Optimization and prediction of motorcycle injection system performance with feed-forward back-propagation method artificial neural network (ann)

Syahrullah, La Ode Ichlas and SINAGA , Nazaruddin (2016) Optimization and prediction of motorcycle injection system performance with feed-forward back-propagation method artificial neural network (ann). American Journal of Engineering and Applied Science, 9 (2). pp. 222-235.

[img]
Preview
PDF - Published Version
Available under License Creative Commons Attribution No Derivatives.

5Mb

Official URL: https://thescipub.com/issue-ajeas/9/2

Abstract

This research studied the use of Artificial Neural Network (ANN) using feed-forward back-propagation model to optimize and predict the performance of a motorcycle fuel injection systems of gasoline. The parameters such as speed, throttle position, ignition timing and injection timing is used as the input parameters. While the parameters of fuel consumption and engine torque is used as the output layer. Lavenberg-Marquardt model type with train function tanh sigmoid and 25 neurons number is used to generate the target value and the desired output. Variation of ignition timing as optimization variable in a wide range of speed and throttle position is used in experimental tests. ANN is used to investigate the prediction of performance motorcycle engines and compared with the test results. Results showed that the operation of ANN in predicting engine performance is very good. From the test results obtained a smooth contour MAP compared to the initial state. The prediction result and performance test show a good correlation in small error value of training and test that is regression with range 0.98-0.99, mean relative error with range 0.1315-0.4281% and the root mean square error with range 0.2422-0.9754%. This study shows that the feed-forward back propagation on ANN model can be used to predict accurately the performance of a motorcycle engine injection system.

Item Type:Article
Uncontrolled Keywords:Artificial Neural Networks, Back Propagation, Ignition Timing, Optimization
Subjects:T Technology > TJ Mechanical engineering and machinery
Divisions:Faculty of Engineering > Department of Mechanical Engineering
Faculty of Engineering > Department of Mechanical Engineering
ID Code:75850
Deposited By:INVALID USER
Deposited On:27 Aug 2019 12:05
Last Modified:27 Aug 2019 12:09

Repository Staff Only: item control page