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The sliding contact of soft material surface due to a rigid indenter is different from metal and some other 
polymers. A stick-slip motion is more frequently obtained than a smooth motion. By modeling the soft 
material as low damping viscoelastic material, this study proposes an analytical model to identify the 
stick-slip behavior of sliding system. The sliding system is a fixed rigid indenter that slides against on a 
moving soft material surface. A stick-slip model is developed and the motion of the sliding system is assumed 
to be in a solely tangential direction. By implementing the simple coulomb friction law, an exact solution is 
presented in the case of no damping of the sliding system. Results show that the periodic displacement of the 
stick-slip model is strongly depending on the friction force, sliding velocity and material stiffness. 
Furthermore, the effect of a viscous damping and velocity-dependent friction on the behaviour of the sliding 
system are discussed. 
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1. Introduction 

The sliding contact between a soft indenter and rigid 
floor was experimentally investigated to find stick-slip 
phenomena and the induced force of indenter [1]. 
Experimentally, Coveney et al. [2] performed the sliding 
contact between rubber surface and a rigid indenter in 
two modes, i. e. fixed load of indenter and fixed depth of 
indentation. Experimental investigations showed that 
along with the sliding contact or abrasion processes, the 
stick-slip phenomenon and periodic force occurred [2-4]. 
Consequently, a periodic wear pattern of abraded rubber 
surface was formed. Moreover, Fukahori et al. [4] stated 
that the formed wear pattern spacing mainly depended on 
the frequency of stick-slip oscillation. 

The stick-slip phenomenon is often associated with 
the friction between two contacting bodies. Some 
analytical models to describe the stick-slip phenomena 
were proposed. Numerically, Nakano et al. [5-8] studied 
the stick-slip contact of a sliding system between a soft 
indenter and a rigid moving floor for preventing stick to 
occur. The effect of velocity-dependent friction of the 
sliding system was analyzed that may change the 
stick-slip behavior, i.e. from stick-slip motion to full slip 

(steady sliding) motion or vice versa [7-10]. 
Experimentally, the stick-slip behavior associated with 
Schallamach wave and bulk deformation of the sliding 
system was investigated by applying a cylindrical 
indenter against a soft rubber surface in various driving 
speed and normal load [11]. 

The stick-slip contact on rubber sliding is often 
associated with the compliant behaviour of the rubber. It 
has been noted that the rubber has compliant behaviour 
in tangential as well as normal direction. Experimentally, 
Coveney et al. [2] showed that the stick-slip oscillation of 
the rubber surface by fixed depth indentation mode was 
quite different to fixed load mode, especially in moderate 
and high sliding speed. It showed that there was a 
difference of the stick-slip oscillation frequency between 
both modes, therefore, stick-slip amplitude or periodic 
displacement was also different. The periodic 
displacement obtained mainly influenced the pattern 
spacing of abraded rubber surface that had a correlation 
to the wear rate of rubber along abrasion [3,12]. 

This study proposes an analytical model of the sliding 
system with a solely tangential motion. Here, the sliding 
system is a fixed rigid indenter that slides against a 
moving soft material surface. The soft material chosen is 
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a low viscous damping viscoelastic material. This model 
may be closer to the sliding contact of the fixed depth 
mode than fixed load mode from the rubber sliding. An 
analytical solution is presented in an exact solution for 
the sliding system without damping and an approximate 
solution for the sliding system with a low viscous 
damping to describe the stick-slip behaviour of that 
model. Furthermore, the effect of velocity-dependent 
friction in the behaviour of the sliding system are also 
discussed. 

2. Analytical model and methods 

The sliding system considered is shown in Fig. 1(a). 
It consists of a fixed single indenter and the tangentially 
driven soft surface. The analytical model Fig. 1(b) 
representing the sliding system consists of a mass m, 
damping coefficient c and tangential stiffness k, with the 
constant of driving velocity V. As shown in Fig. 1(b), the 
mass m represents the effective oscillating mass that is a 
part of the soft material around the contact between the 
indenter and the soft surface. 

Based on a fixed depth of the sliding indentation, 
oscillations in the normal direction are neglected and the 
normal force Fn is assumed to be constant. The tangential 
force Ft can be either a static friction force Fs or kinetic 
friction force Fk. The value of m, c and k are assumed to 
be constant, so a linear differential equation of motion is 
applied. By starting the sliding system in the stick phase 
at time t = 0 to t = tod, the formulation of driving force Fd 
and initial sticking time tod can be written as, 

dF kVt cV      (1) 

s
od

F cV
t

kV


     (2) 

Boundary condition of the mass m before starting to the 

slip phase is given as, 

 ( ) 0  and  0 od odx t x t     (3) 

where (•) is time derivative. The slip phase starts if the 
driving force Fd reaches to the static friction force Fs at t 
= tod and the governing equation of motion of this phase 
is expressed as, 

kmx cx kx cV kVt F       (4) 

Because of the resistances during the slip phase, the 
mass m stopped if the velocity ẋ leads to zero at t = (tod 
+ tdslip)and the stick phase starts again. It is rather 
complicated to solve Eq. (4) above in an exact solution. 
Therefore, this study develops an approximate solution 
for the damped sliding system, on the other side, an 
exact solution is developed for un-damped sliding 
system (or no damping system). 

In this analysis, some of dimensionless numbers and 
parameters are introduced as follows, 

s

k

F

F
      (5) 

2

c

km
      (6) 

/n k m      (7) 
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  
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nt      (10) 

 nx

V

 
     (11) 

3. Results and discussion 

3.1. Exact solution for the sliding system without 
viscous damping 

This section develops the exact solution for the 
un-damped sliding system to describe the stick-slip 
phenomena, such as: sticking time, slipping time and 
stick-slip amplitude. This solution may be applied to 
estimate the stick-slip phenomena of a viscoelastic 
material with a low damping factor as for a rubber-like 
material. 

Regarding to the tangential indenter forces Ft with the 
coulomb friction law, the kinetic and static friction force 
are assumed to be constant. By omitting the damping 
component, the initial sticking time to at the stick phase 
is, 

s
o

F
t

kV
     (12) 

The general solution at the slip phase in Eq. (4) for c = 0 
can be given as, 

sin cos k
n n

F
x a t b t Vt

k
       (13) 

By using 2 2A a b   and arctan
b

a
    

 
, the 

(a) 

(b) 

Fig. 1 Drawing of the sliding system (a) Sliding 
system, (b) Analytical model 
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above solution can be expressed as, 

 sin k
n

F
x A t Vt

k
       (14) 

  cosn nx A t V        (15) 

Some above parameters can be found by inserting the 
boundary condition x(to) = 0 and ẋ(to) = 0, that are given 
as following, 

1
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     (17) 
The oscillation amplitude A is given as, 

2
2 21

1s k
n

n n

F F V
A V

k
 

 
     

 
 (18) 

Slip phase starts at t = to and stops when the velocity of 
the mass m is zero at t = (to + tslip) due to the resistance 
on this phase. By implementing the Eqs. (15,18), the 
mass m stops at ẋ = 0, 

  arccos  arctann
n

V
t

A
   


 

     
 

 (19) 

The velocity of the mass m in the slip phase is always 
positive. Thus, from Eq. (19), the slipping time tslip is 
found as, 

 2
arctanslip

n

t  


     (20) 

At the end of the slip phase, spring force or elastic force 
in Eq. (4) is Fe = k(Vt − x) = (2Fk − Fs), that is smaller 
than the static friction force Fs, therefore, the stick phase 
starts again and finally stops if Fe reachs to Fs. If the 
analysis is started again at the beginning of this stick 
phase at t = 0, the sticking time tstick replaces the initial 
sticking time t0 that is found as follows, 

2
stick

n

t



     (21) 

This study defines a sticking degree t*
st which is the 

ratio of the sticking time to stick-slip period T, 

*

arctan
stick

st

t
t

T


  

 
 

  (22) 

By using Eq. (14), the stick-slip amplitude Δx or 
periodic displacement that is a distance covered along 
the slip phase is, 

   2 2
arctans k

n

F F V
x

k
 




      (23) 

In special case, if (Fs − Fk) = 0 or λ = 0, the stick-slip 
amplitude turns out to the periodic displacement under 
full slip oscillation Δx = VT. The normalized stick-slip 
amplitude ξ is defined as, 

 2[ arctan ]nx

V

   
      (24) 

Based on Eqs. (20,21), Fig. 2 exhibits the relationship 
between the sticking time with respect to the 
dimensionless parameter λ where a linear relationship is 
found, and the slipping time tends to be constant at 
larger values of λ. In addition, according to Eqs. (22,24), 
Fig. 3 shows that the normalized stick-slip amplitude 
and the sticking degree increase with respect to λ. Based 
on these results, the dimensionless parameter λ can be 
regarded as a stick-slip parameter. 

According to Eq. (23), Fig. 4 shows a few results for 

Fig. 2 The relationship among the sticking time, 
slipping time and stick-slip period with 
respect to the dimensionless parameter λ

Fig. 3 The relationship between the sticking 
degree and normalized displacement with 
respect to the dimensionless parameter 

Fig. 4 The relationship between the stick-slip 
amplitude x and the driving speed V (For 

some values of Xs=
ிೞିிೖ
௞
	at a constant mass 

m = 0.5 gram and (F
s
 − F

k
) = 5 N) 
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the stick-slip amplitude Δx with respect to the driving 
speed V. A low value of Xs represents a high stiffness of 
the material and vice versa. It can be seen that the large 
stick-slip amplitude is formed for the low material 
stiffness. The stick-slip amplitude increase strongly 
depends on the driving speed increase as stated at the 
second term of right hand side of Eq. (23), meanwhile, 
the first term that states the friction force difference 
determines the initial value of the stick-slip amplitude. 

This study defines a velocity ratio v* that is the ratio 
of the mass velocity ẋ to the driving speed V as follows, 

 * 21 1 cos
x

v
V

      


  (25) 

Figure 5 shows a comparison of the velocity ratio v* 
for several values of the stick-slip parameter λ that starts 
from the beginning of the slip phase. For high λ values, 
high amplitude for the velocity ratio, a short slipping 
time and a long sticking time are found. In general, a 
high λ results in a long period of the stick-slip 
mechanism. 

By normalizing the spring or elastic force Fe = k(Vt 
− x) with the friction force difference (Fs − Fk), a 
normalized elastic force Fe

* during the slip phase is 
stated as, 

2
* 1 1

1 sin( )
1

e
e

s k

F
F

F F
 

 
         

 (26) 

where s

k

F

F
   is friction force ratio. On the other side, 

the normalized elastic force in the stick phase is, 

* 2
 

1
e

e
s k

F
F

F F 





  
 

   (27) 

Based on Eqs. (26,27), the normalized spring force Fe
* 

for some values of the friction force ratio γ is shown in 
Fig. 6. These results are evaluated at the stick-slip 
parameter λ = 2. An interesting result occurs at a high 
friction force ratio (γ = 2.5); negative values for the 
normalized spring force are found at the end of the slip 
phase, so it means that the spring in this condition is in 
under compression. 

3.2. The effect of low viscous damping 
Sliding system analysis with a low viscous damping 

is presented in an approximate solution that is obtained 
by neglecting some small terms of the exact solution. 
By inserting the damping component c in the stick 
phase, the initial sticking time tod  that is expressed in 
Eq. (2) is smaller than to, thus, the damping term 
reduces the initial sticking time. 

By inserting a damping factor ζ at the beginning of 
the slip phase [5], a general solution of Eq. (4) can be 
given as, 

   exp  sin

      

d n od d

k

x A t t t

F cV
Vt

k

       


   (28) 

By using a small damping factor ζ, some 
approximations can be made. A damped frequency ω is 
assumed close to the un-damped one 

 21n n n        and some small terms of the 

time derivative of Eq. (28) are not regarded, 

   exp cosd n od dx A t t t V           (29) 

 2 exp sin( )d n od dx A t t t           (30) 

Thus, the stick-slip amplitude Ad is also assumed close 
to the undamped system A, 

2
21 s k

d

F F
A V A

k



    

 
  (31) 

Referring to Eqs. (29,31) at zero mass velocity (ẋ = 0), 
the slip phase starts at t = tod with (ωt + φd) = (arc tan λ 
− π) and stops at t = (tod + tdslip) with 

   arccos
 exp

               ( arc tan ).

d

n dslip

d

V
t

A t
 
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 

 
   
  

 

 

The parameter λd is the stick-slip parameter in the 
damped sliding system that is found as follows, 

    2  exp 2 1 exp 2d n dslip n dslipt t         

     (32) 
It shows that λd is smaller than λ. For simplifying the 
formulation writing, several damping parameters are 
introduced, 

Fig. 5 The velocity ratio of * for some values of 

the stick-slip parameter  

Fig. 6 The normalized spring force Fe
* at  = 2 for 

some friction force ratio  
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  expe n dslipt      (33) 

 2 2 2
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 
 (35) 

It should be noted that all of the above damping 
parameters δe, δt, δs are smaller than unity, and those 
decrease with increased damping factor ζ. As a result, 
referring to the previous analysis method in the Eq. (19) 
to Eq. (22), the slipping time tdslip, sticking time tdstick 
and sticking degree t*

dst are found as below, 

 2 1 arctant
dslipt

  


 
   (36) 

   1 2s e
dstickt

   


 
    (37) 

 
   

  *

  

1 2
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s e

dst
s e t

t
   

      
 


    

 (38) 

It is shown that if compared to the undamped sliding 
system, the viscous damping contributes in an increase 
in the slipping time, however, it decreases the sticking 
time and the sticking degree. Therefore, the damping 
decreases the stick intensity of the sliding system and 
tends to make the system in full slip. It agrees with 
Nakano’s model [5] that the damping tends to suppress 
the stick-slip occurrence. A critical condition occurs at 
zero sticking time, 

     
  

1 2   or  
1 2s e

s e

    
 

  


  (39) 

The critical condition described in Eq. (39) states the 
limit of stick-slip occurence that occurs at ζ ≈ λ for a 
very small of ζ. If the left hand side of Eq. (38) is larger 
than the right hand side, the stick-slip phenomenon 
disappears and the sliding system leads to pure slip 
(steady sliding). It can be stated that in the damped 
sliding system, the stick-slip occurrence may disappear 
although the stick-slip parameter is not zero. 

By implementing Eq. (38), effect of the damping 
term in the sticking degree is described in Fig. 7. It 
shows that by increasing the damping factor, the 
sticking degree decreases. There are no value shown of 
the sticking degree at higher damping factor, especially 
for low stick-slip parameter. This is due to the difficulty 
of finding a suitable value of the damping parameters 
(δe, δt, δs), which are mutually dependent on each other. 
Therefore, this analytical method is just applicable for 
low damping factor such as the assumption given earlier. 
However, the trendlines as described in Fig. 7 can be 
used to estimate the zero sticking degree that represents 
the limit of stick-slip occurrence. It can be estimated 
that the limit of stick-slip occurence is around λ = 0.2 
for ζ = 0.015, λ = 0.5 for ζ = 0.050 and λ = 0.9 for ζ = 
0.100. 

The stick-slip amplitude in the damped system Δxd is 

given as, 

     1 2 1 arctans k
d e s t

F F V
x

k
    




         

     (40) 
If compared to the un-damped system, mathematically, 
the damping parameter decreases the first term and 
increases the second term of the right hand side of Eq. 
(40). However, the second term does not change 
significantly when compared to the first term, therefore, 
the damping term tends to decrease the stick-slip 
amplitude as described in Fig. 8. It is also shown that 
there is no value of the stick-slip amplitude at high 
driving speed and high damping factor due to not 
finding a suitable damping parameter. In general, it can 
be concluded that the stick-slip amplitude decreases by 
increasing the damping factor and increases by 
increasing the driving speed V of the sliding system. It 
should be noted that in full slip condition (steady 
sliding), term of the stick-slip amplitude is replaced 
with the periodic displacement that is a displacement 
covered along one oscillation. This condition occurs if 
the limit of stick-slip occurrence is exceeded.  
Unfortunely, the appearance of this figure can not show 
the limit of stick-slip occurrence. 

Fig. 7 The sticking degree t*
dst as a function of the 

stick-slip parameter λ for several damping 
factor ζ 

Fig. 8 The stick-slip amplitude Δxd as a function 
of driving speed V for several damping 
factor ζ. (At a constant mass m = 0.5 gram 

and ) 
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3.3. The effect of velocity-dependent friction 
In rubber-like materials, the effect of sliding velocity 

on friction was investigated [13,14]. As a result, a 
logarithmic function was determined to describe the 
relationship between the kinetic friction force and the 
relative sliding velocity. Most prominent friction model 
used is a simple logarithmic velocity-dependent 
function, often assumed to be monotonically weakening 
or strengthening with increasing relative sliding velocity. 
The effect of a velocity-dependent friction on the 
contact between a soft structure against a driven rigid 
flat was analyzed numerically [7-10]. 

It should be noted in this study that the “inherent” 
friction coefficient between indenter and rubber surface 
contact is applied than “effective” friction. Although the 
“effective” friction was developed and measured from 
frictional vibration model by deriving the mean energy 
consumption rate, this friction coefficient strongly 
depended on the mechanical properties of tester 
equipment [15]. Based on inherent friction coefficient, 
in general, the formulation used for velocity-dependent 
kinetic friction can be described as follows: 

 10 expk rel nF V F       (41) 

The parameters μ0, μ1 correspond to the friction 
coefficients with a positive constant value, Vrel 
corresponds to the relative sliding velocity, and α is a 
constant parameter than can be a positive or negative 
value. Thus, based on Fig. 1(b), the relative sliding 
velocity along the slip phase between mass and indenter 
is Vrel = ẋ due to the fixed position of the indenter. By 
inserting Eq. (41) into Eq. (4), the equation of motion 
along the slip phase can be expressed as, 

  01  expn nmx cx F x kx cV kVt F            

     (42) 
It can be seen that the dynamic properties of the system 
as described at the left hand side are modified by the 
velocity-dependent friction component, meanwhile, the 
right hand side describes the excitation forces that act 
on it. There is no oscillation term on this excitation 
force, therefore, the sliding system oscillates on its 
natural frequency. If Eq. (42) is simplified as a linear 
vibration, the damping term due to the velocity- 
dependent friction can be made as μ1Fnexp(αẋ) ≈ cvẋ, 
which cv is assumed to be constant. Thus, a total 
damping factor ζtot of the sliding system is, 

2
v

tot

c c

km
 

     (43) 

It should be noted that the mass velocity ẋ increases 
with respect to the driving speed V and also the 
stick-slip parameter λ as described in Eqs. (15,18,29). 
With a positive value of α, it reflected that high driving 
speed V increases the value of cv and the total damping 
factor ζtot. Thus, modification of Eq. (42) by velocity- 
dependent friction component might change the 
behavior of the sliding system at three possibility 
conditions, 

1. Stick-slip conditions, occurs if the stick-slip 
parameter λ dominantly influences than the 
damping term. Referring to Eq. (39), this condition 

can be stated as: 
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2. Oscillatory slip (relative to the driving velocity V), 
occurs if the sliding system is in under-damped 
condition. In this case, the damping term 
dominantly influences than the stick-slip parameter, 
however, the total damping factor is still smaller 
than unity. This condition can be stated as: 

  

  and  1
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tot
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. 

3. Continuously slip (relative to the driving velocity 
V), occurs if the sliding system is in over-damped 
condition. In this case, the total damping factor is 
higher than unity. This condition can be stated as: 
ζtot > 1. 

Regarding to the velocity dependent friction, a 
positive value of α might turn out the stick-slip of the 
system to a full slip (steady sliding) condition in high 
driving speed V, on the other hand, the system remains 
in the stick-slip condition with a negative value of α. 

4. Conclusions 

An analytical model to identify the stick-slip 
behavior of the soft material surface due to a sliding 
indentation is presented. A stick-slip model of a sliding 
system with solely tangential motion is developed. The 
sliding system used is an indenter with a fixed 
indentation that slides against a low damping viscoelastic 
soft material. 

Using the coulomb friction law, the exact solution for 
the un-damped sliding system is given. Results show that 
the stick-slip amplitude strongly depended on the friction 
force, driving velocity and material stiffness. The 
stick-slip amplitude increases with respect to the driving 
velocity and the difference between static and kinetic 
friction force. 

An approximate solution is presented for the sliding 
system with low viscous damping by neglecting some 
small terms of the exact solution. If compared to the 
un-damped sliding system, the damping factor increases 
the slipping time and reduces the sticking time, 
consequently, the stick intensity decreases and the sliding 
system tends to a full slip or steady sliding. Moreover, 
the damping factor decreases the stick-slip amplitude 
compared to undamped system. Also, the effect of 
velocity-dependent friction may change the sliding 
system behaviour from the stick-slip contact to full slip 
(steady sliding) or vice versa. 

Nomenclature 

A displacement amplitude of un-damped sliding 
system (m) 

Ad displacement amplitude of damped sliding 
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system (m) 
c viscous damping coefficient (Ns/m) 
cv damping coefficient due to sliding velocity 

effect (Ns/m) 
Fd driving force (N) 
Fe elastic or spring force (N) 
Fe

* normalized spring force (-) 
Fk kinetic friction force (N) 
Fs static friction force (N) 
Ft tangential force of indenter (N) 
k tangential stiffness (N/m) 
m effective oscillating mass (kg) 
t time (s) 
tdslip slipping time of damped system (s) 
tdstick sticking time of damped system (s) 
t*

st sticking degree (-) 
tslip slipping time of un-damped system (s)  
tstick sticking time of un-damped system (s) 
to initial sticking time of un-damped system (s) 
tod initial sticking time of damped system (s) 
V driving speed (m/s) 
Vrel relative sliding velocity (m/s) 
V* velocity ratio (-) 
T stick-slip period of un-damped system (s)  
Td stick-slip period of damped system (s)  
x displacement of oscillating mass (m) 
ẋ velocity of oscillating mass (m/s) 
ẍ acceleration of oscillating mass (m/s2) 
Δx stick-slip amplitude of un-damped system (m) 
Δxd stick-slip amplitude of damped system (m) 

xs s kF F

k


  (m) 

α factor of velocity-dependent friction (-) 
γ friction force ratio (-) 
δe, δs, δt damping parameter (-) 
ξ normalized slip displacement (-) 
μ0, μ1 friction coefficient (-) 
φ, φd stick angle (rad) 
ζ damping factor (-) 
ζtot total damping factor (-) 
ω damped natural frequency (rad/s) 
ωn un-damped natural frequency (rad/s) 
λ dimensionless (stick-slip) parameter of 

un-damped system (-) 
λd dimensionless (stick-slip) parameter of 

damped system (-) 
τ dimensionless time (rad) 
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