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Abstract—Many types of artificial intelligent machines have 

been used for decision making purposes. In VANET broadcast 

protocols, vehicles must decide the received messages are to be 

rebroadcast or not. Several attributes such as sender-to-receiver 

distance, sender-receiver speed difference, number of 

neighboring vehicles, as well as vehicle’s movement direction are 

important measures to take the broadcast decision. As the 

relationships of attributes to the broadcast decision cannot be 

mathematically defined, the use of a classifier-based artificial 

intelligence may approximately predict the relationships of all 

the incorporated attributes to such a decision.  As the decision is 

based on prediction, the use of multiple classifiers in decision 

making may increase accuracy. Therefore, this research employs 

a combined-classifiers at an abstract level to provide firmer 

broadcast decisions on VANET. Our research results justify that 

the performance of our combined multiple-classifiers 

outperformed a single-classifier scheme. The multi-classifiers 

scheme contributes to an average increase of 2.5% in reachability 

compared to that of the efficient counter–based scheme (ECS). 

The combined multi-classifiers scheme also improves the saving 

in rebroadcast tries by 38.9%. 

Keywords—Broadcast-storm, classifier, VANET, vehicular 

attribute. 

I. INTRODUCTION 

An efficient broadcast has always been a hot issue in 

broadcast protocol area. Several schemes have been available, 

from heuristic (e.g. probability-based, counter-based broadcast) 

to topology-based broadcast (e.g. distance-based broadcast). 

However, most of the solutions have used mostly only a few 

attributes (whether local or global), such as the use of sender-

to-receiver distance, number of message duplicates received, or 

even only employing probability to reduce the number of 

nodes/vehicles that rebroadcast messages to mitigate the 

broadcast-storm problem (the massive message redundancy, 

contention and collision) [1, 2, 3, 4]. 

In reality, considering many attributes in the broadcast 

decision mechanism may lead to a more efficient broadcast 

scheme. For example, a vehicle having a greater distance from 

the sender vehicle is more potential to rebroadcast messages 

than that of having a smaller distance. Likewise, a vehicle that 

has a higher speed differential to the sender is considered to be 

a better broadcast candidate as it will go out from the sender's 

radio coverage fast. The number of neighboring vehicles can 

also be used to select the rebroadcast candidates. The denser 

the neighbors, the smaller the probability for a vehicle to 

rebroadcast. Therefore, a multiple-attributes scheme are more 

probable to outperform a single-attribute scheme if such 

attributes are properly treated.  

To properly handle the attributes, a classification algorithm 

(known as a classifier or an expert) can be used to examine all 

the possible situations of the attributes dealing with current 

vehicular network situation. For example, a greater distance 

threshold should be applied for vehicles deserved rebroadcast 

in a dense network. However, a smaller threshold is required to 

maintain high network reachability. A classifier is able to 

recognize the input conditions of the attributes and to make 

decisions based on the knowledge obtained from prior training 

(called as model). Our work employs the following attributes: 

sender-to-receiver distance, number of message copies, 

vehicular density, as well as speed differential and movement 

direction. 

Discussion of the research are presented in what follows. 

Research in broadcast protocols are presented in section 2. 

Sections 3 and 4 discuss how our experiments are set up and 

experimented. Results of the study are presented and discussed 

in section 5 and conclusions can be found in section 6. 

II. THE BROADCAST-STORM MITIGATION SCHEMES 

One simple method to reduce the broadcast-storm is to use 

a probabilistic approach. The probabilistic based scheme uses 

probability mechanism for node selection rather than using a 

threshold mechanism (such as in distance-based threshold) for 

determining rebroadcast nodes. Basic broadcast techniques in 

VANETs follow either a 1-persistence or a p-persistence 

scheme. The 1-persistence scheme has the advantages of low 

complexity and high penetration rate, but creates massive 

redundancy. The p-persistence scheme may reduce message 

redundancy but may increase in total latency and degraded 

penetration rate. For example, literature [5] proposed three 

schemes: weighted p-persistence, slotted 1-persistence, and 

slotted p-persistence broadcast schemes, whilst literature [6] 

proposed an adaptive probabilistic based scheme that senses 

idle channel time to represent the broadcast probability. 
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An entity or a node attribute (e.g. distance, speed, number 

of message duplicates) can also be used to determine 

rebroadcast nodes. Distance/location-based approach uses 

relative position between sending and receiving nodes in 

determining broadcast nodes. Literature [1] proposed four 

schemes dealing with message broadcasting: counter-based, 

distance-based, location-based and cluster-based schemes. 

Literature [7] provided a slight modification on the distance 

based broadcast using the Distance-to-Mean (DTM) approach 

to calculate additional coverage by calculating the distance to 

the mean of the sending nodes. Node density based approach is 

when the decision for a broadcast depended on the number of 

neighbors available. Variation on the signal coverage, either by 

changing the power or the antenna to achieve a desired benefit 

will be included in this approach. With this, the number of 

neighbors can be adjusted or a desired neighboring nodes 

topology is obtained. Attempts to modify physical 

communication media were also carried out as in literature [8, 

9]. 

 

A mobility based approach is when the speed and movement 

direction are used as a way for nodes being grouped or 

segmented. Literature [10] experimented on the use of 

vehicle’s speed to relate to node’s rebroadcast probability. 

They considered that speed can be a representation of 

vehicle’s number of neighbors, in particular in a highway 

setting.  Literature [11, 12] used the speed and direction to 

evaluate a node for broadcast privilege. Other research as in 

[13] employed fuzzy logic to select broadcast nodes based on 

vehicle’s speed and distance between sending and receiving 

nodes. Literature [14] used three vehicular attributes: sender-

receiver distance, speed and movement direction in order for 

selecting the best candidates from its neighboring nodes that 

are having prospective future moving trends. Simply stated, 

this scheme looks for the fastest nodes reaching out of the 

sender’s radio coverage for broadcast.  

 

In message duplicate approach, number of message 

duplicates received is used to select the broadcast nodes. More 

duplicates heard by a node means lower contribution for a node 

to have similar message rebroadcasted.  Literature [1] proposed 

a counter-based scheme as a way of selecting broadcast nodes. 

Every neighboring node receiving a message from a sender sets 

a waiting time prior to broadcasting. If the duplicates received 

are less than a predefined value, the node deserves 

broadcasting the message. Otherwise, the message will be 

discarded as the additional broadcast will only contribute to an 

insignificant additional coverage. Literature [2, 4] proposed 

adaptive approaches to address adaptive functionality in the 

counter-based broadcast. Literature [15] made the counter-

based adaptive by examining all the inter-arrival time of 

duplicates recorded immediately after the waiting time lasts. 

Literature [16] took into account the counter-based scheme 

with several parameters: network size, transmission range and 

vehicle density to determine broadcast probability. Our study 

employs multiple vehicular attributes and let a combined 

classifiers performs the decisions for broadcasting purposes. 

III. EXPERIMENT DETAILS 

A. Experiment Setup 

Our experiment is set up on a 1,500 x 1,500 meter-square 

flat topology area with realistic mobility is generated by 

VanetMobiSim mobility generator [17]. The VanetMobiSim 

generates realistic vehicular mobility traces that are, in turn, 

used by the NS-2 network simulator [18] for its wireless 

network simulation. The NS-2 simulates the MAC 802.11 

protocol. The radio range for each vehicle is set to 250 meters 

CSMA single channel. In DSRC [19], this channel often refers 

to CCH channel or channel 178.  

Messages were generated with Poisson distribution at a rate 

of 1 message/second throughout the simulation which ends at a 

sufficient time for the last message generated propagates over 

the network. The messages were randomly generated over the 

available vehicles on roads, one per vehicle. It is worth 

mentioning, the message generation was started 5.0 seconds 

after the simulation began to facilitate the vehicles sensing the 

environment to maximize attribute values they can obtain (e.g., 

maximum number of neighbors). The number of neighbors and 

speed differential are normalized to its maximum values 

experienced by individual vehicle over the simulation prior to 

examining them for their joint probabilistic value, while the 

sender-receiver distance is normalized to the vehicle's radius of 

radio coverage. Beaconing is set to 200 millisecond containing 

current topological position/location, speed vector and the 

unique identity of the vehicles. Table 1 shows parameters 

setting used throughout the experiments. 

TABLE I.  SIMULATION PARAMETERS SETTING 

Parameter Value 

MAC type 802.11 

Routing protocol  Message passing 

(DumbAgent) 

Bandwidth 10 Mbps 

Interface queue type Queue/DropTail/PriQueue 

Radio propagation Two ray ground 

Antenna model Omnidirectional 

Transmission range 250 meters 

Network density (N) 50 – 175 vehicles 

Simulation time N+30 seconds 

 

To assign more chances to potential vehicles for message 

rebroadcast, probability differentiation is applied to their 

attributes. Table 2 shows the mentioned vehicle’s attribute 

probability assignment. These probability values are chosen 

after several trials have been made. Note that all the applicable 

attribute settings are normalized to its maximum values 

experienced by individual vehicle throughout simulation. 

Even though the distance and differential speed are continuous 
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1. If a new message arrives at a vehicle v 
1. Spawn a random RAD wait timer Tmax 
2. Calculate distance, speed differential and its 

direction against sender 
3. Calculate the current neighboring density 
4. Set the message counter to 1 

2. If a duplicate is received during the RAD 
1. Increase the message counter by 1 
2. Recalculate distance and speed differential 

against current sender 
3. Store the smallest values between current 

and previously stored values of distance and 
speed 

3. When Tmax = 0  
1. Calculate the broadcast decision with a 

combined classifiers/models based on the 
latest input parameters: smallest distance, 
smallest speed, neighboring density, relative 
direction, and message count. 

2. Broadcast the message when the decision is 
positive. Otherwise, drop the message. 

attributes, we prefer to discretize and treat them as discrete 

variables. 

 

TABLE II.  PROBABILITY ASSIGNMENT TO VARIOUS ATTRIBUTES 

Attribute  Range Probability 

Sender-receiver 

distance 

0.0 – 0.44 

0.45 – 0.64 

0.65 – 1.00 

0.3 

0.5 

0.8 

Neighboring density 0.0 – 0.14 

0.15 – 0.44 

0.45 – 1.00 

0.8 

0.5 

0.3 

Speed differential 0.0 – 0.54 

0.55 – 0.74 

0.75 – 1.00 

0.3 

0.5 

0.8 

Message copies 

heard 

1 – 4 

5 – 6 

>= 7 

0.8 

0.5 

0.1 

Directional 

conformity 

true 

false 

0.4 

0.6 

 

The probability settings above are used to train 

classifiers/models in Weka [20]. Such settings shown in Table 

2 has been transformed and written to the Weka’s .arff file. The 

.arff file is the format used by Weka for stating the training 

inputs. 

B. Performance Measures 

The information to acquire is the reachability (RE) and the 

saved-rebroadcast (SRB). Reachability here is defined as the 

fraction of vehicles in the network that receive the broadcast 

message. That is, the number of vehicles receiving the 

broadcast divided by the total number of vehicles that are 

reachable, directly or indirectly, from the source node. The 

packet reachability probability is the representation of network 

connectivity. 

C. The Five Attributes 

There are five vehicle's attributes that are considered in this 

research, and they are: 

 

1. Distance between sending and receiving vehicles – 

Greater distances contribute to a wider coverage. Therefore, 

vehicles having greater distances must have a higher chance for 

message rebroadcast. 

2. Number of neighboring vehicles (vehicle density) – 

Having more neighboring vehicles means the vehicles should 

have smaller chances for rebroadcast to suppress message 

redundancy. Therefore, a higher number of neighboring 

vehicles means a lower probability for rebroadcast. 

3. Number of similar message heard during waiting time 

– More duplicates heard by the vehicles may reveal a small 

need for the vehicles to rebroadcast. Therefore, having a large 

number of duplicates means lower probability for rebroadcast. 

4. Speed differential between sending and receiving 

vehicles – Without considering vehicle’s direction, a large 

difference in speed may contribute to the rapid dissemination 

of information. The larger the speed differential is, the more 

chance the vehicle has to rebroadcast. 

5. Directional conformity between sending and receiving 

vehicles – Specific applications demand directional 

conformity, such as alerts from an ambulance must go forward. 

However, other applications might need the message to go 

backward, such as for accident alerts. In normal message 

dissemination in certain topology scenarios, a specific direction 

may contribute more to network performance. 

D. Handling Vehicle’s Attributes 

When a new message is received, the vehicle of interest 

records its distance from the sending vehicle, speed 

differential, its relative movement direction, and its 

neighboring vehicle density. The vehicle schedules the 

rebroadcast of the message with a random wait time (Random 

Assessment Delay–RAD) say, Tmax. If a duplicate is received 

during the waiting, the vehicle recalculates the distance and its 

differential speed s against the current sender. The vehicle will 

record the smallest distance and speed experienced during the 

RAD timer. Number of message copies that arrive will be 

recorded. When the RAD expires (i.e. Tmax = 0), the vehicle 

assigns the probability values according to Table 2. Note that 

the distance, speed, and neighboring density values are 

normalized to the respective maximum values experienced by 

the vehicle throughout simulation (see Figure 1). 

Fig. 1.  The multiple classifiers broadcast algorithm 
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The decision whether to rebroadcast the message is 

performed by a combination of classifiers that assess the five 

attributes probabilities. The output of the classifiers are 

commonly a binary decision class: 1 and 0, or ’yes’ and ’no’. 

IV. EXPERIMENT ON MULTIPLE-CLASSIFIERS BROADCAST 

PROTOCOL 

A. Selection of Classifiers for Broadcast 

Several models have been selected and experimented with 

the scenario mentioned above at the density of 75, 125 and 175 

vehicles and different random number generator seed for 

generating random length back-off timer. Those models are: 

naive-Bayes, J48, Kstar, Multi-layer Perceptron, and RBF-

Network. The Weka’s models/classifiers above have been 

trained and used to independently conduct broadcast decisions. 

The reachability of each model is presented in Figure 2. It is 

shown that the reachability (RE) of naive-Bayes, Multi-layer 

Perceptron and RBF-Network models are comparable to that of 

the simple-flooding scheme. The rest two, J48 and KStar 

models fail in providing sufficient reachability. 

Fig. 2.  Average reachability for various network density and different random 

number generator seed over various models 

As suggested by Figure 2, potential models for being used 

for the next experiments are naive–Bayes, Multi–layer 

Perceptron and RBF–Network. We incorporate those three 

models for further experiments. 

B. Abstract Level Combiner 

As Weka’s models provide only a predicted class number 

and its confidence probability value of the class prediction for 

being correct, the combination of classifiers is conducted in the 

abstract level outputs as follows: 

1. Unanimity function. This function combiner combines 

the class output from the three classifiers and treats them 

equally in such a way that the positive decision on rebroadcast 

is made when all the classifiers output the similar positive 

decision. The unanimity combiner can be imagined as an AND 

gate having three inputs. This unanimity can be viewed as to 

providing more suppression on the naive-Bayes classifier with 

the use of the other two classifiers. 

2. Simple-majority function. The decision will based on 

the three classifiers give the most of the class outputs. Here, at 

least two positive decisions are required to make a vehicle 

rebroadcast a message. 

3. Distributivity function. This functions tries to reduce 

the broadcast suppression on the best among the three 

classifiers (i.e. naive-Bayes) by providing more probability to 

the combiner. The positive decision to rebroadcast is made 

when either the best classifier provides a positive class or when 

the rest two classifiers output the same positive class regardless 

of the former classifier’s decision. 

4. Greatest-average-confidence function. The decision 

will be selected from the highest averaged confidence 

probability value for each class when the three classifiers 

output different class values. For example, when there are two 

classifiers that output the same class value, the confidence 

values of both classifiers will be averaged and compared to the 

confidence probability value of the other class. The function 

selects the class having the greatest confidence (average) 

probability value. 

V. RESULTS AND DISCUSSIONS 

As mentioned, this experiment employs the best three 

models as suggested by the experiment previously conducted 

(see Figure 2) combined in parallel and assigned similar inputs. 

Those are naive–Bayes, Multi–layer Perceptron and RBF–

Network. Figure 3 depicts the reachability performance of 

various schemes. 

Fig. 3.  The reachability of the schemes over various densities 

It reveals that our schemes with any combiners (i.e. 

unanimity, distributivity, simple-majority and greatest-average-

confidence) are comparable in reachability performance. 

Reachability differences are not clearly shown when the 

reachability performance presented in this fashion. Therefore, 

the reachability performance differences between schemes will 

be assessed based on their average reachability over the 

simulated densities. Figure 4 shows the average reachability 

comparisons of the four classifiers combination functions used 

in our schemes over simple–flooding, ECS scheme and  naive-

Bayes classifier at various network densities (i.e. from 50 – 175 

vehicles). 
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Fig. 4.  The average reachability comparisons among the schemes 

It is shown that overall, all the multiple-classifiers schemes 

with any of the combination functions experimented 

outperform the ECS scheme for their average reachability. A 

notable reachability performance has been shown by our 

scheme using ’distributivity’ combination function that reaches 

the same value of the simple–flooding’s average reachability. 

Compared to the ECS scheme, the ’distributivity’ combiner 

contributes to an additional increase of 2.5% in average 

reachability. This also exceeds the reachability value given by 

the single classifier (naive-Bayes scheme). 

Figure 5 reveals that at denser networks, the ECS's 

broadcast saving (SRB measure) decreases. This means the 

exponential function used in the ECS scheme puts more 

broadcast probability along with the increase of the network 

density. In contrast, all other combiners used in our schemes 

show a gradual increase along with the increase of the density. 

The ’unanimity’ combiner outperforms all other schemes in 

terms of saved–rebroadcast. It contributes to an additional 

increase of 38.9% in rebroadcast saving compared to that of 

ECS measured at 175 vehicle density. 

Fig. 5.  The saved-rebroadcast comparisons among the schemes 

Our multiple-classifiers schemes, so far, are superior to the 

ECS scheme in terms of reachability and saved–rebroadcast 

performance. Usually the saved-rebroadcast is inversely related 

to the reachability. This means, for achieving a higher 

reachability, a lower saved–rebroadcast value must be paid. 

The ECS scheme cannot maintain the broadcast saving when 

the network density increases. Simply stated, the ECS scheme 

could not correctly adapt the density changes or the employed 

exponential function should be reconsidered. Conversely, our 

schemes have shown a growing broadcast saving along with 

the increase of the network density. 

VI. CONCLUSIONS 

As Weka's classifiers only outputs limited information for 

every unlabeled instance inputted (i.e. the predicted class and 

the confidence value of the instance being predicted to be in 

such a class) the combination of several classifiers can only be 

done in the abstract level. The classifier-based schemes are 

adaptive and consistently provide a remarkable rebroadcast 

saving over the experimented densities.  

A notable reachability performance has been shown by the 

combined-classifiers using the distributivity function that 

reaches the same value of flooding’s average reachability. 

Compared to the ECS scheme, the multiple-classifier scheme 

with ‘distributivity’ function contributes to a 2.5% increase in 

reachability (in average). The unanimity combiner outperforms 

all other schemes in terms of saved-rebroadcast. It contributes 

to an increase of 38.9% savings on rebroadcast compared to 

that of ECS measured at 175 vehicle density.  

The combined-classifiers are proven to have firmer 

broadcast decisions than any single classifier. The unanimity 

combiner, for example, offers significant improvements over 

all performance parameters than that of the naive-Bayes 

classifier. To improve the performance of the combined 

classifiers, more potential classifiers/models could also be 

employed. It is expected that having many models might make 

the decision making more accurate. However, employing many 

classifiers must be accompanied by a powerful processor to 

reduce processing delay. 
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