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HIGHLIGHTS

e PM, 5 aerosols emitted from peatland fire in Indonesia were characterized.
e PM; 5 aerosols emitted from peatland fire were primarily composed of OC.
e We found some source indicators that were inherent in peatland fire.
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ABSTRACT

Biomass burning is a significant source of fine particulate matter (PM; ). Forest, bush, and peat fires in
Kalimantan and Sumatra, Indonesia are major sources of transboundary haze pollution in Southeast Asia.
However, limited data exist regarding the chemical characteristics of aerosols at sources. We conducted
intensive field studies in Riau Province, Sumatra, Indonesia, during the peatland fire and non-burning
seasons in 2012. We characterized PM, 5 carbonaceous aerosols emitted from peatland fire based on
ground-based source-dominated sampling. PM; 5 aerosols were collected with two mini-volume sam-
plers using Teflon and quartz fiber filters. Background aerosols were also sampled during the transition
period between the non-burning and fire seasons. We analyzed the carbonaceous content (organic
carbon (OC) and elemental carbon (EC)) by a thermal optical reflectance utilizing the IMPROVE_A pro-
tocol and the major organic components of the aerosols by a gas chromatography/mass spectrometry.
PM, 5 aerosols emitted from peatland fire were observed in high concentrations of 7120 + 3620 pg m3
and were primarily composed of OC (71.0 + 5.11% of PM, 5 mass). Levoglucosan exhibited the highest
total ion current and was present at concentrations of 464 + 183 pg m>. The OC/EC ratios (36.4 + 9.08),
abundances of eight thermally-derived carbon fractions, OC/Levoglucosan ratios (10.6 & 1.96), and
Levoglucosan/Mannosan ratios (10.6 & 2.03) represent a signature profile that is inherent in peatland
fire. These data will be useful in identifying contributions from single or multiple species in atmospheric
aerosol samples collected from peatland fires.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In general, approximately 80—90% of the smoke particles pro-
duced by biomass burning is in the PM; 5 size range, and these

Peatland is organic soil that has formed for over thousands of
years from decomposed vegetation and other life forms, and peat
deposits can extend up to 7 m in thickness (Wulandari, 2002). In
Southeast Asia, smoke originating from peatland fires in Kali-
mantan and Sumatra in Indonesia is a major cause of trans-
boundary haze pollution.
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particles are primarily composed of organic carbon, which consti-
tutes 50—60% of the total particle mass (Phuleria et al., 2005; Reid
et al,, 2005). PMy 5 aerosols present a high risk of deposition in the
alveoli of lungs and are associated with a greater general health risk
than coarse aerosols (Federal Register, 2006; Lippmann, 1998).
According to version 3 of the Global Fire Emissions Database
(GFED), average PM; 5 emissions from fire (including deforestation,
savanna, forest, agricultural waste, and peat fires) from 1997 to
2010 in Indonesia are 2.9 Tg year™!, accounting for 9.2% of global
fire PM; 5 emissions and 62% of Southeast Asian fire emissions. In
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Indonesia, peatland fire is a dominant source of PM, 5 emissions,
accounting for 55% of all fire sources. Thus, it is a significant
emission source of PM; 5 aerosols in Indonesia.

Many peatland fires occur on Sumatra and Kalimantan islands
during the dry season, emitting gases and smoke aerosols that
cause atmospheric pollution (haze) and adversely affect the
health of people living in surrounding areas. For example, an
unprecedented Indonesian fire episode occurred in 1997—1998
due to the El Nifio—Southern Oscillation (ENSO) event at that
time. Extensive forest fires, including peatland fires, resulted in
the development of a smog blanket that covered an immense
area of 4 million km? in Southeast Asia. This smog affected the
livelihoods and health of 75 million people in six countries and
completely toppled their lives. Moreover, the smog resulted in
the closure of airports; it was cited as the possible cause of an air
crash near Medan, Sumatra, and a tanker collision in the Straits
of Malacca (Stolle and Tomich, 1999). Air pollution attained
previously unknown levels in East Kalimantan, Singapore, and
Kuala Lumpur, with daily average particulate matter reaching
extremely hazardous levels (4000 pg m~>3; Heil et al, 1998).
Although ENSO events considerably contribute to the occurrence
of Indonesian fires, pollution from smoke haze is a recurrent
problem in Indonesia and neighboring countries, even in non-
ENSO years (Tacconi, 2003).

Riau Province in Sumatra is one of the primary hotspots for
peatland fire during the dry season, and the smoke aerosols
generated there cause haze in Riau and in neighboring countries
such as Malaysia and Singapore (Harahap, 2012; Hong, 2012).
However, limited data exist regarding the chemical characteristics
of these smoke aerosols (Othman and Latif, 2013; See et al., 2007)
and the effects of aerosols from peatland fires on the atmospheric
environment and human health. To investigate these effects, the

chemical characterization of fresh smoke aerosols from peatland
fire is necessary. In this study, the carbonaceous species of PM; 5
aerosols emitted from peatland fire were characterized by directly
sampling PM, 5 aerosols at fire hotspots in Riau Province. Moreover,
we determined source indicators of carbonaceous species of smoke
from peatland fires for source apportionment. These data can help
in identifying single or multiple species in atmospheric aerosol
samples that contribute to peatland fires.

2. Materials and methods
2.1. Sampling locations

The sampling locations in this study are illustrated in Fig. 1. The
burning site and background site were located at Sepahat Village
and Sukajadi Village, respectively, in Bengkalis Regency, Riau
Province. The burning site was surrounded by peatland and forest,
and the background site was located ~50 km away from the
burning site and housing estates. Bengkalis Regency lies on the
east coast of Sumatra Island and consists of several islands. This
district covers an area of 1,204,423 km?, in which nearly 85% of the
land exhibits low topography and is covered with tropical forests,
with an average elevation of only 2.0—6.1 m above sea level. Most
of the soils are organosols or peat soils; that is, they contain
abundant organic substances. The temperature in a Bengkalis is
strongly influenced by the tropical marine climate and is typically
26—32 °C. The rainy season generally lasts from September to
January, with an average rainfall of 809—4078 mm year ', and the
dry season usually spans February to August. Fig. 2 illustrates
monthly hotspot counts in Riau in 2011 and 2012 based on
Indofire datasets, confirming that many hotspots are detected in
the area during the dry season.
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Fig. 1. Map of Bengkalis showing the sampling sites.
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Fig. 2. Monthly hotspot counts in Riau in 2011 and 2012.

2.2. Sample collection and analysis

In 2012, background and peatland fire PM, 5 aerosol samples
were collected on May 16—17 and June 13—17, respectively. Two
mini-volume samplers (MiniVol™ TAS, Airmetrics) were utilized to
continuously collect PM; 5 aerosols on Teflon and quartz fiber filters
for 24 h (background) and 2.5—5.2 h (peatland fire), respectively, at
a flow rate of 5 L min~L. PM, 5 aerosols were collected at several
burning sites, about 1.5 m away from peatland fire hotspots and a
background site on 7 and 4 occasions, respectively. Wind speeds in
the peatland fire samplings ranged from 0.610 to 621 m s~
(average: 2.50 m s~ ') and aerosols were collected in smoke plumes.
Quartz fiber filters were heat-treated at 900 °C for 4 h before
sampling to remove any absorbed organic materials.

Filter samples were analyzed to determine PM,5 mass con-
centrations, carbonaceous content (organic carbon (OC) and
elemental carbon (EC)), and the quantity of key biomarkers.

The Teflon filter was weighed using a microbalance (ME5-F,
Sartorius) with a sensitivity of =1 pg in a stable environment of
25.7 £0.432 °C (average + standard deviation) and 26.0 & 0.607 RH
% before and after sampling, respectively, to determine PM; 5 mass
concentrations.

The carbonaceous contents of the aerosols collected in the
quartz fiber filters were quantified using a DRI Model 2001 OC/EC
Carbon Analyzer, which employs thermal optical reflectance
following the IMPROVE_A protocol. The IMPROVE_A temperature
defines temperature plateaus for thermally-derived carbon frac-
tions as follows: 140 °C for OC, 280 °C for OCy, 480 °C for OCs, and
580 °C for OCy4 in helium (He) carrier gas; 580 °C for ECy, 740 °C for
EC,, and 840 °C for EC3 in a mixture of 98% He and 2% oxygen (03)
carrier gas (Chow et al., 2007). OC, EC, and total carbon (TC) were
calculated from the eight carbon fractions as follows:

0C = 0C; + OC; + OC3 + OC4 + OP (1)
EC = EC; + EC, + EC3 — OP 2)
TC = OC + EC (3)

where OP (the amount of pyrolyzed OC) is defined as the carbon
content measured after the introduction of O, until reflectance
returns to its initial value at the start of analysis.

Two key biomarkers, levoglucosan and mannosan, obtained
from the quartz fiber filters were quantified by gas chromatog-
raphy/mass spectrometry (GC/MS). Organic compound speciation

was basically accomplished, following the procedures of Fabbri
et al. (2009) and Pashynska et al. (2002). Aliquots from the quartz
fiber filter were spiked with the internal standard of methyl B-L-
arabinopyranoside before extraction. Each spiked filter was
extracted by ultrasonic agitation for 3 x 20 min periods using 3 mL
of a dichloromethane/methanol mixture (3/1, v/v) (dichloro-
methane: Wako, purity >99.5%; methanol: Wako, purity >99.7%).
The combined extracts were filtered through a Teflon syringe filter
(pore size 0.1 um) and reduced to approximately 100 pL using a
rotary evaporator (250 hPa, 40 °C). Subsequently, the concentrated
extract was dried completely under a nitrogen stream. Prior to
analysis, the total extracts were converted to trimethylsilyl de-
rivatives by reaction with 150 pL of N,O-bis-(trimethylsilyl)-
trifluoroacetamide with 1% trimethylchlorosilane and 90 puL of
pyridine for 3 h at 70 °C.

The derivatized samples were analyzed on a Shimadzu GC/MS
system (GCMS-QP2010-Plus, Shimadzu) equipped with an Rtx-5Sil
MS column (with selectivity similar to that of a mixture of 5%
diphenyl and 95% dimethyl polysiloxane, 30 m x 0.25 mm LD,
0.25 pm, RESTEK). Helium (purity 99.9995%) with an average ve-
locity of 35.3 cm s~! was used as the carrier gas. The GC oven
temperature program was as follows: isothermal at 80 °C for 5 min,
80—180 °C at 3 °C min~', then 180—300 °C at 20 °C min~’, and
maintained at 300 °C for 5 min. The injection port and transfer line
were maintained at 300 °C. The data for quantitative analysis were
acquired in the electron impact mode (70 eV).

3. Results and discussion
3.1. PM> 5 mass concentration

Background and peatland fire PM; 5 concentrations determined
by gravimetric analysis were 239 + 253 pg m~> and
7120 + 3620 pg m>, respectively; that is, peatland fire PMys
concentrations were ~300 times higher than background con-
centrations. These extremely high PM; 5 concentrations present a
great risk to human health, particularly in the case of fire fighters.
Since the high concentration is due to the sampling at 1.5 m away
from the fire, a different value would be obtained in the different
sampling distance.

3.2. OC and EC

The average OC concentrations from peatland fire and back-
ground were 4970 + 3620 pg m~> and 942 + 197 pg m>,
respectively, and  average EC  concentrations were
133 + 46.6 ug m~> and 3.23 + 0.795 pg m~3, respectively. In terms
of the carbonaceous fractions in PM;s5 aerosols, PM, 5 aerosols
emitted from peatland fire were composed of 71.0 + 5.11% OC and
2.05 + 0.509% EC. Conversely, background PM, 5 aerosols were
composed of 39.1 4 5.08% OC and 13.5 + 3.04% EC. The remaining
undetermined mass can be attributed to the various functional
groups in organic aerosols, inorganic ions, metals, soil and particle
bound water.

OC to EC mass ratios (OC/EC) provide some indication of the
origins of carbonaceous PM; 5 (Cao et al., 2005; Chow et al., 1996;
Gray et al., 1986; Turpin and Huntzicker, 1991). In this study, the
average peatland fire and background OC/EC ratios were
36.4 + 9.08 and 2.99 + 0.738, respectively. Few differences in the
OC/EC ratio were observed, regardless of PM, 5 mass concentra-
tions, and the coefficient of variance for samples from peatland fire
was 24.9%. See et al., 2007 reported that the average OC/EC ratio
was 2.42 for PM, 5 aerosols collected in the open field within a
100 m circumference from the boundary of the Indonesian peat-
land fires in 2005. This value is much smaller than our result of
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36.4. The discrepancy is due to the different measurement tech-
niques for the OC—EC split. See et al., 2007 adopted thermal method
whose temperature of OC—EC split was 350 °C. The method would
cause significant overestimation of EC concentration in aerosol
(Gelencsér, 2004). On the other hand, we utilized thermal-optical
reflectance method with pyrolysis correction. OC/EC ratios from
our peatland fire and other vegetative burning sources are illus-
trated in Fig. 3. OC/EC ratios ranged from 4.34 to 79.7; this
discrepancy can be partly attributed to variations in the type and
moisture content of the burning material.

Abundances of eight thermally-derived carbon fractions differ
by carbon sources (Cao et al., 2005; Chow et al., 2004; Watson et al.,
1994). Fig. 4 illustrates the abundances of eight thermally-derived
carbon fractions at both the peatland fire and background sites by
mass percentage of total carbon. Distinct differences in carbon
fractions were observed between the two sites. OCy accounted for
31.7 £ 2.21% of TC in peatland fire samples but only 0.710 + 0.721%
of TC in background samples. OC; accounted for 47.5 + 0.948% of TC
in peatland fire samples and 13.9 + 1.64% of TC in background
samples. OC3 accounted for 7.44 + 1.57% of TC in peatland fire
samples and 40.7 + 2.62% of TC in background samples. OCy
accounted for 1.22 + 0.412% of TC in peatland fire samples and
15.7 + 1.27% of TC in background samples. OP accounted for
9.28 + 1.39% of TC in peatland fire samples and 3.95 + 4.13% of TC in
background samples. Lower EC fractions were observed in the
peatland fire than the background samples. Thus, it was found that
TC in PMy5 aerosols derived from peatland fires was primarily
composed of OC; and OC,.

Fig. 5 illustrates the average percentages of eight fractions in
PMy 5 for the peatland fire samples and those from other sources.
The vegetation burning profiles used as reference were obtained by
ground-based source-dominated sampling of the plumes of small
controlled burns of wood debris at the Big Bend National Park in the
US (see Chow et al., 2004). The carbon fraction abundances differ by
emission source: OCy is enriched (23.9 + 12.4%) in the vegetative
burning profile; OC, is enriched (34.7 + 2.16%) in the peatland fire
profile; OCs is enriched (37.6 & 15.9%) in the cooking profile; EC; is
enriched (23.3 + 10.4%) in the motor vehicle profile. In terms of the
coefficient of variance, the carbon fraction obtained from peatland
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Fig. 3. Comparison of OC/EC ratios in PM,s emitted from peatland fire and other
burning sources. Error bar in this study indicates standard deviation.
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fire is more consistent than any source presented in Fig. 5. Thus, the
peatland profile will be useful for source discrimination.

3.3. Key biomarkers

The organic compounds produced by peatland fires were
analyzed by GC/MS, and an example of typical GC/MS total ion
current (TIC) tracers for the total extract of peatland fire samples is
presented in Fig. 6. Levoglucosan clearly exhibits the highest TIC
peak in peatland fire samples, although mannosan and palmitic
acid were also detected. Palmitic acid is one of the most basic units
of plant fats, oils, and phospholipids (Simoneit, 2002). The major
tracers in smoke emitted from biomass burning are the thermal
degradation (pyrolysis) products of the biopolymers of cellulose
and lignin in woody tissue. The thermal degradation of cellulose
(also hemicelluloses) yields dehydromonosaccharide derivatives,
which are predominant compounds in the smoke (Simoneit et al.,
1999). The major compound is levoglucosan, with minor and var-
iable amounts of galactosan and mannosan. These compounds
cannot be formed by hydrolysis or by the microbial alteration of
carbohydrates; thus, they are specific to burning (Simoneit et al.,
1999). In addition, levoglucosan is considerably resistant to atmo-
spheric degradation (Fraser and Lakshmanan, 2000). Therefore,
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levoglucosan and mannosan are regarded as key biomarkers in
peatland fire aerosols like other biomass burnings.

The average levoglucosan concentrations from peatland fire and
background samples were 464 + 183 pug m~> and
0.278 + 0.155 pg m>, respectively and the average mannosan
concentration were 47.5 + 25.6 pg m~> and 0.0190 =+ 0.0108 pg m~3,
respectively. Levoglucosan and mannosan in background samples
may have originated from wood burning for cooking, agricultural
use, among others. However, concentrations of levoglucosan and
mannosan emitted in association with peatland fire events were
much higher than their corresponding background concentrations.

OC/Levoglucosan ratios vary to some extent for different
burning conditions and wood types (Pio et al., 2008). In this study,
the average OC/Levoglucosan ratio in peatland fire was
10.6 + 1.96 pgC pg~ L For comparison of our peatland fire samples
with biomass burning samples, the average OC/Levoglucosan ratios
for various source samples are presented in Fig. 7, which shows
significant differences in OC/Levoglucosan ratios between the
peatland fire and other emission sources. Thus, this ratio may be
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Fig. 7. Comparison of OC/Levoglucosan ratios of PM, 5 obtained from peatland fire and
other burning sources. Error bar in this study indicates standard deviation.

Table 1
Range of Levoglucosan/Mannosan ratios in PM, 5 emitted from several sources and
background.

Levoglucosan/Mannosan Reference
Peatland fire 7.09—-14.0 This study
Background 10.7-18.9 This study
Hardwoods burning 13.8-52.3 Engling et al., 2006
Softwoods burning 2.6-5.0 Engling et al., 2006
Grasses burning 108—203 Engling et al., 2006

useful for source discrimination for peatland fire. However, because
levoglucosan is emitted from other biomass burning sources and
there are other types of biomass burning in Riau, Sumatra,
Indonesia, selection of only OC/Levoglucosan ratio for source
apportionment of peatland fire can lead to overestimation of the
contribution of peatland fire. Hence, other indicators for peatland
fire are needed.

The relative amounts of the individual anhydrosaccharides in
biomass smoke aerosols can be used for further source assignment
of specific biofuels (Fabbri et al., 2009; Alves et al., 2010). Here, we
investigated the Levoglucosan/Mannosan ratios and compared
those ratios from peatland fire and other biomass burning sources.
In this study, the average Levoglucosan/Mannosan ratios in peat-
land fire and background were 10.6 + 2.03 and 14.5 + 3.39,
respectively. For comparison of our peatland fire samples with
other biomass burning samples, the average Levoglucosan/Man-
nosan ratios for various source samples are presented in Table 1,
which shows the significant differences in Levoglucosan/Mannosan
ratios between the peatland fire and other emission sources. Thus,
this ratio should be more useful for source discrimination for
peatland fire than OC/Levoglucosan ratio.

4. Conclusions

PM, 5 carbonaceous aerosols were collected at a peatland fire
hotspots and a background site on 7 and 4 occasions, respectively.
PM; 5 aerosols emitted from peatland fire were observed in very
high concentrations (7120 + 3620 pg m~>) and were primarily
composed of OC (71.0 + 5.11% of PM; 5 mass).

The OC/EC ratios (36.4 + 9.08 for peatland fire), abundances of
eight thermally-derived carbon fractions, OC/Levoglucosan ratios
(10.6 + 1.96 for peatland fire), and Levoglucosan/Mannosan ratios
(10.6 + 2.03 for peatland fire) observed here represent a signature
profile that seems to be inherent in peatland fire emissions.
Therefore, it is suggested that such profiles are useful for peatland
fire source discrimination.

In future studies, additional chemical speciation for fresh and
aged smoke from peatland fires will be required to estimate at-
mospheric environmental impacts and/or adverse health effects
(e.g., humic-like substances, polycyclic aromatic hydrocarbons).
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