe-Gentzen untuk
logika substruktural memuat suatu aturan yang disebut aturan cut. (Troelstra dan
Schwichtenberg, 2000)

Pada sistem sequent tipe-Gentzen, bukti dari sequent S dapat diberikan
dengan cara sistematik yaitu dari aksioma-aksioma (atau inisial sequent) secara
tahap demi tahap dari atas ke bawah sampai diperoleh sequent S. Tahapan
tersebut merupakan aplikasi dari aturan pada inferensi. Tetapi akan menjadi
masalah ketika membangun suatu bukti dari S dengan cara bawah ke atas (bottom-
up). Padahal pada umumnya untuk membangun suatu bukti dari sequent lebih
mudah bila menggunakan cara bottom-up (http://en.wikipedia.org/wiki/Gentzen's_consistency_proof), karena masalah cut
(pembuktian sequent dengan aturan cut lebih rumit). Oleh karena itu sifat yang
paling dasar dari sistem sequent tipe-Gentzen adalah yang disebut dengan teorema
eliminasi *cut*. Teorema eliminasi cut menyebutkan bahwa jika sebuah sequent dapat dibuktikan, maka sequent tersebut dapat dibuktikan tanpa aturan *cut*.

Formulasi suatu logika LBB'I pertama kali dikenalkan oleh Komori. Formulasinya lebih sederhana, tetapi dilain pihak mengandung operasi yang disebut "guarded merge" yang cukup kompleks.