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Abstract 

The interfacial Transition Zone (ITZ) has long been recognized as the “weak link” in a 
structure.  While steel materials behave relatively linear up to high stress levels, nonlinearity 
is a prominent characteristic of most cementitious based material.  To obtain a more realistic 
representation to the overall behavior of composite steel-to-concrete structures, the response 
of the interface should be incorporated into the analysis.  

A Finite Element Program written in the Visual Basic programming language is developed to 
take into account nonlinearity of the cementitious materials, while incorporating the 
Interfacial Transition Zone behavior. The Transition Zone is modeled as two springs, 
perpendicular to each other. The individual load-deformation responses of the springs were 
obtained from laboratory tested specimens. The Federal Institute of Technology, Europe 
Model Code 2011 was used to model the cementitious material behavior. Failure 
criteria are analyzed based on the principal stresses at Gauss points. 

Keywords: ITZ, Spring, Stiffness Modulus, Failure Criteria.  

1. Introduction 

The Interfacial Transition Zone in cementitious composite materials is widely 
acknowledged as to be the “weak link” in the structure (Larbi, 1991).  This weakness 
is due to its low adhesive strength, and the presence of calcium hydroxide crystals 
having an orientation that allows cracks to occur along their weak bond plane.  
Therefore, the stress disparity in this area will most likely be significant, and leading 
to crack initiation.   

Due to its very small size, only around 30 to 50 μm in thickness, direct tests to obtain 
the ITZ properties are at this point not available. The most recent technique is the 
micro-indentation method, measuring the modulus of elasticity and creep from the 
indentation at a distance from the ITZ. Most Finite Element models represent the 
bond between steel and mortar by the smeared-crack method, allowing crack 
propagation along the ITZ surface. The constitutive model for the bond relationship is 
highly simplified (Lowes et. al., 2004; Jendele and Cervenka, 2006).  

https://www.researchgate.net/publication/222284655_Finite_element_modeling_of_reinforcement_with_bond?el=1_x_8&enrichId=rgreq-67cf6e7b-b513-4477-ac58-7445bd96d2d9&enrichSource=Y292ZXJQYWdlOzI2MDY2MTEyNTtBUzozMjcwMjY3ODQzOTExNjhAMTQ1NDk4MDY2OTA5NQ==
https://www.researchgate.net/publication/27343357_The_cement_paste-aggregate_interfacial_zone_in_concrete?el=1_x_8&enrichId=rgreq-67cf6e7b-b513-4477-ac58-7445bd96d2d9&enrichSource=Y292ZXJQYWdlOzI2MDY2MTEyNTtBUzozMjcwMjY3ODQzOTExNjhAMTQ1NDk4MDY2OTA5NQ==
https://www.researchgate.net/publication/282736538_Concrete-steel_bond_model_for_use_in_finite_element_modeling_of_reinforced_concrete_structures?el=1_x_8&enrichId=rgreq-67cf6e7b-b513-4477-ac58-7445bd96d2d9&enrichSource=Y292ZXJQYWdlOzI2MDY2MTEyNTtBUzozMjcwMjY3ODQzOTExNjhAMTQ1NDk4MDY2OTA5NQ==
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A model representing the ITZ as a linkage element is constructed. The link consists of 
two springs, one perpendicular, and one parallel to the ITZ surface characterizing the 
normal and shear behavior (Figure 1). The linkage element is connected by two 
nodes, one on the steel material surface, denoted as "s" and one at the mortar element 
denoted by "m". The nodes have two degrees of freedom each.  

 

 

 

 

 

Figure 1: Linkage element model for the ITZ 

The stiffness modulus of the springs kn and kv are expressed in their load - 
displacement response, obtained by individual laboratory tests (Han and Nuroji, 2010; 
Han and Sabdono, 2011). When stresses increase, the relative displacements are 
converted to the coordinate system of the linkage element to update the stiffness 
modulus. Due to the highly nonlinear nature of the cementitious material and the ITZ, 
the Riks-Wempners arc-length iteration technique is accessed, to accommodate this 
behavior. 

2. ITZ Behavior 

Since the relative displacement of the two adjacent nodes of the linkage element 
represents the behavior of the springs, these displacements should be transformed 
from the global coordinate system (X, Y) to the local coordinate system (n, v) enabling 
evaluation and incorporation into the FEM. The local coordinate system is 
demarcated at the bisection line of the angle between the two ITZ surfaces, at the 
steel elements (Figure 2). 

 

 

 

 

 

 

Figure 2: System transformation and algorithms 

Assuming a linear, independent relationship, the behavior of the linkage element in 
the global coordinate system is expressed as: 
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Where: 

[P] : is the force matrix of the link in the global coordinate system 
[Δd] : is the nodal displacement matrix in the global coordinate system 
[R] : is the transformation matrix from the local to the global coordinates 

system as a function of α 
α : is the angel between the local and global coordinate system 

following the right-hand rule 
kn and kv : are the stiffness modulus of the ITZ  

The load-displacement responses are obtained through specific developed test 
methods, and are defined by a series of factors such as the roughness of the steel-
surface, the mechanical properties of the mortar, the water cement ratio and the 
presence of bleeding in the ITZ. Generally, the response in the normal direction is 
characterized by a polynomial to the second degree. The curve shows a distinctively 
non-linear behavior, even at very low loading levels.  The ultimate capacity occurs 
due to bond failure in the ITZ (figure 3).   

The load – displacement relationship for the ITZ in shear has a bi-linear function, the 
first part representing the stiffness modulus as a contribution of adhesion and friction, 
and the second being purely the result of friction.  Figure 3 also shows a comparison 
between normal and shear responses. It can be seen that the ultimate normal 
displacement is low, when compared to shear capacity. It is therefore most likely that 
failure in the ITZ will be initiated in the tension area. 

 

 

 

 

 

 

 

Figure 3: Linkage element stiffness modulus behavior 

The stiffness modulus of the spring is a function of the relative displacement ∆݀௦௠ሬሬሬሬሬሬሬറ 
between the two nodes. This displacement vector ∆݀௦௠ሬሬሬሬሬሬሬറ can be determined from the 
displacements of nodes in the global coordinate system (figure 4). 

The direction of the Δ݀ሬሬሬሬሬറ௡ vector is used as criterion in the analysis of the ITZ. When 
this vector moves in the positive direction, the normal spring is in tension and the 
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stiffness of this spring will decrease as a function of the load increase. But when the 
vector moves in the negative direction, the spring is in compression, resulting in a 
fully bonded condition. The corresponding stiffness will therefore be infinitely large 
approaching ∞, and it is assumed that the two nodes s and m will coincide, thus 
further having identical displacements throughout the loading process. The positive n 
axis is considered pointing outward from the steel to the mortar in the (s → m) 
direction, while the positive v axis is following the right hand coordinate system 
based on the position of n. 

The behavior in shear is denoted by the vector Δ݀ሬሬሬሬሬറ௩ , and analyzed only when the 
normal spring vector is in tension. Basically, the direction of this shear vector does 
not influence the behavior analysis, since shear is not direction sensitive.  

 

 

 

 

 

 

 

 

 

Figure 4: Linkage Element Algorithms  

At initial stage, the coordinates of the linkage element nodes are identical. Double 
nodes are created by the mesh generator QUAD_BUILD version 5.0, developed in 
Australia, by Dr. Alexander Tsvelikh from Computational Mechanics Australia Pty. 
Ltd. The program itself is written in ANSI C and can be used on all Window and 
Unix platforms with standard C and/or C++ compilers.  

To create double nodes along the ITZ, two arches or lines coinciding each other, are 
created. The two arches or lines need to have concurring starting and ending nodes 
but individually assigned, different numeration. When the arches or lines are meshed 
with an equal number of elements, but the area between the two arches is not defined 
into elements, a blank or gap in between these two arches will be created. The output 
of the generator is called by the Visual Basic (Microsoft Visual Studio 2008) program 
to support the Finite Element analysis. Based on preliminary studies and observing 
the crack pattern of the laboratory specimens, finer meshing can be placed in the 
areas that are most vulnerable to high principal stresses and failure. 

When an increment load is applied to the system, the relative displacement between 
the two nodes are calculted. The algorithm for the linkage criteria becomes: 
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 Δ݀௡ ൐ 0  : when the spring in the normal direction is in tension (2) 

 Δ݀௡ ൑ 0  : when the spring in the normal direction is in compression (3) 

Where: 

Δ݀௡ : is the ITZ normal displacement in the local coordinate system 

For the case that the normal spring is tension, two failure options are considered.  
First is the case where the displacement Δdn exceeds the ultimate normal 
displacement (dn)ult.  The bond in the normal direction then drops to zero.  However, 
since the shear capacity is much higher than the normal capacity, the kv will still 
remain in the equation and ITZ failure is due to tension. Secondly is the case were 
shear-displacement Δdv surpasses the ultimate shear displacement.  In this case the 
ITZ will fail in shear. 

When the stiffness matrix of the linkage element reaches zero, the bond within the 
ITZ has vanished and this will result in a physical gap in the ITZ. During testing of 
the laboratory specimens, the development of this gap can clearly be observed. For 
the condition of a linkage element in compression, a significantly large number in the 
order of the 15th exponent is assigned to the stiffness kn and kv. 

The direction of the positive normal coordinate n in the local system is determined by 
the vector approach. The vectors between the two adjacent notes are converted to a 
unity vector [R][i,j], and their resultant calculated. The coefficient of this resultant 
vector is converted to the opposite direction by applying a negative sign to the [i,j] 
matrix (Figure 5.). 

 

 

 

 

 

Figure 5: Unity vector system for determination of local coordinates  
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Where: 

ሾܴሿ : is the vector coefficient between ITZ nodes 
݀ : is the length between two adjacent nodes 
c : is the resultant of the unit vectors 
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3. Material Nonlinearity and Iteration Procedure 

The mortar is analyzed based on the Kupfer-Hilsdorf-Rusch (1969) failure envelope. 
When principal stresses at Gauss points are falling within the envelope boundaries, no 
failure occur and the material stiffness modulus and Poisson’s ratio are updated 
accordingly (Han and Purnomo, 2011). The behavior of material under biaxial 
stresses is approach by the CEB-FIB Bulletin Nr. 42, 2008. For sign convention, the 
stresses and strains are considered negative in compression, and positive in tension. 
The Poisson’s ratio ߭c is a function of the nonlinearity index β, derived from Ottosen 
(1979). 

Nonlinearity of the material is approached by the arc-length iteration method.  This 
iteration procedure becomes necessary since the stiffness calculated at the former 
loading stage, will produce a load-error in predicting the actual loading at the next 
increment. Iteration is conducted by a correction procedure to minimize this error.  

The arc-length method performs an iteration along an arc, drawn from the calculated 
external loading point to its intersection with the actual load-displacement curve. The 
last convergence state on this curve, functions as origin to the arc. Riks and Wempner 
(Riks, 1970; Wempner, 1971) developed an algorithm to simplify the mathematical 
expressions, and used the vector approach to replace the arc with a vector ݊పሬሬሬറ  
perpendicular to the vector ݐపሬሬറ which is a product of the load and displacement vectors 
Δ పܲሬሬሬሬሬറ and Δ݀పሬሬሬሬሬሬറ. The arc-length method has the advantage that a descending branch of a 
curve can be incorporated into the analysis, without resulting in an error in the 
calculations due to negative values of the stiffness modulus. 

4. Results and Discussion 

The model is run for a mortar cube 100 x 100 x 50 mm, having single cylindrical steel 
inclusions, 45 mm in diameter. The mechanical properties of the mortar, steel and 
ITZ are obtained from laboratory tested specimens and listed in Table 1.  

Table 1: Material properties 

Properties Mortar 
Steel 

Inclusion 
ITZ Normal 

Response 
ITZ Shear 
Response 

Compression Stress f’c (MPa) 17.44    

Tensile Yield Stress ft (MPa)  583.3   

Modulus of Elasticity E (Gpa) 25.88 211.17   

Poisson’s Ratio υ 0.224    

Initial Stiffness (N/mm2/mm)   1549.02 959.24 

Ultimate Strain    0.00161 0.00202 

A Coefficient 	ሺݕ ൌ ଶݔ	ܣ ൅   ሻ   -327718ܤ

https://www.researchgate.net/publication/245942851_Discrete_approximations_related_to_nonlinear_theories_of_solids_Int_J_Solids_Struct_7_1581-1599?el=1_x_8&enrichId=rgreq-67cf6e7b-b513-4477-ac58-7445bd96d2d9&enrichSource=Y292ZXJQYWdlOzI2MDY2MTEyNTtBUzozMjcwMjY3ODQzOTExNjhAMTQ1NDk4MDY2OTA5NQ==
https://www.researchgate.net/publication/245582965_Behavior_of_Concrete_Under_Biaxial_Stresses?el=1_x_8&enrichId=rgreq-67cf6e7b-b513-4477-ac58-7445bd96d2d9&enrichSource=Y292ZXJQYWdlOzI2MDY2MTEyNTtBUzozMjcwMjY3ODQzOTExNjhAMTQ1NDk4MDY2OTA5NQ==
https://www.researchgate.net/publication/260665185_Finite_element_modeling_incorporating_nonlinearity_of_material_behavior_based_on_the_FIB_Model_Code_2010?el=1_x_8&enrichId=rgreq-67cf6e7b-b513-4477-ac58-7445bd96d2d9&enrichSource=Y292ZXJQYWdlOzI2MDY2MTEyNTtBUzozMjcwMjY3ODQzOTExNjhAMTQ1NDk4MDY2OTA5NQ==
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The laboratory specimen was tested with a constant incremental displacement. The 
FEM program was run to compare the influence of the ITZ to the overall structures 
behavior. Figure 6 shows the load-displacement responses for the structure neglecting 
the ITZ, and including the linkage element representing the ITZ. It is shown that a 
lower stiffness modulus is obtained when the behavior of the ITZ is included.  

 

 

 

 

 

 

 

 

Figure 6: Load-displacement response for the ITZ  

The FE model assuming a fully bonded condition, without the presence of the ITZ 
results in a higher stiffness modulus at every loading stage, when compared to the 
model incorporating the ITZ for the same loading levels. The model also over 
predicts the actual behavior of the laboratory tested specimen, significantly. While the 
ultimate capacity was estimated closely by both the models, the FE model with the 
ITZ demonstrated a slightly lower stiffness when compared to the laboratory 
specimen.  

As for the ductility, it can be seen that neglecting the ITZ will predict a much lower 
value, resulting in a less ductile structure. However, the load-displacement curves of 
FEM and laboratory specimen are identical, following a non-linear response, even at 
low loading stages. The parabolic curve reaches a maximum, and demonstrates a very 
slight descending branch, up till failure. 

5. Conclusion and Further Research 

The presence of the ITZ in the analysis of composite structures and material could not 
be neglected. The developed FEM program modeling the ITZ as a linkage element is 
therefore most useful to obtain a more realistic and accurate prediction of the load-
displacement response. This program will also include the nonlinear nature of the 
cementitious material. 

The load-displacement relationship for the normal and shear response is assumed 
linear and independent, this is not totally true. Also, the statement that in compression 
the ITZ is fully bonded and no shear displacement occurs is an understatement to the 
actual behavior. To overcome these simplifications, more accurate and realistic 
laboratory test method for the ITZ should be developed. The shear response as a 
function of the normal stress, both in tension or in compression should be studied. 
From here on, the stiffness matrix of the ITZ could be constructed reflecting the 
interaction between shear and normal behavior. In the special case of bar 
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reinforcement, the shear behavior can be approached by the constitutive model 
representing the bond between the bar and the concrete. 

The FEM program is operated using the full, square matrix based on the Gauss 
elimination method. When dealing with more complicated configurations, for 
example deformed steel bars that requires very fine, complex meshing, the band-
width method should be accessed enabling a shorter running time. 

A sensitivity analysis including the effect of loading increments and meshing should 
be conducted, to test the accuracy and effectiveness of the developed program. More 
elaborate laboratory test specimens will be used to validate the outcome, for various 
types of mortar mixes, and diversity in steel properties. The outcome of these 
validations and sensitivity analysis will be used to improve and correct the ITZ 
program. 
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