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Abstract — The main purposes of this paper are to analyse and to compare power quality, modes
of machine operation and robusness under two difference control strategies on DFIG-based wind
turbine systems: (1) Rotor speed conirol strategy (RSCS) and (2) Power conitrol strategy (PCS).
Both of these strategies could be utilized to maximize wind-power harvesting.In this work, the
feedback control loops are designed by using the same optimum Proportional Integral-based
vector control strategy. The major focus in this study is on a small-scale wind turbine that
characterized by a small mass moment of inertia. By using simulation studies, it is found that the
power dynamicresulted by the two control strategiesunder fluctuating wind conditions
arerelatively different: the power generated underthe RSCSis more fluctuate compare to the PCS.
Even, for exireme cases where the wind speed changes suddenly, the ufilization of the RSCSfor a
while could bring the machine enters to the motoring modeln the motoring mode, instead
delivering power to the grid, the stator windings of the DFIG will absorb some power from the
grid. From simulation results, it is also found that the RSCSin general is less robust compared to

the PCS. Copyright © 2017 Praise Worthy Prize S.r.l - All rights reserved.
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Nomenclature

Turbine blade swept area
Wind turbine friction coefficient
Generator friction coefficient
Turbine power factor
rbine inertia
Wind turbine moment of inertia (k% m?)
Generator moment of inertia (kg m”)
Stiffness coefficient
Proportional gain and Time integrator of the
Stator Inductance (H)
Mutual Inductance (H)
Turbine mass (kg)
Gear ratio
Wind power (W)
Wind turbine power output (W)
Optimal wind turbine power output (W)
Stator active power (W)
Stator reactive power (VAr)
Turbine blade radius (m)
Stator Resistance (ohm)
Laplace variable
Time constant of the closed loop system (s)
wind turbine torque (N m)
Electromagnetic torque of the generator (N m)
d-q rotor total control output
Output of PI controller
Wind speed (m/s)
d-axis component of the stator voltage (V)
and current vector (A)

Copyright © 2017 Praise Worthy Prize S.r.l. - All rights reserved

Vol d-axis component of the rotor voltage (V) and
current vector (A)

P Air density (kg/m”)

Wit Turbine rotor rotation speed (rad/s)

[ Turbine rotor rotation speed reference (rad/s)

Wind turbine tip speed ratio

68 ] Blade pitch angle (degree)
A
Aapt Optimal wind turbine tip speed ratio

W, & nerator rotor rotation speed (rad/s)
WYas d-axis component of the stator flux (V m)
Yys g-axis component of the stator flux (V m)
Yar d-axis component of the rotor flux (V m)
Yor g-axis component of the rotor flux (V m)
(o Synchronous frequency (rad/s)

Wgy Slip frequency (rad/s)

o Leakage coefticient

I. Introductio

It is well-known that until now, DFIG-based wind
turbines are one of the most popular wind power
generation systems worldwide [1]-[3].

The DFIG-wind #bine systems could be categorized
as variable-speed wind turbines (VAWTs) where the
speed of the turbine rotor could be controlled to get
optimized wind energy harvesting. Compared to other
wind turbine generation systems, the DFIG-wind turbine
system is more superiofsldue to several reasons as
follows: (1) Independent control of active and reactive
powers, (2) Reduction in power converter losses and (3),
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Reduction in wind nmn:s mechanical stresses [4]-[7].

Technically, the DFIG is aound rotor induction
machine in which the three stator windings of the
machine are directly connected to a three-phase gnd.
while the rotor windings are connected to the gnd wvia
AC/DC/AC cfEerters. In generating the machine mode,
the electrical power always flows from the stator to the
grid.

However, the direction of power flow in rotor winding
basically depends on the state of the rotor speed: if the
rotor runs below the sffghronous speed of the machine
(sub-synchronous), the rotor will receiv@ower from the
grid via the AC/DC/AC converters, and conversely if the
rotor runs beyond the synchroms speed of the machine
(super-synchronous), then the rotor will deliver power to
the grid via the same converters.

To maximize the wind powcroductionof wind
turbine systems, an algorithm well-known as maximum
power point tracking (MPPT) is usually utilized as a
main strategy to extract wind power [8]-[9]. In this
strategy, tm‘otor of the generator varies to track the
maximum power generated by the turbine.

The tracking of maximum power using the MPPT
algorithms in practice could be implemented in two
different ways: (1) The rotor speed control strategy
(RSCS) [10]-[13] and (2) the power control strategy
(PCS) [14]-[16]. In the RSCS, the MPPT [{findirectly
achieved by means of a feedback control of the rotor
speed. The rotor speed m:rcncc in this strategy is
derived from the optimal Tip Speed Ratio (TSR) of the
wind turbine. Whereas, in the PCS, the MPPT is directly
derived by means of a feedback control of the generator
stator power.

The statorvcr reference in this strategy is derived
from the slip and the maximum output mechanical power
of the wind tur#3. Due to the control strategies different
principles. the dynamic of the wind turbine variables in
general will also be different depending on the chosen
strategy.

There are several works trying to investigate the
control strategies of the DFIGEZked wind turbine
systems. In [17], Dongdong Li, etal investigated the
dynamic of the wind turbine variables under RSCS and
PCS. To explore the output variable response in transient
state, Dongdong Li used step wind changes. The
relatively complete investigation of the control strategies
and their influences on performance were studied by
Ling, Yu et.al. [18]. In their studies, the power output and
dynamic rotor speed as well as the power coefficient
resulting from control strategies were investigated.

The main objective of this paper is basically in line
with the two last papers, however the study of the wind
turbine dynamic done in this paper is relatively more
complete. Besides investigating the problems of power
quality, efficiency, and stability of the rotor speed. the
authors also present control design steps and study the
effect of controller parameter changes on control system
performances. In this work, the focus is on a small scale
DFIG-based wind turbine system.

Copyright © 2017 Praise Worthy Prize S.r.l. - All rights reserved

II.  System Model

Fig. 1 shows the topology of a Effical DFIG-wind
turbine system. Compared to other wind turbine-based
power generation systems, the control system of a DFIG-
wind turbine is relatively complicated. As shown in Fig.
1. there are two corf@fter systems which are
independenily controlled: a Rotor side converter (RSC)
and a Grid side converter (GSC). The major role of the
RSC control system is to control rotor excitation currdg}
such that the control objective could be achieved. In
many cases, the objective of the control system is to
extract {fE@maximum wind power by means of a
feedback control of the rotor speed or the stator power.
@ hereas the GSC control system has the main function
to inject the energy surplus at the DC bus capacitor to the
grid by means of regulating the voltage of the DC bus at
a certain level [19].

3t

OFIG kel [+ REC cse
Siralegy Controller Controller
I

Fig. 1. DFIG-Wind Turbine control system model

The operation mode of these two converters basically
depends on the state of the generator rotor speed and will
always be opposite: In the sub-synchronousEEhte, the
RSC has the role of inverter that converts the DC power
of the DC bus capacitor to the AC power of the rotor
windings, and at the same time, the Gmms the role of
rectifier by converting the AC power of the grid to the
DC power of the DC bus capacitor. While at the super-
synchronous state, the RSC has the role of rectifier by
converting the AC power of the rotor windings to the DC
power of the DC bus, and at the same {2, the GSC has
the role of inverter by converting the DC power of the
DC bus to AC power of the grid. Due to the inverse
operation of these two converters, the cofffuration of
these converters is also well-known as back to back
AC/DC/AC converters.

From the control system point of view, the rotor side
DFIG-wind turbine system model is compofZfJof several
important component and input models: a wind turbine
aerodynamic model, a drive train model. a DFIG model.a
wind model, and a control system model.

II.1. A Wind Turbine Aerodinamic Model and MPPT
DFIGQW’O! Strategies

A Wind turbine is an energy conversion system that
converts wind power into mechanical power and

International Review of Electrical Engineering, Vol 12, N. 2
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subsequently transforms this mechanical power into
electrical power via a generator. The formulation of wind
power-P,.;,s (watt) in general is represented by (1):

Pyina = %PAVB M
where p, 4, and v are respectively air density (kg{m"),
turbine blade swept area (m®). and wind speed (m/s).
However, in practice, wifffJpower cannot be always
converted into mechanical power, the power absorption
by the wind turbine (P,,) depends on the turbine power
factor (C,) which is affected by the turbine design. Eqgs.
(2) and (3) respectively show the power and its torque
generated by the wind turbine:

1
Pwt = "Z'pAvaz (2)
P
Tt = w—”‘t 3)
w

where @y, 1s the turbine rotor rotation speed (rad’s).
Referring to [20], the power factor of a wind turbine
could be approximated by:

c, =073 (—1 —0‘003)15 0.58
P A C0028 BT g

—0.0028%" — 13.2) x “)

_13_4( 1 0.003)

X e A—002f i+l

In this case, f and A are respectively the blade pitch
angle (degree) and the wind turbine tip speed ratio-TSR
which is defined as:

wat
- v

A &)
where R is the turbine blade radius (m). By using (4), the
relation between C,with TSR for R=25 and several
values of f could be shown in Fig. 2.

03 T T T T ela0 | T T T

Fig. 2. The plot of C, vs TSR for several value of f#

The important point that can be derived from Fig. 2 is
that, for a certain value of f, there is always a maximum
point of C,, related to the optimum TSR 4,,. By using it,

Copyright © 2017 Praise Worthy Prize S.r.l. - All rights reserved
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the maximum wind power could be practically extracted
by means of controlling the turbine rotor speed such that
an optimum TSR is achieved at any time. This technique
1s also known as the RSCS. To gain this optimum TSR,
the rotor speed reference (w“.,') could be directly derived
from (5)

©)

Besides the RSCS, the MPPT could be achieved
by using the PCS. In this strategy, the output power of
the wind turbine 1s directly controlled so that the
optimum TSR is achieved at any time. In this control
strategy, the power reference could be derived from (2).
For the optimum TS8R, the arbitrary value of wind speed
basically relates to certain turbine rotor speed. so by
considering the TSR formulation, the active power
reference could be represented as shown in (7):

Po = ‘!r{<:»;:»t“'-“-'u»'t3 @)

where:

K (1 pAR3Cp_max)
ort 2 loptg
Fig. 3(a) and Fig. 3(b) respectively show the
mechanical turbine power (P,,) and the torque plots
versus the turbine rotor rotation speed for several wind
speeds along with their references.
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(b)

Figs. 3. The dashed hine show (a) the power reference and (b) the torque
reference in the MPPT strategy (with R=2.5 m)

11.2.  Mechanical Drive Train Model

The major purpose of a drive train system in the wind

International Review of Electrical Engineering, Vol 12, N. 2
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turbine system is to transmit mechanical gvcr from a
low speed wind turbine to a relatively high speed
generator. The interconnection of a drive train system
could be modeled as shown in Fig. 4 [20]. B,,. B, and
K respectively are a wind turbine friction coefficient, a
generator [{Btion coefficient and a stiffness coefficient.
However due to the size of the wind turbine under this
study is relatively small, then for control design
simplification, the frictions in the system are ignored and
it is also assumed that the shaft is very rigid. Therefore
with these assumptions, the dynamic model of the
mechanical drive train could be represented as one-
lumped mass model that could be mathematically
represented by (8):

dw, Tt

A

where J,,,. J,. n are respectively the wind turbine moment
of inertia (kg m?), the generator moment of inertia (kg
m®) and the gear ratio. Whereas w, and 7. are
respectively the generator rotor rotation speed (rad/s) and
clectromagnetic torque of the generator (Nm). By
referring to [21], the turbine mass and the turbine inertia
could be calculated by using these relations:

M, = 1.6R*3 (9
Jwe = 0.212M,,,R? (10)
Wind turbine
s
Tar X Tu I
( —=
B generator
lremili

Fig. 4. Mechanical model of the wind turbine and the generator

II.3.  DFIG and Grid Mathematical Model

In the synchronous reference frame, the dynamic of
the DFIG could be represented as follows [22]:

d
Vgs = Rgigs + dt (Yas) — ("-’se'pqs (11a)
. d
Vgs = Rsigs + E (¢qs)+wse¢'ds (11b)
. d
Var = Relgr + a (Par) — (wge — “—'r)'ybqr (l1c)
. d
Vgr = Rplgr + E(wqr) + (Wge — W )Payr (11d)

whereas the relations of the currents and flux linkages
are:

Copyright © 2017 Praise Worthy Prize S.r.l. - All rights reserved

Was = Lsigs + Liniar (12a)
Was = Lsigs + Limigr (12b)
Yar = Lylar + Linlas (12¢)
Yor = Lyigr + Linigs (12d)

In DFIG systems. the electromagnetic torque. the
stator active and reactive powers are calculated
respectively by using (13), (14) and (15) below:

3 , .
T, = Ep(wdslqs - qulds) (13)
3 . )
h=3 (Vasias + Vysigs) (14)
3. .
Q; = E (vqs"-ds - vdslqs) (15)

26

Econtml thmllm power independently. In this control
scheme, the stator flux is aligned with the d-axis of the
rotating reference frame. By ignoring the stator flux
dynamic and usm the fact that the stator resistance 1s
quite small, the d-axis stator flux and the g-axis stator
current could be respectively simplified by (16) and (17)
below:

P,
Yas = = (16)
se
. [
lgs = _L_stqr (17

mubstituting the last two equations into (13)-(15),
the electromagnetic torque and the stator power of the
DFIG could be respectively represented as follows:

3 Ly v .
Te= 279 Ly Wy Lgr (18)
3L )
P = =51 (asiar) (19)
]
_3( Vs® Vgskm 5
Qs = 2\ wgoLs L, Lar (20)

EXrom the last three equations, it is shown that the
torque and the active slalbowar could be controlled by
manipulation of the rotor g-axis current component while
the reactive power could be controlled by a manipulation
of the rotord-axis current component so the decoupled
control is achieved.

I 4. Wind Model

The wind speed in a certain time range could be

International Review of Electrical Engineering, Vol 12, N. 2
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mathematically expressed as composition of average and
perturbation due to wind turbulence [23].

Fig. 5 shows the real sample of a very short term wind
speed recorded at Nganjuk, in Indonesia, an area that has
high-potential wind energy. However, the wind profile
used in this study was generated by the computer
program.
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Fig. 5. Real sample of wind speed

II. Control Design

By referring to the DFIG-wind turbine model, the real
and reactive power of the system could be respectively
controlled by manipulating the d-axis and g-axis current
components of the generator rotor. In DFIG-wind turbine
systems, the reference of these current components could
be derived from the outer feedback control output of the
stator power, as in the power control strategy, or from the
outer feedback control output of the rotor speed. as in the
rotor speed control strategy.

Therefore, practically therdffe two control loops
which need to be designed: the inner current control loop
and the outer power control loop or the rotor speed
control.

HI.1. Inner Current Control Loop Design

By substituting the rotor dynamics with rotor voltage
equations, and doing some simplification steps, the rotor
currents dynamic could be derived from:

d R, . 1

T lar = 7 g lar T Var +dar @n
r [

d . R, . 1

alqr= —Elqr +E1ﬁqr+dqr (22)
o fa

In this case, ¢ is well-known as a leakage coefficient,
while dy and d, could be regarded as disturbances:

Lt
o= [1 - Ler]

ddr = l:‘Uslil-qr

gLy Vs

LgL, 6 wg,

dqr = Twglagr —

Copyright © 2017 Praise Worthy Prize S.r.l. - All rights reserved

As shown in (21) and (22), the dynamics of the d-g
axis current components of the circuit are basically
coupled first-order systems. To control the current, the
standard PI controller plus the feedforward controller
could be utilized as follows:

Ug(qyr = Upi — daggyr 8 (23)
2
where 44, and up; are respectively the total control
output and the PI control output. By substituting (23) to
(21) and (2B} the dynamics of the d-g axis current
components could be represented by the transfer function
form:

Ia(q)r(s) _ 1/R.
Ug(gyr (5) (""'—6) s+1 24

Ry

Ha(q)(s) =

By utilizing the pole placement technique, the PI
control parameters could be casily obtained by using
(25):

R Lo
K== Kp = — (25)
Tey

where K, K, and T, are respectively an integrator gain, a
proportional an and a desired closed loop time
constant. The final transfer function of the closed loop
system by using the pole placement technique is shown

in (26):

fc!(r.])r(s) _ 1

Layr(®) T Tgs+1 o

1.2, The Outer Loop Conirol Design

As discussed in{ftion (2). there are two strategies
that could be used to extract the maximum wind turbine
power: the PCS and the RSCS. In practice, these two
different control strategies could be implemented by
using a PI controller where the PI parameter could be
tuned by using standard methods.

However, there is onc {fhg that should be carefully
considered: The PI mode for the power control strategy
and the PI mode for the rotor speed control strategy are
different. In this case, the PI mode for the power control
strategy is the reverse mode, while the PI mode for the
rotor speed control strategy is the direct mode. The
determination of the mode of the control strategies could
be basically achieved from the EEJalysis of power and
torque relation vs rotor speed, as depicted in Fig. 3. From
the plots, it could be scen that for a certain wind speed
value, the change of real power will have the same
direction of the torque change (direct acting) and will
have opposite direction with respect to the change of
rotor speed (reverse acting). Thus, by considering those
facts, the power mode or the torque control is reverse
mode, while the mode of the rotor speed control is direct
mode, as depicted in Figs. 6.

International Review of Electrical Engineering, Vol 12, N. 2
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refP, . e “ refiy
+
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ref @ . e n ref iy
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o
(b}

Figs. 6. Controller mode: Reverse mode of the PCS (a)
and direct mode of the RSCS (b)

11121 Power Control Loop Design

An easy way to implement PSC is by using the stator
power feedback control. By referring to (19) and (206),
the transfer function of the real stator power could be
rewritten as:

R(s) K
Ip(s)  Tas+1 @7

where:

3L,
K= =21, (vas)
By using the pole placement technique as done in the
current control loop design, the PI controlparameter
could be obtained:

1 1

=E,Kp ==

K; X

(28)

By using the same technique, it could be proved that
the optimal parameter for the reactive power feedback
control could also be derived by using (28). Eq. ()

shows the closed loop transfer function of the PCS by
using the pole placement technique:

Pi(s) _ 1
ps(s) Tas+1

(29

By assuming that the generator is a lossless
component, the real stator power reference (p;(s)). could
be derived from the power balance relation, as shown in
(30):

Py =F+ B (B30
Considering that B. = —sP;, then:
'Pwt
P,
ST 1-s

Therefore, with reference to the optimal power
relation in (7). the reference for the real stator power
control strategy could be represented as:

Copyright © 2017 Praise Worthy Prize S.r.l. - All rights reserved
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._Kopt
f1—5

Wyt €19}

whereas the reference for the reactive power feedback
control is usually set to zero.

I11.2.2. Rotor Speed Control Loop Desi)

With reference to the drive train mechanical model of
the wind turbine, the dynamics of the DFIG rotor speed
could be basically represented as shown 1n (32):

doy To Ty
O 0
dt ] nf (32)

where J is the total moment of the wind turbine and the
generator inertia:

)

By considering (18). then (32) could be rewritten as
follows:

dw,, Keiqr ng
= - 33
dt ] nj 33

where: K, = —>p-—=—.
€ P Ls wse
The transfer function ofw, to I.in this case could be

derived by substituting (26) to (33):

H(s) =

we(s) _ ( 1 )K, (34)

lr(®)  \Tus+1/Js
An easy way to get the optimal parameter PI method
for the model with the transfer function (34) is by using
the symetrical optimum method. By using this technique,
the parameter of the PI could be found by:
] Kp

Kp = a!ce'."ﬁ"((“ = pr where a =2,3... (35)

IV. Simulation Result and Discussion

To investigate the dynamic of the DFIG-wind turbine
under control of @ PCS and the RSCS, the complete
simulation model based on the component models of the
EAG-wind turbine system has been built under
Matlab/Simulink environment. Fig. 7 shows the complete
block diagram of the wind turbine control system under
simulation stu(§El

The model parameters of the wind turbine used in the
@idy are presented in the Appendix. In this work, the
time sampling and the desired time constant for the
current and power control loops are lms and 10ms
respectively. For those parameters, the optimal control
parameters which resulted from the design methods are
shown in Table I.

International Review of Electrical Engineering, Vol 12, N. 2
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Fig. 7. Block Diagram of the DFIG-wind Turbine model B A B
: 4 : :
TABLE - ] Y/
THE OPTIMAL CONTROL PARAMETERS s ; i if e ey
P Current Power Rotor speed # Sl SR e
arameter :
control control control oz i i i
K 7197 0.002266 426 (a-30) PT] S \ | ..... . | A | .........
£ L] L [ L 188 120 1
K, 650 2.2668 4.73 o
(b}
V.1, General Performance of the Control Strategies Figs. 9. Response of the rotor speed (a) and the slip of the rotor (b)
under two different control strategies
The performance of the two different control strategies
under the sarawind speed profile will be evaluated in
this Section. Fig. 8 shows the wind speed g@&rated by sanok- i
the computer used in this simulation. For the wind speed &0
profile depicted, the response of the output variables of e M
the DFIG-wind turbine are ploted in Figs. 9 to Fig. 12. oy I
is
" 2
" FIT Y
%8 [T ]

time (5]

wind speacimis)

o

Fig. 10. Response of the total power
under two different control strategies

H H ———The pwer contel staegy
: : The o s od costres avase gy

time (s}

Fig. 8. Random wind profile that used in the simulation

From Fig. 9(a). it is clear that the rotor speed response
under PCS and RSCS in general is relatively different. : : :
Through a careful observation, it seems obvious that the SO0 NSRRI A T N e ¢
speed fluctuation that @@lited from RSCS is almost the
same as the fluctuation of wind speed.

statar pawer (W
i
T

tme (5)

In this case, the more fluctuating the wind speed, the a)

more fluctuating the power generated by the generator
too. Whereas, compared to the RSCS, the speed response
of the PCSunder the same wind profile looks more
dafff@ned.

From Fig. 9(b). it could be seen that for the first 70
seconds simulation time, the relatively high wind speed
will make the rotor under both of the control strategies
rmn in super-synchronous state (the slip is negative),
while for t>70s where the wind speed starts to slow
down, the rotor speed will start to entering the sub-

Fatsr powet [W)

synchronous state and this time the rotor slip will start to Figs. 11. Response of the stator power (a) and the rotor power (b)
be positive. under two different control strategies
Copyright © 2017 Praise Worthy Prize S.r.l. - All rights reserved International Review of Electrical Engineering, Vol 12, N. 2
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Fig. 10 shows the DFIG power dynamics for the two
control strategies. Almost similar to the response of the
rotor speed, the power dynamic resulting from PCSgEbks
more dampened and smooth compared to the power
generated by the RSCS. Thus, from the power quality
point of view, the PCS is superior compared to the
RSCS.

As it has been discussed in Section 2. the total power
generated by the DFIG could be basically decomposed in
two power components: the stator power and the r@ar
power. The response of these powers are shown at Fig.
11(a) and Fig. 11(b) respectively. From Fig. 11(a) it is
shown that the stator pcmr i1s always positive, or, in
other words, the stator powfl always flows from the
stator to the grid. However, as shown in Fig. 11(b), the
direction of the rotor power will basically depend on the
rotor slip: in super sy onous condition, the rotor
power will be positive, this means that the real power
will flow from the rotor to the AC/DC/AC converters,
while at the sub-synchronous condition, the power will
be negative, this means that the power will flow in the
coldler direction.

Fig. 12 shows the power coefficient of the wind
turbine under two different control strategies. From the
plots it is obvious that during power extraction, the
power coefficient under the PCSalwayvsfluctuates around
the optimal value, whereas the power coefficient under
the RSCSis almost settled at the optimal value. So from
the MPPT point of view. the PCS is less efficient
compared to the RSCS.

T T T T
i| = The power control strlegy
oaBt The mter spasd contral stratagy
LS
0479
a
o
1478
04T
2475 -
04 | i i i i 1
o 20 40 L 20 100 120 140

time (5)

Fig. 12. Power coefficients of the wind turbine under
two different control strategies

V.2, Transient Characteristic: a Deeper Analysis

In this subsection, the transient response of the DFIG
output variables such as the rotor speed and the output
power under PSC and RSCS will be analized more
deeply. As could be seen from the previous results, by
using the random wind speed, the dynamic of the wind
wrbine  output variables under the different control
strategies are not easy to distinguish. Due to the fact that
a wind turbine control system is basically a regulator
system as well as a trackingflystem. the changes of the
wind speed in this casecould be regarded as a disturbance
to the control system. From the control system point of
view, the behavior of the output variables will emerge
and look apparent if the wind turbine is disturbed by
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relatively extreme signals such as step signals.

Therefore, to explore the transient dynamic of wind
turbine under extreme case, in this subsection, the control
strategy was tested by using wind profile (as shown in
Fig. 13), although this wind profile is rather unrealistic in
nature.

However, the step changes of wind are suitable to
explore the transient characteristic that may bmal
obvious in the random wind speed profile.For the wind
speed profile in Fig. 13, the responses of the rotor speed
and the stator power output are depicted in Figs. 14.

1356 T T T

wind speed{m/s)
&

o

Fig. 13. Almost step changes of the wind speed
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Figs. 14. Response of the rotor speed (a) and the stator power (b) under
two different control strﬁcs with wind profile in Fig. 13

From Fig. 14(a) it can be seen that the transient
response of the rotor speed under PCS and RSCS are
casy to distinguish: in the event of sudden wind changes,
the rotor speed under PCS will gradually change.

This is due to two main factors: (1) for every wind
change. the turbine inertia (although relatively small) will
prevent the rotor speed from being suddenly changed, (2)
in the PCS, the reference will also gradually change until
a new equilibrium is reached. Whereas the rotor speed
under the RSCS will follow the reference chang@)
quickly. The reference changes in the RSCS itself is
proportional to the wind speed change. so if the wind
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speed suddenly changes, then the rotor speed reference of
the RSCS will also change in the same way.

The more interesting result came from the transient
state of the stator power output. By looking at Fig. 14(b),
the trend of the stator power under the PCS and the
RSCS look very different: for sudden changes of the
wind speed, the stator power under the PCS will
gradually change in the same direction.

This characteristic basically comes from the fact that
under the PCS, the stator reference changes for the
sudden change of wind speed will be gradual, and in the
other side.the transfer function of the model (as discussed
in section 3)ld be simplified to a first order system.

Whereas, for sudden changes of wind speed, the stator
power under the RSCS will also change almost
instantaneously and rapidly.

However, as shown from the plot, before the stator
power settles to the new equilibrium, the stator power
will experience overshoot/'undershoot for a while at the
opposite direction. This is due to the fact that the mode
of the PI controller for the RSCS is a direct mode: for
every positive error, the control system will generate a
negative control output and vice versa until new
equilibrium is reached.

Through a careful observation of Fig. 14(b), it can also
be seen that the use of the RSCS for controlling wind
turbine systems could make the DFIG enter the motoring
mode in the transient state although for a while (generate
negative stator power).

1.3, Control Loop Sensitivity

In this study, the sensitivity of the PSC and RSCS
control loops are investigated simply by comparing the
transient performance of each control strategy by using
two different PI parameters: the optimum PI parameters
(Kpop and Ki,,) and the non-optimum PI parameter
(0.1Kpop and 0.1 Kiyy). The wind profile used in this
inftigation is depicted in Fig. 13.

Fig. 15(a) and Fig. 15(b) respectively show the plots
of the slip and stator power under the PCS with these
different PI parameters. From the plots, it is shown that
the slip and stator power response under PCS are almost
the same for the different PI control parameters. In other
words, the performance of the PCS is relatively
independent flbm the chosen PI control paramaters.

Whereas, Fig. 16(a) and Fig. 16(b) show the plots of
the slip and power stator under the RSCS respectively.
From the plots, it 1s shown that the slip and stator power
dynamic under the RSCS for the different PI parameters
depicts different characteristics.

In this case, for the non-optimal value of PI
parameters, the slip speed will have more overshoot and
at the same time the stator power will be more damped
for the change of the wind speed compared to the optimal
ones.

Thus. the control loop performance of the RSCS is
more sensitive to the variation of control parameters
compared to PCS.
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V. Conclusion

The analysis and comparison of the performance of
DFIG-small scale wind turbines under the PCS and the
RSCS have been investigated in this paper. By using the
simulation study, it is shown that the output variable
dynamics of the DFIG-based wind turbine system under
fluctuated wind speed condition strongly depends on the
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utilized DFIG-system control strategy. Based on the
simulation results, the power coefficient result from the
RSCS compared to the PCS during wind tubine operation
1s almost settled in its optimum va]u@dcpendemly from
wind speed fluctuation. However, from the the power
quality point of view, it is shown that the PCS is
superior than the RSCS. In this case, the power dynamics
resulted from the PCS is more dampened and smooth
compared to the power generated by the RSCS for the
same wind fluctuation. From the simulation study. it is
also shown that compared to the PCS, Bl RSCS is very
sensitive to the change of the control parameters of the
DFIG-wind turbine system.

Appendix

DFIG parameter:
R.=0.65 ohm. L,= 67.6e-3 (H). L= 63.9¢-3 (H). R =
0.65 (Ohm), Ly = 67.6e-3 (H), Pole=2, K.=5.614,
v=311, @,=2>pi=50 rad/s

Wind Turbine parameters:
Blade radius =2.5 (m), Gear ratio=3, Jg,~0.0203 (kgm?').
Jyr=17.4 (kgm?), J=0.717(kgm?)
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