BAB III

METODE PENELITIAN

Pada bab metodologi ini menguraikan tempat penelitian, dan tahap-tahap perancangan sistem. Dari semua langkah yang ada pada metodologi penelitian merupakan uraian komponen yang akan diimplementasikan dalam penelitian tersebut.

3.1 Waktu dan Tempat Penelitian

Waktu penelitian berjalan kurang lebih 3 bulan terhitung dari bulan Oktober sampai bulan Desember 2017. Studi kasus yangdigunakan adalah UKM Industri Batik di Kabupaten Jember. Kerjasama yang dilakukan dengan UKM Industri Batik yaitu UD. Rumah Batik Rolla diharapkan mendapatkan manfaat dan hasil untuk sistem informasi prediksi yang akan dibangun. Produk batik ini sulit didapatkan karena produsen industri kebingungan untuk menetukan jumlah produk yang harus dipasok. Hal ini dikarenakan adanya naik dan turunnya tingkat permintaan masyarakat, karena desain atau trend batik terus berbeda dari waktu ke waktu.

3.2 Bahan dan Alat Penelitian

Bahan yang digunakan adalah data hasil survei yang diperoleh dari hasil wawancara kepada pemilik usaha batik. Dari hasil wawancara didapatkan data penjualan produk batik tahun 2016-2017, data sebaran produk batik, data lokasi produsen dan lokasi toko.

Data penjualan produk batik pada tahun 2016-2017 terdiri dari 41 produk batik. Data penjualan produk batik yang digunakan dari keseluruhan toko berjumlah 172 penjualan. Jenis produk batik yang dijual meliputi: batik tulis, batik tulis cap, batik cap, batik printing, batik sibori, batik sutera, dan batik tenun.

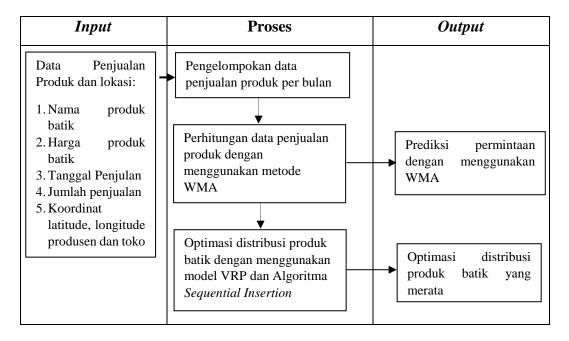
Selanjutnya data yang digunakan adalah data sebaran produk batik. Data sebaran produk batik merupakan persebaran penjualan produk pada masing-masing toko. Toko yang menjadi lokasi penjualan produk batik, akan memasukkan data penjualan ke dalam sistem informasi untuk informasi penjualan.

Data yang terakhir adalah data lokasi produsen dan lokasi toko. Lokasi produsen yang digunakan adalah lokasi dari UD Batik Rolla. Lokasi produsen ini dapat ditambahkan dengan lokasi produsen industri batik yang lain. Data lokasi toko yang digunakan berjumlah 10 toko yang memiliki kerjasama dengan produsen batik. Adapun alat yang digunakan adalah seperangkat komputer, bahasa pemrograman PHP (*Hypertext Preprocessor*), dan *database management system* SQL.

3.3 Prosedur Penelitian

Untuk melancarkan proses penelitian maka, disusun beberapa rancangan prosedur penelitian. Rancangan ini dibagi menjadi beberapa tahapan untuk proses prediksi dan distribusi produk batik. Prosedur penelitian tersebut terdiri dari identifikasi masalah, studi pustaka, pengumpulan data, dan pengolahan data.

Langkah pertama dalam prosedur penelitian ini adalah identifikasi masalah. Identifikasi masalah yaitu naik turunnya permintaan produksi batik dan pendistribusian produk batik, maka diidentifikasi kebutuhan apa saja yang diperlukan dalam sistem. Kebutuhan tersebut digunakan untuk memecahkan masalah yang terjadi pada produsen produk batik.


Langkah kedua yaitu studi pustaka, merupakan langkah untuk mencari ke dalam literatur buku, jurnal internasional, atau karya ilmiah yang dapat menunjang dan mendukung dalam penelitian. Langkah ketiga yaitu pengumpulan data, pada tahap ini dilakukan wawancara kepada narasumber dari produsen industri batik. Wawancara ini guna menghasilkan sumber-sumber data yang dibutuhkan dan digunakan dalam sistem informasi dan penelitian.

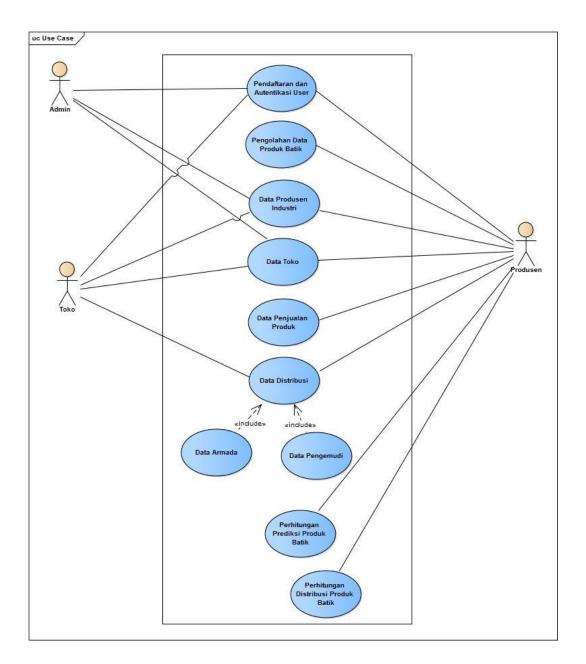
Langkah keempat yaitu pengolahan data, data yang diperoleh dari produsen batik, selanjutnya akan diolah menjadi data yang siap digunakan dalam sistem informasi.

3.4 Kerangka Sistem Informasi

Kerangka sistem informasi ini merupakan wujud proses dari sebuah sistem informasi berasal. Kerangka ini terdiri dari *input*, proses, dan *output*. Langkah pertama yaitu *input* yang berarti masukan, merupakan data-data yang menjadi sumber utama dari sebuah sistem informasi. Data ini merupakan data yang dibutuhkan untuk mendukung sistem informasi yang dibangun.

Langkah selanjutnya yaitu proses, pada proses data yang yang menjadi masukan diolah dengan metode yang digunakan untuk prediksi dan distribusi produk batik. Untuk langkah terakhir yaitu *output* merupakan keluaran atau hasil dari *input* dan proses yang dijalankan. *Output* ini merupakan hasil informasi akhir yang dihasilkan dari sistem informasi yang mengolah data berdasarkan metode yang digunakan. Kerangka Sistem informasi terdapat pada Gambar 3.1.

Gambar 3.1 Diagram Input Proses dan Output


3.5 Perancangan Sistem Informasi

Perancangan Sistem Informasi Prediksi dan Distribusi dibuat dengan menggunakan diagram UML (*Unified Modelling Language*). Tahapan dan desain

yang terdapat pada UML adalah *use case, use case scenario, sequence diagram, class diagram, dan entity relation diagram* (ERD).

3.5.1 Use Case Diagram

Use case diagram merupakan deskripsi dari hubungan antara aktor dengan sistem informasi, dan titik awal dalam memahami sebuah sistem informasi. Sehingga *use case* dapat digunakan untuk menentukan kebutuhan apa saja yang diperlukan dari suatu sistem, serta mengetahui fungsi dari masing-masing tugas dari tiap aktor. Gambar 3.2 merupakan *use case* diagram dari sistem informasi ini.

Gambar 3.2 *Use Case* Diagram

Definisi aktor dalam *use case* tersebut merupakan yang berhubungan dengan sistem informasi secara langsung, dan menjelaskan hak akses apa saja yang dapat diakses oleh aktor tersebut.

Tabel 3.1 Definisi Aktor

No	User	Hak Akses
1	Admin	Mengelola sistem informasi untuk user
		2. Mendaftarkan <i>user</i> toko dan produsen
		3. Dapat melakukan pengaturan ulang data pada toko
		maupun produsen
2	Produsen	1. Produsen dapat mengelola data pribadi miliknya,
		serta lokasi produsen berada
		2. Produsen dapat mengelola data produk batik miliknya
		3. Produsen dapat menjalin hubungan kerjasama
		dengan toko yang dikehendaki, dan dapat
		mengetahui lokasi toko mana saja yang menjadi
		kerjasamanya
		4. Produsen dapat mengelola pendistribusian produk
		termasuk pengemudi serta armada yang digunakan
		5. Produsen dapat menghitung dan mengelola
		perhitungan prediksi permintaan produk batik,
		berdasarkan data penjualan sebelumnya
		6. Produsen juga dapat mengelola data pendistribusian
		produk batik dengan metode VRP
3	Toko	1. Toko dapat mengelola data pribadi miliknya, serta
		lokasi toko berada
		2. Toko dapat menjalin hubungan kerjasama dengan
		produsen
		3. Toko dapat menginputkan data distribusi produk
		yang telah sampai pada tokonya
		4. Toko dapat mengelola data penjualan produk

3.5.2 Use Case Skenario (UCS)

Use case skenario (UCS) merupakan alur jalannya *use case* yang telah digambarkan pada *use case* diagram. Beberapa penjabaran dari *use case* diagram tersebut akan dijelaskan secara runtut dengan jalannya sistem informasi yang ada.

Tabel 3.2 Skenario Pengolahan Data Produk Batik

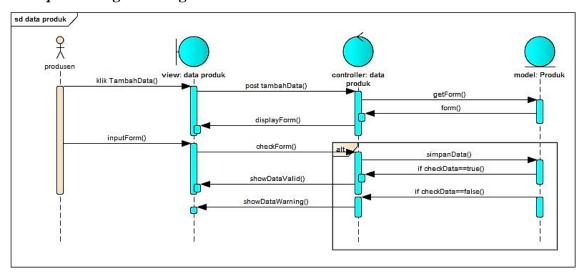
ID	SIPDIS_UCS_001			
Nama	Pengelolaan Produk Batik			
Aktor	Produsen dan Toko			
Prekondisi	Menu produk			
Post Kondisi	Menampilkan halaman tabel data			
	produk			
Normal Skenario				
Aksi Aktor	Reaksi Sistem			
1. Pilih tambah data				
	2. Menampilkan <i>form input</i> data produk			
3. Mengisi <i>form</i> data produk				
4. Pilih simpan data				
	5. Menampilkan <i>alert</i> simpan data berhasil dan tabel data			
6. Pilih <i>icon</i> ubah data				
	7. Menampilkan <i>form</i> data produk dengan data sebelumnya			
8. Mengubah data produk yang akan diubah				
9. Pilih simpan data				
	10. Menampilkan <i>alert</i> simpan data berhasil dan tabel data			
11. Pilih <i>icon</i> hapus data				
	12. Menampilkan <i>alert</i> setuju menghapus data ini ?			
13. Pilih Ya saya setuju				
	14. Menampilkan tabel data yang terbaru			

Lanjutan Tabel 3.2 Skenario Pengolahan Data Produk Batik

Skenario Alternatif	
Aksi Aktor	Reaksi Sistem
	5a. Menampilkan <i>alert</i> validasi form
	gagal
5b. Mengecek dan mengisi form data	
produk dengan benar	
5c. Pilih simpan data	
	10a. Menampilkan <i>alert</i> validasi form
	gagal
10b. Mengecek dan mengisi <i>form</i> data	
produk dengan benar	
10c. Pilih simpan data	
13a. Pilih <i>close</i>	
	13b. Menampilkan tabel data
	sebelumnya

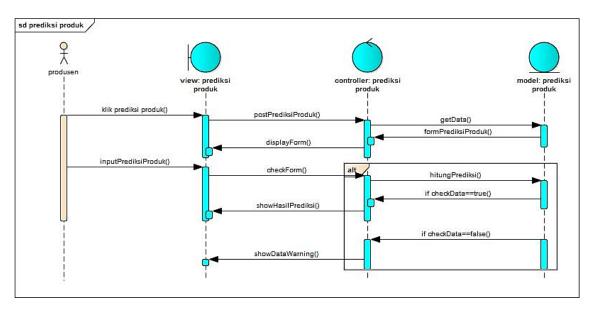
Tabel 3.3 Skenario Prediksi Permintaan Produk

ID	SIPDIS_UCS_002		
Nama	Prediksi Permintaan Produk		
Aktor	Produsen		
Prekondisi	Data permintaan toko belum diketahui		
Post Kondisi	Menampilkan prediksi permintaan produk		
Normal Skenario			
Aksi Aktor	Reaksi Sistem		
1. Pilih menu prediksi permintaan produk			
	2. Menampilkan <i>form input</i> data prediksi		
3. Mengisi <i>form</i> dengan data prediksi			
4. Pilih hitung prediksi dengan WMA			
	5. Menampilkan hasil prediksi permintaan produk, beserta nilai <i>error</i> dari hasil prediksi		
6. Pilih simpan hasil prediksi	_		
Skenario Alternatif			
	5a. Menampilkan hasil prediksi, dengan gagal menampilkan nilai <i>error</i> dari hasil prediksi		
5b. Mengecek data aktual dari data penjualan, karena datanya harus ada			

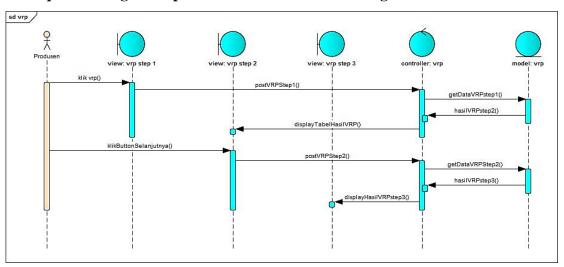

Tabel 3.4 Skenario Optimasi Distribusi Produk dengan VRP

ID	SIPDIS_UCS_003				
Nama	Optimasi Distribusi				
Aktor	Produsen				
Prekondisi	Rute Perjalanan belum optimal				
Post Kondisi	Menampilkan rute optimal				
Normal Skenario					
Aksi Aktor	Reaksi Sistem				
1. Pilih menu VRP					
	2. Menampilkan <i>form</i> VRP step 1				
3. Isi form					
4. Pilih selanjutnya					
	5. Menampilkan tabel hasil VRP step				
	2				
6. Pilih selanjutnya					
	7. Menampilkan peta rute optimal,				
	dan hasil biaya perjalanan				

3.5.3 Sequence Diagram

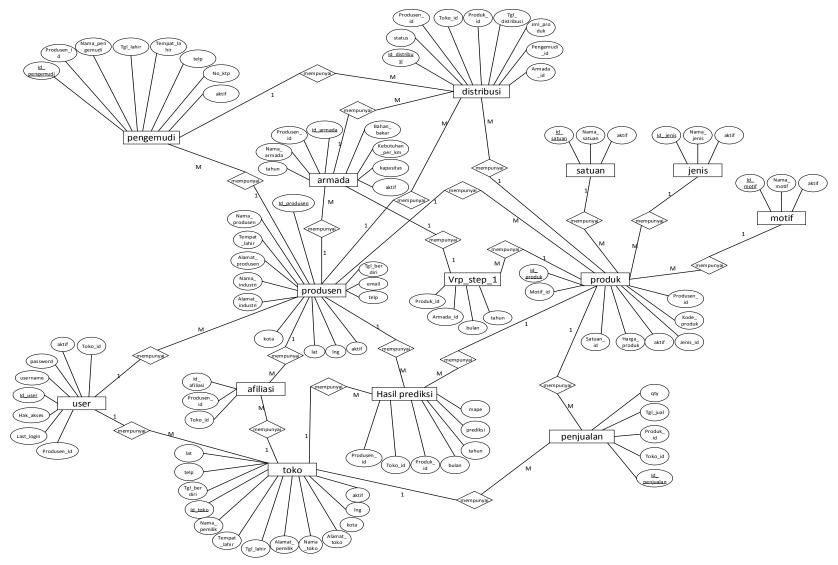

Sequence diagram merupakan sebuah diagram interaksi yang berkomunikasi atau berhubungan satu sama lain. Sequence diagram ini memiliki komponen yaitu aktor, lifeline, model, view, dan controller.

1. Sequnce Diagram Pengelolaan Produk Batik


Gambar 3.3 Sequence Diagram Pengelolaan Produk Batik

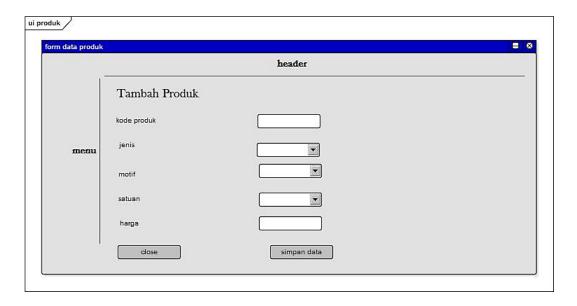
2. Sequence Diagram Prediksi Permintaan Produk

Gambar 3.4 Sequence Diagram Prediksi Permintaan Produk

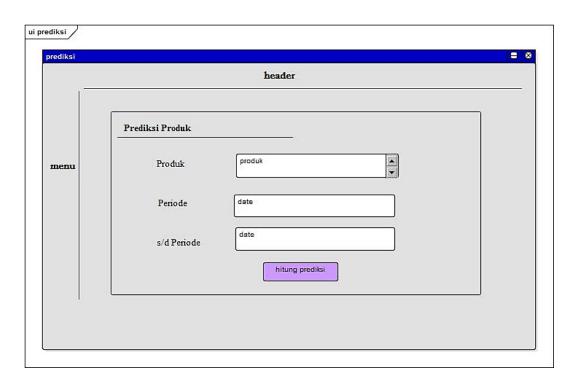

3. Sequence Diagram Optimasi Distribusi Produk dengan VRP

Gambar 3.5 Sequence Diagram Optimasi Distribusi Produk

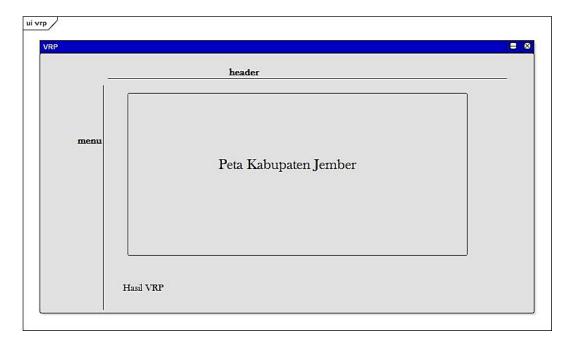
3.5.4 Entity Relation Diagram (ERD)


Entity Relation Diagram (ERD) merupakan perancangan basis data yang dimulai dari mengidentifikasikan data-data yang penting yaitu entitas dan hubungan antara entitas-entitas tersebut. Dalam sebuah ERD terdapat 3 hubungan yaitu one to one, one to many dan many to many. Pada Gambar 3.6 merupakan ERD pada sistem informasi yang dibangun.

Gambar 3.6 Entity Relation Diagram (ERD)


3.5.5 Perancangan Antarmuka

Perancangan antarmuka atau *user interface* merupakan sebuah fasilitas yang memungkinkan untuk *user* dapat menggunakan dengan sebaik mungkin. Fasilitas ini berbentuk interaksi antara manusia dan sistem dengan menggunakan tampilan yang menarik dan mudah. Salah satu bagian dari *user interface* ini yaitu *form* dan *report* yang saling berhubungan. Pada Gambar 3.7 merupakan tampilan *form* data produk pada sistem informasi.


Gambar 3.7 *User Interface Form* Data Produk

User interface pada perhitungan prediksi, dilakukan untuk menghitung prediksi permintaan produk dari masing-masing toko. Prediksi ini digunakan untuk mendistribusikan produk secara merata pada seluruh toko yang sudah bekerja sama. Pada Gambar 3.8 merupakan *user interface* dari prediksi permintaan produk.

Gambar 3.8 User Interface Prediksi Permintaan Produk

User interface selanjutnya adalah optimasi distribusi produk dengan VRP. VRP digunakan untuk mengoptimasi rute distribusi produk batik. Pada Gambar 3.9 adalah hasil dari optimasi distribusi dengan VRP.

Gambar 3.9 User Interface Optimasi Distribusi Produk