
BAB IV

PERANCANGAN ALAT

1.1 Spesifikasi Alat

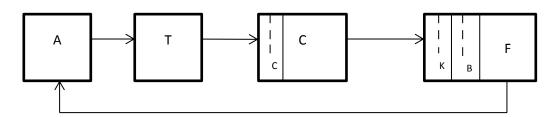
Gambar 5. Bagian – bagian Spektrofotometri Visible

KETERANGAN GAMBAR:

- 1. Lid of the room
- 2. Cell Holder
- 3. Operation Panel terdiri dari : LCD Displayer dan Keypad

→ Keypad Description:

- a. Set untuk Setup
- b. Print untuk Print
- c. Clear untuk Clear
- d. *Up, down key* untuk mengganti mode test, serta untuk menambah atau mengurangi panjang gelombang
- e. $\mathit{GOTO}\,\lambda$ untuk Panjang Gelombang
- f. Zero untuk Mengkalibrasi nol
- g. Enter untuk Mengkonfirmasi
- h. Return untuk Mengulang
- 4. Rod
- 5. Power Switch
- 6. Power Socket
- 7. Fan
- 8. USB Port
- 9. Print Port


Tabel 3. Spesifikasi Alat

Optical System	Singke Beam, Greating 1200lines/mm
Wavelength Range	325-1000 nm
Spectral Bandwidth	4nm
Wavelength Accuracy	± 1.8nm
Wavelength	≤ 0.5nm
Repeatability	
Photometric Accuracy	± 0.002A (0-0.5Abs), ± 0.004A (0.5-1.0Abs), ± 0.5% T (0-100% T)
Photometric	0.001Abs (0-0.5Abs), 0.002Abs (0.5-1.0Abs),
Repeatability	≤0.2% T (0-100% T)
Stray Light	≤0.1% T @360nm; 220nm
Stability	± 0.001 A/h @500nm
Noise	± 0.001A
Display	128*64 Dots LCD
Photometric Mode	T, A, C, E
Photometric Range	0-200% T, -0.301-3.0 A
Detector	Silicon Photodiode
Light Source	Deuterium Lamp, Tungsten Lamp
Input	Membrane Keypad
Standart Acceseries	10mmm glass cuvette*4 units
Power Supply	110/220V ± 10%, 60/50Hz
Packing Size(W*D*H) mm	580*430*320
Gross Weight(kg)	11.5

4.2 Operasi Alat

1. Sistem Perangkat Lunak

Alat terdiri atas 4 cara: cara A, cara T, cara C dan cara F.

Gambar 7. Sistem Perangkat Lunak

2. Operasi Dasar

• Pilih Metode Uji

Tekan atas, bawah tombol untuk mengubah mode uji

Mengatur Panjang Gelombang

Tekan GOTO λ untuk mengatur panjang gelombang, panjang gelombang dapat disesuaikan dengan tombol atas dan bawah, nilai panjang gelombang akan ditampilkan pada layar, nilai minimum nya yaitu 0.1~nm

Mengatur Parameter

Alat akan memberi petunjuk untuk memasukkan konsentrasi atau k, b yang dapat berubah dengan tombol atas dan bawah, tekan ENTER untuk konfirmasi dan menyimpan nilai

Mengkalibrasi Nol

Tekan ZERO untuk dapat mengkalibrasi nol

Mengkalibrasi 100%T

Letakkan referensi di jalur terang, tekan ZERO untuk mengkalibrasi 100%T/0Abs

• Mencetak Hasil Uji

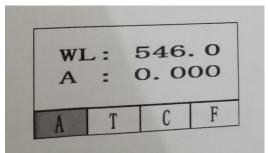
Pada uji antarmuka, tekan PRINT untuk mencetak hasil uji

3. Sebelum Pengukuran

Pengecekkan

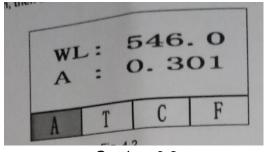
Hapus semua blok di jalan yang terang dan tutup kompartemennya

Sebelum Pemanasan

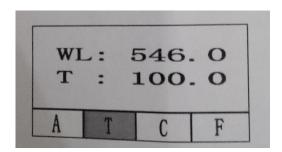

Setelah pengecekkan, alat akan dilakukan keadaan sebelum pemanasan. Untuk uji yang akurat, paling sedikit diperlukan pemanasan selama 30 menit

Cek Kuvet

Kuvet harus bersih dan tidak ada sampel yang berada diatas permukaannya. Hanya kuvet silicon (kuarsa) yang diperbolehkan untuk digunakan dalam kisaran kurang dari 300 nm.

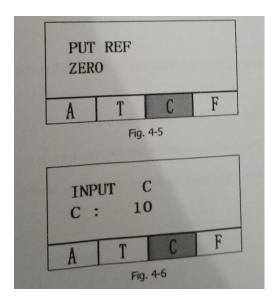

4. Perlakuan Operasi

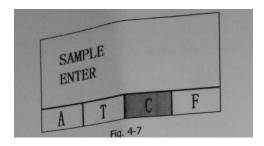
- a. Uji Absorbansi
 - 1) Pilih "A" dengan tombol atas dan bawah (Gambar 8-1)


Gambar. 8-1

- Tekan GOTO λ, tombol atas dan bawah untuk memilih panjang gelombang yang Anda butuhkan, masukkan untuk konfirmasi.
- Letakkan refraince di jalur cahaya dan tekan nol untuk mengkalibrasi
 100% T / 0 abs
- Pengukuran sampel, letakkan sampel yang akan diukur di jalur cahaya, kemudian hasilnya ditampilkan di layar secara auotomatik (Gambar 8-2)

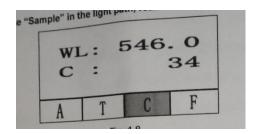
Gambar. 8-2

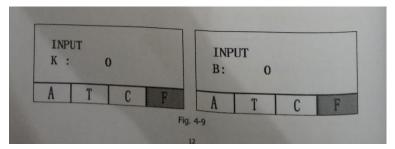

- 5) Tekan PRINT untuk mencetak hasil tes.
- 6) Ulangi langkah 4,5 untuk menguji sampel lainnya
- b. Uji Transmitansi
 - 1) Pilih "T" dengan tombol atas dan bawah (Gambar 8-3)



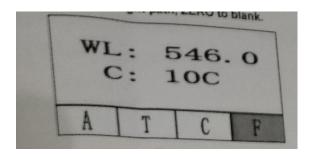
Gambar. 8-3

- Tekan pergi GO TO λ tombol atas dan bawah untuk memilih panjang gelombang yang Anda butuhkan, masukkan untuk konfirmasi.
- Letakkan referensi di jalur cahaya dan tekan nol untuk mengkalibrasi 100%T/0 abs.
- Pengukuran sampel, letakkan sampel yang akan diukur di jalur cahaya, kemudian hasilnya ditampilkan di layar secara auotomatik (Gambar 8-3)
- 5) Tekan **PRINT** untuk print hasil uji.


- 6) Ulangi langkah 4-5 untuk uji sample lain.
- c. Uji Konsentrasi ketika koonsentrasi standart sample diketahui
 - 1) Masukan mode "c", mempersiapkan uji panjang gelombang
 - Tekan SET, letakkan referensi di jalur terang, tekan ZERO (Gambar 8-5)
 - Masukan Conc. Mengikuti panduan, sesuaikan bawah dan atas diikuti
 ENTER untuk konfirmasi.
 - 4) Letakkan sampel standar di jalur terang mengikuti panduan, **ENTER** untuk konfirmasi.


Gambar. 8-7

5) Letakan "Sampel" di jalur terang, baca hasil conc



Gambar. 8-8

- 6) Tekan PRINT untuk mencetak hasil uji.
- 7) Ulangi langkah 5,6 dengan sample yang lain.
- d. Uji konsentrasi saat kurva standart diketahui
 - 1) Pilih mode "F" dengan tombol atas dan bawah.
 - 2) Tekan **GOTO** λ , masukan panjang gelombang uji dengan tombol atas dan bawah.
 - Tekan SET, masukan nilai K, B, ENTER untuk konfirmasi. (Gambar.
 8-9)

- 4) Letakkan "referensi" di jalur cahaya, **ZERO** dapat mengkalibrasi nol.
- Letakkan "sampel" di jalur yang terang, baca nilai konsentrasi.
 (Gambar 8-10)

Gambar. 8-10

- 6) Tekan **PRINT** untuk mencetak hasilnya.
- 7) Lakukan langkah 5, 6 untuk menguji sampel lainnya.