BAB IV

PERANCANGAN ALAT

1.1 Spesifikasi Alat

Gambar 4. Bagian – bagian Spektrofotometri Visible

Keterangan Gambar:

- 1. Lid of the room
- 2. Cell Holder
- 3. Operation Panel terdiri dari : LCD Displayer dan Keypad

- \rightarrow Keypad Description :
- a. Set untuk Setup
- b. *Print* untuk Print
- c. Clear untuk Clear
- d. *Up, down key* untuk mengganti mode test, serta untuk menambah atau mengurangi panjang gelombang
- e. GOTO λ untuk Panjang Gelombang
- f. Zero untuk Mengkalibrasi nol
- g. Enter untuk Mengkonfirmasi
- h. Return untuk Mengulang
- 4. Rod
- 5. Power Switch
- 6. Power Socket
- 7. Fan
- 8. USB Port
- 9. Print Port

Optical System	Singke Beam, Greating 1200lines/mm		
Wavelength Range	325-1000 nm		
Spectral Bandwidth	4nm		
Wavelength Accuracy	± 1.8nm		
Wavelength Repeatability	≤ 0.5nm		
Photometric Accuracy	± 0.002A (0-0.5Abs), ± 0.004A (0.5-1.0Abs), ± 0.5% T (0-100% T)		
Photometric Repeatability	0.001Abs (0-0.5Abs), 0.002Abs (0.5-1.0Abs), ≤0.2% T (0-100% T)		
Stray Light	≤0.1% T @360nm; 220nm		
Stability	± 0.001 A/h @500nm		
Noise	± 0.001A		
Display	128*64 Dots LCD		
Photometric Mode	T, A, C, E		
Photometric Range	0-200% T, -0.301-3.0 A		
Detector	Silicon Photodiode		
Light Source	Deuterium Lamp, Tungsten Lamp		
Input	Membrane Keypad		
Standart Acceseries	10mmm glass cuvette*4 units		
Power Supply	110/220V ± 10%, 60/50Hz		
Packing Size(W*D*H) mm	580*430*320		
Gross Weight(kg)	11.5		

4.2 Operasi Alat

1. Sistem Perangkat Lunak

Alat terdiri atas 4 cara: cara A, cara T, cara C dan cara F.

Gambar 5. Sistem Perangkat Lunak

2. Operasi Dasar

a. Pilih Metode Uji

Tekan atas, bawah tombol untuk mengubah mode uji

b. Mengatur Panjang Gelombang

Tekan GOTO λ untuk mengatur panjang gelombang, panjang gelombang dapat disesuaikan dengan tombol atas dan bawah, nilai panjang gelombang akan ditampilkan pada layar.

c. Mengatur Parameter

Alat akan memberi petunjuk untuk memasukkan konsentrasi atau k, b yang dapat berubah dengan tombol atas dan bawah, tekan ENTER untuk konfirmasi dan menyimpan nilai

d. Mengkalibrasi Nol

Tekan ZERO untuk dapat mengkalibrasi nol.

e. Mengkalibrasi 100%T

Letakkan referensi di jalur terang, tekan ZERO untuk mengkalibrasi 100%T/0Abs.

f. Mencetak Hasil Uji

Pada uji antarmuka, tekan PRINT untuk mencetak hasil uji.

3. Sebelum Pengukuran

a. Pengecekkan

Hapus semua blok di jalan yang terang dan tutup kompartemennya

b. Sebelum Pemanasan

Setelah pengecekkan, alat akan dilakukan keadaan sebelum pemanasan. Untuk uji yang akurat, paling sedikit diperlukan pemanasan selama 30 menit

c. Cek Kuvet

Kuvet harus bersih dan tidak ada sampel yang berada diatas permukaannya.

4. Perlakuan

a. Uji Absorbansi

1) Pilih "A" dengan tombol atas dan bawah (Gambar 4-1)

Gambar. 4-1

 Tekan GOTO λ, tombol atas dan bawah untuk memilih panjang gelombang yang dibutuhkan, masukkan untuk konfirmasi.

3) Letakkan refraince di jalur cahaya dan tekan nol untuk mengkalibrasi

100% T / 0 abs

4) Pengukuran sampel, letakkan sampel yang akan diukur di jalur cahaya, kemudian hasilnya ditampilkan di layar secara auotomatik (Gambar 4-2)

Gambar. 4-2

- 5) Tekan **PRINT** untuk mencetak hasil tes.
- 6) Ulangi langkah 4,5 untuk menguji sampel lainnya

b. Uji Transmitansi

1) Pilih "T" dengan tombol atas dan bawah (Gambar 4-3)

Gambar. 4-3

- 2) Tekan pergi **GO TO** λ tombol atas dan bawah untuk memilih panjang gelombang yang Anda butuhkan, masukkan untuk konfirmasi.
- Letakkan referensi di jalur cahaya dan tekan nol untuk mengkalibrasi 100%T/0 abs.

- 4) Pengukuran sampel, letakkan sampel yang akan diukur di jalur cahaya, kemudian hasilnya ditampilkan di layar secara auotomatik (Gambar 4-3)
- 5) Tekan **PRINT** untuk print hasil uji.
- 6) Ulangi langkah 4-5 untuk uji sample lain.

c. Uji Konsentrasi Ketika Koonsentrasi Standart Sample Diketahui

- 1) Masukan mode "C", mempersiapkan uji panjang gelombang
- 2) Tekan SET, letakkan referensi di jalur terang, tekan ZERO (Gambar 4-5)
- Masukan Conc. Mengikuti panduan, sesuaikan bawah dan atas diikuti ENTER untuk konfirmasi.
- Letakkan sampel standar di jalur terang mengikuti panduan, ENTER untuk konfirmasi.

SAMPLE ENTER			
TT	C	F	
A	4-7	-	

Gambar. 4-4

5) Letakan "Sampel" di jalur terang, baca hasil conc

- 6) Tekan **PRINT** untuk mencetak hasil uji.
- 7) Ulangi langkah 5,6 dengan sample yang lain.

d. Uji Konsentrasi Saat Kurva Standart Diketahui

- 1) Pilih mode "F" dengan tombol atas dan bawah.
- 2) Tekan **GOTO** λ , masukan panjang gelombang uji dengan tombol atas dan bawah.
- 3) Tekan SET, masukan nilai K, B, ENTER untuk konfirmasi. (Gambar. 4-9)

Gambar.4-6

- 4) Letakkan "referensi" di jalur cahaya, ZERO dapat mengkalibrasi nol.
- 5) Letakkan "sampel" di jalur yang terang, baca nilai konsentrasi. (Gambar

4-10)

Gambar. 4-7

- 6) Tekan **PRINT** untuk mencetak hasilnya.
- 7) Lakukan langkah 5, 6 untuk menguji sampel lainnya.