Comparative study of encapsulated rhizome extract of Alpinia purpurata (Zingiberaceae) in alginate and alginate-chitosan

Meiny Suzery, Dian Majid, Bambang Cahyono,

Laboratory of Organic Chemistry Department, Mathematics and Natural Science, Diponegoro University. Jl. Prof. Sudharto SH, kampus Mipa Tembalang. Indonesia 50275.

Corresponding author: meiny_suzery@undip.ac.id

Abstract. Encapsulation is a coating process of bioactive compound. Alpinia purpurata has been well known as lengkuas merah an Asian tropical herbal which contain phenylpropanoid, phenolic and flavonoid. Phenolic and flavonoid compounds is an agent that can be used as anti cancer. This research aim is to create a product of Alpinia purpurata extract which encapsulated in alginate or alginate-chitosan. The product of encapsulated has been observed towards SEM (Scanning Electron Microscopy) and spectroscopy Infra-Red method. Encapsulated product of lengkuas merah extract made through extrusion method in alginate and chitosan with ratio 1:1 (w/w) then dripped in 2% CaCl₂. The Alpinia purpurata/alginate/chitosan microcapsules (APCAM) is better than alginate microcapsules (APAM).

Key words; Alpinia purpurata, lengkuas merah, SEM., encapsulation, alginate/chitosan

Introduction

The genus Alpinia (Zingiberaceae family, Alpinioideae subfamily, Alpiniae tribe) is native to tropical and subtropical Asia (Kress et al., 2002). Several species of the Zingiberaceae family present antioxidant property mainly due to the considerable presence of flavonoids such as rutin, quercetin, alpinetin and different types of kaempferol in the genus Alpinia (Williams & Harborne, 1977; Mpalantinos et al., 1998; Vankar et al., 2006). Many Alpinia species are well-known medicinal herbs that have been shown by several previous studies to have various effects, namely, antioxidant (Habsah, 2000; Chen, 2008) and anticancer (Lee, 2005; An, 2008) activities.

Microencapsulation is a technique by which the sensitive ingredients, called core materials, are entrapped in coating or wall materials. The coating material protects the sensitive ingredients from the external influences, controls the release of the ingredient, and sometimes converts liquids into powders, easy to handle (Frascalenti et al., 2012; Bakowska-Barczak and Kolodziejczyk, 2011). So far, various kinds of microencapsulation techniques, such as emulsification, coacervation, spray drying, spray cooling, freeze drying, fluid bed coating, and extrusion, have been developed (Qv et al., 2011), among which, extrusion is one of the simple and convenient technologies.

Alginate, one of linear anionic polysaccharides, has been considered one of the most suitable biopolymer for microencapsulation. The advantages of using alginate as coating material include: non-toxicity, formation of gentle matrices with calcium chloride to trap sensitive materials, low cost, and an accepted food additive and be safely used in foods (Chávarri et al., 2010). However, alginate beads show poor stability, resulting in the limitation of alginate application in microencapsulation. Previous research reported that coating alginate microcapsules with chitosan had improved the stability of the alginate beads (Krasaekoopt et al., 2004). Chitosan is a hydrophilic, biocompatible and biodegradable polysaccharide with low toxicity. The strong electrostatic interaction of the amino groups of the chitosan with the carboxylic groups of the alginate leads to formation of the complex alginate/chitosan microcapsule (Finotelli et al., 2010).

In the present study, alginate and chitosan were used as coating materials for producing microencapsulated Alpinia purpurata extract by extrusion technique. And particle surface, microstructure, and kind of bonding property of encapsulated extract were investigated.
The encapsulated extract will mainly be applied in functional food.

Material and Methods

Materials

Methanol extract from *Alpinia purpurata*. Alginate was supplied by chitosan having degree of deacetylation >90%, was purchased from all other reagent used of analitycal grade.

Microencapsulation of *Alpinia purpurata* extract

Accurately weighed amount of sodium alginate (2.5%) was dissolved in water by using magnetic stirrer. In another beaker 2% chitosan previously dissolved in acetic acid solution (1%). Then *Alpinia purpurata* extract was added into alginate solution according to ratio of extract to alginate 1:1.5. The mixing solutions were stirred uniformly, and extruded into calcium chloride solutions with the content of 2.5% to immobilize for 45 min. The concentration of the polymers and the concentration of the cross-linker agent were used optimized condition, modification (mingyan, 2013). After that, the products were filtered and washed with distilled water, dried to get *Alpinia purpurata*-alginate microcapsules (APAM). Next, APAM were shock in chitosan solutions with the content of 2.0% for 2 h, dried at 30°C to obtain *Alpinia purpurata*-alginate-chitosan microcapsules (APCAM). Solubility profiles of microcapsules were examined in alcohol, netral, acid and alkali solution condition.

Physicochemical properties of *Alpinia purpurata* microparticles

SEM analysis

The morphology of the microcapsules was observed under scanning electron microscope (JEOl), at an acceleration voltage of 20 kV.

Fourier Transform Infra Red Spectroscopic Analysis (FTIR)

Interaction between polymers and their functional groups in the polymeric structures were studied using FTIR (Model: Frontier FT-IR, Spectral Range: 4000 - 450 cm⁻¹). Spectra of the polymer were taken in the wavelength region 500-4000 cm⁻¹.

Result and discussion

Microencapsulation of *Alpinia purpurata* extract

Alpinia purpurata extract Microencapsulation were prepared by extrusion technique using alginate and chitosan as coating materials. The mixing solutions between *Alpinia purpurata* extract and alginate solution was dropped into calcium chloride solution (2%). Various salts were selected as a cross linking agent like calcium chloride, aluminium chloride, ferric chloride and sodium chloride.

Out of which, calcium chloride was selected as it formed comparatively spherical and rigid microspheres. The resulted *Alpinia purpurata* microcapsules were regularly spherical after drying. With or without chitosan as coating were tried which gave the formation of well formed microspheres. Chitosan content was found that the introduction of chitosan could make surface of microcapsules more smooth and could make the diameters of microcapsules reduced after drying at 30°C, which might be correlated with the electrostatic interaction between alginate and chitosan to form a stable polyelectrolyte complex (Li et al., 2002). In this study, the microcapsules coated with chitosan were mainly to stabilize *Ca*-alginate microparticles (Selina et al., 2008).

When chitosan reacted with alginate completely, *Ca*-alginate microparticles were more stable.

The desirable microcapsule should protect core material from acid-damaged destruction. When it reached small intestine, it should release the core material rapidly (Yoo et al., 2006). The solubility test profiles of *Alpinia purpurata* microcapsules was investigated in alcohol, netral, acid and alkali solution. But microcapsules can not be soluble in all of condition. further research is recommended in order to achieve the right conditions.

Physicochemical properties of *Alpinia purpurata* microparticles

SEM analysis
The SEM images of *Alpinia purpurata* microcapsules are illustrated in Fig. 1. It could be found that the microparticles all had spherical appearances. Nevertheless the APACM showed a smooth outer surface after the introduction of chitosan in preparation. As shown in Fig. 2 (b)

![SEM images of Alpinia purpurata microcapsules.](image-url)

Fig. 1 – SEM image of Alpinia purpurata microcapsules. (a) before coating chitosan. (b) after coating chitosan.

![Comparison analysis of the spectroscopy of (1) Alginate, (2) Chitosan, (3) Alpinia purpurata microcapsules coated by alginate, and Alpinia purpurata microcapsules coated by alginate and chitosan.](image-url)

Fig. 2 – Comparison analysis of the spectroscopy of (1) Alginate, (2) Chitosan, (3) *Alpinia purpurata* microcapsules coated by alginate, and *Alpinia purpurata* microcapsules coated by alginate and chitosan.

Fourier Transform Infra Red Spectroscopic Analysis (FTIR)

The infrared spectra of alginate, chitosan, and *Alpinia purpurata* extract-loaded microcapsules are shown in Fig. 2. The spectrum of APAM was similar to that of alginate, but different from that of Alpinia purpurata extract, suggesting that Alpinia purpurata extract was embedded well. After microencapsulation, the absorption band at 1627 cm$^{-1}$ and 1415 cm$^{-1}$ of alginate both shifted to higher frequency, near 1639 cm$^{-1}$ and 1423 cm$^{-1}$, respectively, indicating that there was electrostatic interaction between alginate and *Alpinia purpurata* extract in microcapsule. It could also be observed that no new absorption band appeared among spectra of APAM and wall materials (alginate and chitosan), showing that the formation of APACM was promoted by physical interaction such as electrostatic interaction rather than chemical reactions. The results suggested that whether APAM or APACM, they were formed by electrostatic interaction, which was beneficial to sustained release of phycocyanin in microcapsules.

Conclusion

SEM And FTIR analysis show that coating between alginate and alginate chitosan show that there are no reaction with chemical reaction merely by physical reaction. So can be used to encapsulate bioactive compound on Alpinia purpurata extract.

Reference

