DAFTAR PUSTAKA

Lampiran 1. Ethical Clearence

KOMISI ETIK PENELITIAN KESEHATAN (KEPK)
FAKULTAS KEDOKTERAN UNIVERSITAS DIPONEGORO
DAN RSUP dr KARIADI SEMARANG

KOMISI ETIK PENELITIAN KESEHATAN (KEPK)
FAKULTAS KEDOKTERAN UNIVERSITAS DIPONEGORO
DAN RSUP dr KARIADI SEMARANG

Judul : Prevalensi dan faktor risiko terjadinya tinea pedis pada polisi Kota Semarang
Peneliti : Astri N. Napitupulu

Judul : Prevalensi dan faktor risiko terjadinya ketombe pada polisi Kota Semarang
Peneliti : Mitha Ispmi Istiqamah

Pembimbing : 1. Prof. Dr. dr. Prasetyowati Subchand, Sp.KK(K)
2. dr. Y. L. Aryoko Widodo S. M.Si.Med

Penelitian : Dilaksanakan di Kantor Polantas Kota Semarang

Peneliti harus melampirkan 2 kopi lembar Informed Consent yang telah disetujui dan ditandatangani oleh peserta penelitian pada laporan penelitian.

Peneliti diwajibkan menyerahkan :
- Laporan kemajuan penelitian (clinical trial)
- Laporan kejadian efek samping jika ada
- Laporan ke KEPK jika penelitian sudah selesai & dimulai Abstrak Penelitian

Semarang, 01 MAR 2015

Ketua

[Signature]

Prof. Dr. dr. Suprihatil, M.Sc, Sp.THT-KL(K)
NIP: T9500621 197703 2 001
Lampiran 2. Informed Consent

JUDUL PENELITIAN : Prevalensi dan Faktor Risiko Terjadinya Ketombe pada Polisi Kota Semarang

PERSETUJUAN SETELAH PENJELASAN

(INFORMED CONSENT)

Saya menjamin bahwa penelitian ini tidak akan menimbulkan efek yang merugikan pada Saudara/Bapak. Setiap data pemeriksaan dan penelitian dijamin...

Saudara/Bapak diberi kesempatan untuk menanyakan semua hal yang belum jelas sehubungan dengan penelitian ini. Bila sewaktu-waktu terjadi efek samping atau membutuhkan penjelasan lebih lanjut, Saudara/Bapak dapat menghubungi Mitha Ismi Istiqomah pada nomor 087829180343 dan Prof. Dr. dr. Prasetyowati Subchan, Sp.KK(K) di bagian Ilmu Kesehatan Kulit dan Kelamin RSUP Dr Kariadi Semarang.

Pada penelitian ini, Saudara/Bapak dapat sewaktu-waktu keluar dari protokol/proyek penelitian ini tanpa dikenakan sanksi apapun.

Terima kasih atas kerjasama bpk/ibu/sdr.

Setelah mendengar dan memahami penjelasan penelitian, dengan ini saya menyatakan

SETUJU / TIDAK SETUJU

untuk ikut sebagai subyek penelitian ini.

Semarang,
Responden,
KUESIONER PENELITIAN

HIGIENE PERORANGAN TERHADAP KEJADIAN KETOMBE

Keterangan Responden

1. Nomor :
2. Tanggal pemeriksaan :
3. Petugas pemeriksa :

Identitas Responden

1. Nama :
2. Jenis Kelamin :
3. Umur :

Petunjuk pengisian : Berilah tanda silang (X) pada jawaban yang anda pilih.

I. Kebersihan umum

1. Berapa kali rutinitas anda keramas setiap minggunya?
 a. Dua kali atau lebih (1)
 b. Satu kali (0)

2. Apakah anda keramas selalu menggunakan shampo?
 a. Ya (1)
 b. Tidak (0)
2. Apakah shampo yang anda gunakan adalah shampo anti ketombe?
 a. Ya (1)
 b. Tidak (0)

3. Bagaimana penggunaan handuk yang anda pakai?
 a. Digunakan sendiri (1)
 b. Digunakan banyak orang/bergantian (0)

4. Berapa seringkah anda mengganti handuk anda?
 a. 3 hari sekali (1)
 b. 5 hari sekali (0)

5. Apakah anda memakai sisir secara bergantian dengan orang lain?
 a. Ya (0)
 b. Tidak (1)

6. Apakah anda memakai topi polisi secara bergantian dengan teman?
 a. Ya (0)
 b. Tidak (1)

II. Tempat penyimpanan topi polisi
1. Jika topi polisi anda sedang tidak dipakai, bagaimana cara anda menyimpan?
 a. Diletakkan di ruang terbuka yang terkena cahaya matahari (1)
 b. Diletakkan di atas meja/di dalam lemari (0)
Lampiran 4. Hasil Analisis

ROC Curve

Case Processing Summary

<table>
<thead>
<tr>
<th>Ketombe</th>
<th>Valid N (listwise)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positivea</td>
<td>14</td>
</tr>
<tr>
<td>Negative</td>
<td>44</td>
</tr>
</tbody>
</table>

Larger values of the test result variable(s) indicate stronger evidence for a positive actual state.

a. The positive actual state is positif.

Diagonal segments are produced by ties.
Area Under the Curve

Test Result Variable(s): Umur

<table>
<thead>
<tr>
<th>Area</th>
<th>Std. Error</th>
<th>Asymptotic Sig.</th>
<th>Asymptotic 95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>.547</td>
<td>.087</td>
<td>.598</td>
<td>.377 to .717</td>
</tr>
</tbody>
</table>

The test result variable(s): Umur has at least one tie between the positive actual state group and the negative actual state group. Statistics may be biased.

a. Under the nonparametric assumption
b. Null hypothesis: true area = 0.5
The test result variable(s): Umur has at least one tie between the positive actual state group and the negative actual state group.

a. The smallest cutoff value is the minimum observed test value minus 1, and the largest cutoff value is the maximum observed test value plus 1. All the other cutoff values are the averages of two consecutive ordered observed test values.

Coordinates of the Curve

Test Result Variable(s): Umur

<table>
<thead>
<tr>
<th>Positive if Greater Than or Equal To</th>
<th>Sensitivity</th>
<th>1 - Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.00</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>20.50</td>
<td>1.000</td>
<td>.977</td>
</tr>
<tr>
<td>21.50</td>
<td>.857</td>
<td>.909</td>
</tr>
<tr>
<td>22.50</td>
<td>.857</td>
<td>.886</td>
</tr>
<tr>
<td>24.50</td>
<td>.786</td>
<td>.864</td>
</tr>
<tr>
<td>26.50</td>
<td>.786</td>
<td>.818</td>
</tr>
<tr>
<td>27.50</td>
<td>.786</td>
<td>.795</td>
</tr>
<tr>
<td>28.50</td>
<td>.786</td>
<td>.705</td>
</tr>
<tr>
<td>29.50</td>
<td>.786</td>
<td>.636</td>
</tr>
<tr>
<td>30.50</td>
<td>.786</td>
<td>.523</td>
</tr>
<tr>
<td>31.50</td>
<td>.714</td>
<td>.477</td>
</tr>
<tr>
<td>32.50</td>
<td>.571</td>
<td>.432</td>
</tr>
<tr>
<td>34.00</td>
<td>.571</td>
<td>.364</td>
</tr>
<tr>
<td>36.00</td>
<td>.500</td>
<td>.364</td>
</tr>
<tr>
<td>38.50</td>
<td>.429</td>
<td>.341</td>
</tr>
<tr>
<td>40.50</td>
<td>.429</td>
<td>.318</td>
</tr>
<tr>
<td>41.50</td>
<td>.286</td>
<td>.295</td>
</tr>
<tr>
<td>42.50</td>
<td>.286</td>
<td>.250</td>
</tr>
<tr>
<td>43.50</td>
<td>.214</td>
<td>.250</td>
</tr>
<tr>
<td>44.50</td>
<td>.143</td>
<td>.227</td>
</tr>
<tr>
<td>45.50</td>
<td>.143</td>
<td>.205</td>
</tr>
<tr>
<td>48.00</td>
<td>.071</td>
<td>.205</td>
</tr>
<tr>
<td>51.00</td>
<td>.071</td>
<td>.182</td>
</tr>
<tr>
<td>52.50</td>
<td>.000</td>
<td>.114</td>
</tr>
<tr>
<td>54.00</td>
<td>.000</td>
<td>.045</td>
</tr>
<tr>
<td>56.00</td>
<td>.000</td>
<td>.023</td>
</tr>
<tr>
<td>58.00</td>
<td>.000</td>
<td>.000</td>
</tr>
</tbody>
</table>
ROC Curve

Case Processing Summary

<table>
<thead>
<tr>
<th>Ketombe</th>
<th>Valid N (listwise)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>44</td>
</tr>
<tr>
<td>Negative</td>
<td>14</td>
</tr>
</tbody>
</table>

Larger values of the test result variable(s) indicate stronger evidence for a positive actual state.

- The positive actual state is negatif.

Diagonal segments are produced by ties.
Area Under the Curve

Test Result Variable(s): Higiene

<table>
<thead>
<tr>
<th>Area</th>
<th>Std. Error</th>
<th>Asymptotic Sig.</th>
<th>Asymptotic 95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>.502</td>
<td>.097</td>
<td>.978</td>
<td>.312</td>
</tr>
</tbody>
</table>

The test result variable(s): Higiene has at least one tie between the positive actual state group and the negative actual state group. Statistics may be biased.

a. Under the nonparametric assumption
b. Null hypothesis: true area = 0.5

Coordinates of the Curve

Test Result Variable(s): Higiene

<table>
<thead>
<tr>
<th>Positive if Greater Than or Equal To</th>
<th>Sensitivity</th>
<th>1 - Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.00</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>3.50</td>
<td>1.000</td>
<td>.929</td>
</tr>
<tr>
<td>4.50</td>
<td>.932</td>
<td>.786</td>
</tr>
<tr>
<td>5.50</td>
<td>.614</td>
<td>.643</td>
</tr>
<tr>
<td>6.50</td>
<td>.295</td>
<td>.357</td>
</tr>
<tr>
<td>8.00</td>
<td>.000</td>
<td>.000</td>
</tr>
</tbody>
</table>

The test result variable(s): Higiene has at least one tie between the positive actual state group and the negative actual state group.

a. The smallest cutoff value is the minimum observed test value minus 1, and the largest cutoff value is the maximum observed test value plus 1. All the other cutoff values are the averages of two consecutive ordered observed test values.
Frequencies

Frequency Table

<table>
<thead>
<tr>
<th></th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jenis kelamin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valid Perempuan</td>
<td>15</td>
<td>25.9</td>
<td>25.9</td>
<td>25.9</td>
</tr>
<tr>
<td>Laki-laki</td>
<td>43</td>
<td>74.1</td>
<td>74.1</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>58</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umur</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valid >= 30,5</td>
<td>34</td>
<td>58.6</td>
<td>58.6</td>
<td>58.6</td>
</tr>
<tr>
<td>< 30,5</td>
<td>24</td>
<td>41.4</td>
<td>41.4</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>58</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higiene</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valid < 4,5</td>
<td>6</td>
<td>10.3</td>
<td>10.3</td>
<td>10.3</td>
</tr>
<tr>
<td>>= 4,5</td>
<td>52</td>
<td>89.7</td>
<td>89.7</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>58</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tempat penyimpanan topi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valid Kurang</td>
<td>27</td>
<td>46.6</td>
<td>46.6</td>
<td>46.6</td>
</tr>
<tr>
<td>Baik</td>
<td>31</td>
<td>53.4</td>
<td>53.4</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>58</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>
Crosstabs

Jenis kelamin * Ketombe

<table>
<thead>
<tr>
<th>Jenis kelamin</th>
<th>Ketombe</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perempuan</td>
<td>positif</td>
<td>14</td>
<td>24.1</td>
<td>24.1</td>
<td>24.1</td>
</tr>
<tr>
<td></td>
<td>negatif</td>
<td>44</td>
<td>75.9</td>
<td>75.9</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>58</td>
<td>100.0</td>
<td></td>
<td>100.0</td>
</tr>
</tbody>
</table>

Chi-Square Tests

- **Computed only for a 2x2 table**
- **1 cells (25.0%) have expected count less than 5. The minimum expected count is 3.62.**
Risk Estimate

<table>
<thead>
<tr>
<th>Odds Ratio for Jenis kelamin (Perempuan / Laki-laki)</th>
<th>Value</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>For cohort Ketombe = positif</td>
<td>1.200</td>
<td>.313 - 4.608</td>
</tr>
<tr>
<td>For cohort Ketombe = negatif</td>
<td>1.147</td>
<td>.422 - 3.116</td>
</tr>
<tr>
<td>N of Valid Cases</td>
<td>58</td>
<td></td>
</tr>
</tbody>
</table>

Umur * Ketombe

Crosstab

<table>
<thead>
<tr>
<th>Umur</th>
<th>Ketombe</th>
<th>Count</th>
<th>Expected Count</th>
<th>% within Ketombe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>positif</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>= 30,5</td>
<td></td>
<td>11</td>
<td>8.2</td>
<td>78.6%</td>
</tr>
<tr>
<td>< 30,5</td>
<td></td>
<td>3</td>
<td>5.8</td>
<td>21.4%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>14</td>
<td>14.0</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Umur</th>
<th>Ketombe</th>
<th>Count</th>
<th>Expected Count</th>
<th>% within Ketombe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>negatif</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>= 30,5</td>
<td></td>
<td>23</td>
<td>25.8</td>
<td>52.3%</td>
</tr>
<tr>
<td>< 30,5</td>
<td></td>
<td>21</td>
<td>18.2</td>
<td>47.7%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>44</td>
<td>44.0</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Umur</th>
<th>Count</th>
<th>Expected Count</th>
<th>% within Ketombe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>58</td>
<td>58.0</td>
<td>100.0%</td>
</tr>
</tbody>
</table>
Chi-Square Tests

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>df</th>
<th>Asymp. Sig. (2-sided)</th>
<th>Exact Sig. (2-sided)</th>
<th>Exact Sig. (1-sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Chi-Square</td>
<td>3.028</td>
<td>1</td>
<td>.082</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuity Correctiona</td>
<td>2.041</td>
<td>1</td>
<td>.153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>3.218</td>
<td>1</td>
<td>.073</td>
<td>.121</td>
<td>.074</td>
</tr>
<tr>
<td>Fisher's Exact Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear-by-Linear</td>
<td>2.976</td>
<td>1</td>
<td>.085</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Association</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N of Valid Cases</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Computed only for a 2x2 table
b. 0 cells (.0%) have expected count less than 5. The minimum expected count is 5.

Risk Estimate

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lower</td>
</tr>
<tr>
<td>Odds Ratio for Umur</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(>= 30,5 / < 30,5)</td>
<td>3.348</td>
<td>.820</td>
</tr>
<tr>
<td>For cohort Ketombe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>= positif</td>
<td>2.588</td>
<td>.808</td>
</tr>
<tr>
<td>= negatif</td>
<td>.773</td>
<td>.586</td>
</tr>
<tr>
<td>N of Valid Cases</td>
<td>58</td>
<td></td>
</tr>
</tbody>
</table>
Higiene * Ketombe

Crosstab

<table>
<thead>
<tr>
<th>Higiene</th>
<th>Ketombe</th>
<th>positif</th>
<th>negatif</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 4,5</td>
<td>Count</td>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>1.4</td>
<td>4.6</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>% within Ketombe</td>
<td>21.4%</td>
<td>6.8%</td>
<td>10.3%</td>
</tr>
<tr>
<td>>= 4,5</td>
<td>Count</td>
<td>11</td>
<td>41</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>12.6</td>
<td>39.4</td>
<td>52.0</td>
</tr>
<tr>
<td></td>
<td>% within Ketombe</td>
<td>78.6%</td>
<td>93.2%</td>
<td>89.7%</td>
</tr>
<tr>
<td>Total</td>
<td>Count</td>
<td>14</td>
<td>44</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>14.0</td>
<td>44.0</td>
<td>58.0</td>
</tr>
<tr>
<td></td>
<td>% within Ketombe</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Chi-Square Tests

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>df</th>
<th>Asymp. Sig. (2-sided)</th>
<th>Exact Sig. (2-sided)</th>
<th>Exact Sig. (1-sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Chi-Square</td>
<td>2.444b</td>
<td>1</td>
<td>.118</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuity Correctiona</td>
<td>1.123</td>
<td>1</td>
<td>.289</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>2.129</td>
<td>1</td>
<td>.145</td>
<td>.145</td>
<td>.145</td>
</tr>
<tr>
<td>Fisher's Exact Test</td>
<td>2.402</td>
<td>1</td>
<td>.121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear-by-Linear Association</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N of Valid Cases</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Computed only for a 2x2 table
b. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 1. 45.
<table>
<thead>
<tr>
<th>Risk Estimate</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Value</td>
</tr>
<tr>
<td>Odds Ratio for Higiene (< 4.5 / >= 4.5)</td>
<td>3.727</td>
</tr>
<tr>
<td>For cohort Ketombe = positif</td>
<td>2.364</td>
</tr>
<tr>
<td>For cohort Ketombe = negatif</td>
<td>.634</td>
</tr>
<tr>
<td>N of Valid Cases</td>
<td>58</td>
</tr>
</tbody>
</table>

Odds Ratio for Higiene (< 4.5 / >= 4.5)
For cohort Ketombe = positif
For cohort Ketombe = negatif
N of Valid Cases
Tempat penyimpanan topi * Ketombe

Crosstab

<table>
<thead>
<tr>
<th></th>
<th>Kurang</th>
<th>Baik</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td>6</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>Expected Count</td>
<td>6.5</td>
<td>7.5</td>
<td>14.0</td>
</tr>
<tr>
<td>% within Ketombe</td>
<td>42.9%</td>
<td>57.1%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Total</td>
<td>21</td>
<td>23</td>
<td>44</td>
</tr>
<tr>
<td>Count</td>
<td>21</td>
<td>23</td>
<td>44</td>
</tr>
<tr>
<td>Expected Count</td>
<td>20.5</td>
<td>23.5</td>
<td>44.0</td>
</tr>
<tr>
<td>% within Ketombe</td>
<td>47.7%</td>
<td>52.3%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Chi-Square Tests

<table>
<thead>
<tr>
<th>Test</th>
<th>Value</th>
<th>df</th>
<th>Asymp. Sig. (2-sided)</th>
<th>Exact Sig. (2-sided)</th>
<th>Exact Sig. (1-sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Chi-Square</td>
<td>.101b</td>
<td>1</td>
<td>.750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuity Correction</td>
<td>.000</td>
<td>1</td>
<td>.992</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>.102</td>
<td>1</td>
<td>.750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fisher's Exact Test</td>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
<td>.497</td>
</tr>
<tr>
<td>Linear-by-Linear Association</td>
<td>.099</td>
<td>1</td>
<td>.752</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N of Valid Cases</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Computed only for a 2x2 table

b. 0 cells (.0%) have expected count less than 5. The minimum expected count is 6.52.
<table>
<thead>
<tr>
<th>Odds Ratio for Tempat penyimpanan topi (Kurang / Baik) For cohort Ketombe = positif</th>
<th>Value</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>.821</td>
<td>.244</td>
<td>2.762</td>
<td></td>
</tr>
<tr>
<td>.861</td>
<td>.342</td>
<td>2.170</td>
<td></td>
</tr>
<tr>
<td>1.048</td>
<td>.785</td>
<td>1.400</td>
<td></td>
</tr>
<tr>
<td>N of Valid Cases</td>
<td>58</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Risk Estimate
Frequencies

Frequency Table

frekuensi keramas

<table>
<thead>
<tr>
<th>Valid</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x/minggu</td>
<td>10</td>
<td>17.2</td>
<td>17.2</td>
<td></td>
</tr>
<tr>
<td>=2x/minggu</td>
<td>48</td>
<td>82.8</td>
<td>82.8</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>58</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

keramas pakai shampoo

<table>
<thead>
<tr>
<th>Valid</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>ya</td>
<td>58</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

pakai shampo antiketombe

<table>
<thead>
<tr>
<th>Valid</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>tidak</td>
<td>14</td>
<td>24.1</td>
<td>24.1</td>
<td>24.1</td>
</tr>
<tr>
<td>ya</td>
<td>44</td>
<td>75.9</td>
<td>75.9</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>58</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

pemakaian handuk

<table>
<thead>
<tr>
<th>Valid</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>bergantian</td>
<td>2</td>
<td>3.4</td>
<td>3.4</td>
<td>3.4</td>
</tr>
<tr>
<td>sendiri</td>
<td>56</td>
<td>96.6</td>
<td>96.6</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>58</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequency</td>
<td>Percent</td>
<td>Valid Percent</td>
<td>Cumulative Percent</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------</td>
<td>---------</td>
<td>---------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Valid 5 hari sekali</td>
<td>22</td>
<td>37.9</td>
<td>37.9</td>
<td>37.9</td>
</tr>
<tr>
<td>3 hari sekali</td>
<td>36</td>
<td>62.1</td>
<td>62.1</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>58</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

sisir bergantian

<table>
<thead>
<tr>
<th></th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid ya</td>
<td>22</td>
<td>37.9</td>
<td>37.9</td>
<td>37.9</td>
</tr>
<tr>
<td>tidak</td>
<td>36</td>
<td>62.1</td>
<td>62.1</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>58</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

topi bergantian

<table>
<thead>
<tr>
<th></th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid ya</td>
<td>1</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>tidak</td>
<td>57</td>
<td>98.3</td>
<td>98.3</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>58</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>
Crosstabs

frekuensi keramas * Ketombe

<table>
<thead>
<tr>
<th>frekuensi keramas</th>
<th>Ketombe</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>posif</td>
<td>negatif</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>1x/minggu</td>
<td>Count</td>
<td>4</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>2.4</td>
<td>7.6</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>% within Ketombe</td>
<td>28.6%</td>
<td>13.6%</td>
<td>17.2%</td>
</tr>
<tr>
<td>2x/minggu</td>
<td>Count</td>
<td>10</td>
<td>38</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>11.6</td>
<td>36.4</td>
<td>48.0</td>
</tr>
<tr>
<td></td>
<td>% within Ketombe</td>
<td>71.4%</td>
<td>86.4%</td>
<td>82.8%</td>
</tr>
</tbody>
</table>

Total	Count	14	44	58
	Expected Count	14.0	44.0	58.0
	% within Ketombe	100.0%	100.0%	100.0%

Chi-Square Tests

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>df</th>
<th>Asymp. Sig. (2-sided)</th>
<th>Exact Sig. (2-sided)</th>
<th>Exact Sig. (1-sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Chi-Square</td>
<td>1.660b</td>
<td>1</td>
<td>.198</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuity Correctiona</td>
<td>.779</td>
<td>1</td>
<td>.378</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>1.522</td>
<td>1</td>
<td>.217</td>
<td></td>
<td>.233</td>
</tr>
<tr>
<td>Fisher's Exact Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.186</td>
</tr>
<tr>
<td>Linear-by-Linear Association</td>
<td>1.632</td>
<td>1</td>
<td>.201</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N of Valid Cases</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Computed only for a 2x2 table
b. 1 cells (25.0%) have expected count less than 5. The minimum expected count is 2.

41.
pakai shampo antiketombe * Ketombe

Risk Estimate

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>95% Confidence Interval</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odds Ratio for frekuensi keramas (1x/minggu / =2x/minggu)</td>
<td>2.533</td>
<td>.598</td>
<td>10.738</td>
<td></td>
</tr>
<tr>
<td>For cohort Ketombe = positif</td>
<td>1.920</td>
<td>.751</td>
<td>4.907</td>
<td></td>
</tr>
<tr>
<td>For cohort Ketombe = negatif</td>
<td>.758</td>
<td>.448</td>
<td>1.283</td>
<td></td>
</tr>
<tr>
<td>N of Valid Cases</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Crosstab

<table>
<thead>
<tr>
<th>Pakai Shampo Antiketombe</th>
<th>Ketombe</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>positif</td>
<td>negatif</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Tidak Pakai Shampo Antiketombe</td>
<td>Count</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>10</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>3.4</td>
<td>10.6</td>
<td>14.0</td>
</tr>
<tr>
<td></td>
<td>% within Ketombe</td>
<td>28.6%</td>
<td>22.7%</td>
<td>24.1%</td>
</tr>
<tr>
<td>Ya</td>
<td>Count</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>34</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>10.6</td>
<td>33.4</td>
<td>44.0</td>
</tr>
<tr>
<td></td>
<td>% within Ketombe</td>
<td>71.4%</td>
<td>77.3%</td>
<td>75.9%</td>
</tr>
<tr>
<td>Total</td>
<td>Count</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>44</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>14.0</td>
<td>44.0</td>
<td>58.0</td>
</tr>
<tr>
<td></td>
<td>% within Ketombe</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Chi-Square Tests

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>df</th>
<th>Asymp. Sig. (2-sided)</th>
<th>Exact Sig. (2-sided)</th>
<th>Exact Sig. (1-sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Chi-Square</td>
<td>.198(^b)</td>
<td>1</td>
<td>.656</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuity Correction(^a)</td>
<td>.007</td>
<td>1</td>
<td>.931</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>.193</td>
<td>1</td>
<td>.660</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fisher's Exact Test</td>
<td></td>
<td></td>
<td></td>
<td>.725</td>
<td>.453</td>
</tr>
<tr>
<td>Linear-by-Linear Association</td>
<td>.195</td>
<td>1</td>
<td>.659</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N of Valid Cases</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Computed only for a 2x2 table

\(^b\) 1 cells (25.0%) have expected count less than 5. The minimum expected count is 3.

38.
<table>
<thead>
<tr>
<th>Odds Ratio for pakai shampoo antiketombe (tidak / ya)</th>
<th>Value</th>
<th>95% Confidence Interval</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>For cohort Ketombe = positif</td>
<td>1.360</td>
<td></td>
<td>.350</td>
<td>5.283</td>
</tr>
<tr>
<td>For cohort Ketombe = negatif</td>
<td>1.257</td>
<td></td>
<td>.466</td>
<td>3.388</td>
</tr>
<tr>
<td>N of Valid Cases</td>
<td>.924</td>
<td></td>
<td>.640</td>
<td>1.336</td>
</tr>
</tbody>
</table>

| N of Valid Cases | 58 |
pemakaian handuk * Ketombe

Crosstab

<table>
<thead>
<tr>
<th></th>
<th>Ketombe</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>positif</td>
<td>negatif</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>pemakaian handuk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bergantian</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Expected Count</td>
<td>.5</td>
<td>1.5</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>% within Ketombe</td>
<td>.0%</td>
<td>4.5%</td>
<td>3.4%</td>
<td></td>
</tr>
<tr>
<td>sendiri</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Count</td>
<td>14</td>
<td>42</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Expected Count</td>
<td>13.5</td>
<td>42.5</td>
<td>56.0</td>
<td></td>
</tr>
<tr>
<td>% within Ketombe</td>
<td>100.0%</td>
<td>95.5%</td>
<td>96.6%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>44</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>Expected Count</td>
<td>14.0</td>
<td>44.0</td>
<td>58.0</td>
<td></td>
</tr>
<tr>
<td>% within Ketombe</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td></td>
</tr>
</tbody>
</table>

Chi-Square Tests

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>df</th>
<th>Asymp. Sig. (2-sided)</th>
<th>Exact Sig. (2-sided)</th>
<th>Exact Sig. (1-sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Chi-Square</td>
<td>.659b</td>
<td>1</td>
<td>.417</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuity Correction<sup>a</sup></td>
<td>.000</td>
<td>1</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>1.128</td>
<td>1</td>
<td>.288</td>
<td>1.000</td>
<td>.572</td>
</tr>
<tr>
<td>Fisher’s Exact Test</td>
<td>.648</td>
<td>1</td>
<td>.421</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear-by-Linear Association</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N of Valid Cases</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a Computed only for a 2x2 table

^b 2 cells (50.0%) have expected count less than 5. The minimum expected count is 48.

Risk Estimate

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower</td>
<td>Upper</td>
</tr>
<tr>
<td>For cohort Ketombe = negatif</td>
<td>1.333</td>
<td>1.146</td>
</tr>
<tr>
<td>N of Valid Cases</td>
<td>58</td>
<td>1.551</td>
</tr>
</tbody>
</table>
frekuensi ganti handuk * Ketombe

Crosstab

<table>
<thead>
<tr>
<th>frekuensi ganti handuk</th>
<th>Ketombe</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>positif</td>
<td>negatif</td>
<td>Total</td>
</tr>
<tr>
<td>5 hari sekali</td>
<td>7</td>
<td>15</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>5.3</td>
<td>16.7</td>
<td>22.0</td>
</tr>
<tr>
<td>% within Ketombe</td>
<td>50.0%</td>
<td>34.1%</td>
<td>37.9%</td>
</tr>
<tr>
<td>3 hari sekali</td>
<td>7</td>
<td>29</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>8.7</td>
<td>27.3</td>
<td>36.0</td>
</tr>
<tr>
<td>% within Ketombe</td>
<td>50.0%</td>
<td>65.9%</td>
<td>62.1%</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>44</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>14.0</td>
<td>44.0</td>
<td>58.0</td>
</tr>
<tr>
<td>% within Ketombe</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Chi-Square Tests

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>df</th>
<th>Asymp. Sig. (2-sided)</th>
<th>Exact Sig. (2-sided)</th>
<th>Exact Sig. (1-sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Chi-Square</td>
<td>.142b</td>
<td>1</td>
<td>.285</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuity Correctiona</td>
<td>.566</td>
<td>1</td>
<td>.452</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>1.120</td>
<td>1</td>
<td>.290</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fisher's Exact Test</td>
<td>1.122</td>
<td>1</td>
<td>.289</td>
<td>.350</td>
<td>.225</td>
</tr>
<tr>
<td>Linear-by-Linear Association</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N of Valid Cases</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Computed only for a 2x2 table
b. 0 cells (.0%) have expected count less than 5. The minimum expected count is 5.
31.
Risk Estimate

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>95% Confidence Interval</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Odds Ratio for frekuensi ganti handuk (5 hari sekali / 3 hari sekali)</td>
<td>1.933</td>
<td>.571</td>
<td>6.542</td>
</tr>
<tr>
<td>For cohort Ketombe = positif</td>
<td>1.636</td>
<td>.663</td>
<td>4.039</td>
</tr>
<tr>
<td>For cohort Ketombe = negatif</td>
<td>.846</td>
<td>.610</td>
<td>1.174</td>
</tr>
<tr>
<td>N of Valid Cases</td>
<td>58</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
sisir bergantian * Ketombe

Crosstab

<table>
<thead>
<tr>
<th></th>
<th>Ketombe</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>positif</td>
<td>negatif</td>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sisir bergantian</td>
<td>ya</td>
<td>4</td>
<td>18</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>5.3</td>
<td>16.7</td>
<td>22.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within Ketombe</td>
<td>28.6%</td>
<td>40.9%</td>
<td>37.9%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tidak</td>
<td>10</td>
<td>26</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>8.7</td>
<td>27.3</td>
<td>36.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within Ketombe</td>
<td>71.4%</td>
<td>59.1%</td>
<td>62.1%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Count</td>
<td>14</td>
<td>44</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>14.0</td>
<td>44.0</td>
<td>58.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within Ketombe</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td></td>
</tr>
</tbody>
</table>

Chi-Square Tests

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>df</th>
<th>Asymp. Sig. (2-sided)</th>
<th>Exact Sig. (2-sided)</th>
<th>Exact Sig. (1-sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Chi-Square</td>
<td>.687b</td>
<td>1</td>
<td>.407</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuity Correctiona</td>
<td>.263</td>
<td>1</td>
<td>.608</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>.706</td>
<td>1</td>
<td>.401</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fisher's Exact Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.533</td>
</tr>
<tr>
<td>Linear-by-Linear Association</td>
<td>.675</td>
<td>1</td>
<td>.411</td>
<td></td>
<td>.308</td>
</tr>
<tr>
<td>N of Valid Cases</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Computed only for a 2x2 table

b. 0 cells (.0%) have expected count less than 5. The minimum expected count is 5. 31.
Risk Estimate

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lower</td>
</tr>
<tr>
<td>Odds Ratio for sisir bergantian (ya / tidak)</td>
<td>.578</td>
<td>.157</td>
</tr>
<tr>
<td>For cohort Ketombe = positif</td>
<td>.655</td>
<td>.233</td>
</tr>
<tr>
<td>For cohort Ketombe = negatif</td>
<td>1.133</td>
<td>.854</td>
</tr>
<tr>
<td>N of Valid Cases</td>
<td>58</td>
<td></td>
</tr>
</tbody>
</table>
topi bergantian * Ketombe

Crosstab

<table>
<thead>
<tr>
<th>topi bergantian</th>
<th>Ketombe</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Count</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ya</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>tidak</td>
<td>14</td>
<td>43</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ya</td>
<td>0.2</td>
<td>0.8</td>
<td>1.0</td>
</tr>
<tr>
<td>tidak</td>
<td>13.8</td>
<td>43.2</td>
<td>57.0</td>
</tr>
<tr>
<td></td>
<td>% within Ketombe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ya</td>
<td>0.0%</td>
<td>2.3%</td>
<td>1.7%</td>
</tr>
<tr>
<td>tidak</td>
<td>100.0%</td>
<td>97.7%</td>
<td>98.3%</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Count</td>
<td>14</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ya</td>
<td>14.0</td>
<td>44.0</td>
<td>58.0</td>
</tr>
<tr>
<td>tidak</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Chi-Square Tests

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>df</th>
<th>Asymp. Sig. (2-sided)</th>
<th>Exact Sig. (2-sided)</th>
<th>Exact Sig. (1-sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Chi-Square</td>
<td>.324b</td>
<td>1</td>
<td>.569</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuity Correction(a)</td>
<td>.000</td>
<td>1</td>
<td>1.000</td>
<td>1.000</td>
<td>.759</td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>.558</td>
<td>1</td>
<td>.455</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Fisher's Exact Test</td>
<td>.318</td>
<td>1</td>
<td>.573</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Linear-by-Linear Association</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N of Valid Cases</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(a\). Computed only for a 2x2 table

\(b\). 2 cells (50.0\%) have expected count less than 5. The minimum expected count is .

24.

Risk Estimate

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower</td>
<td>Upper</td>
</tr>
<tr>
<td>For cohort Ketombe = negatif</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N of Valid Cases</td>
<td>1.326</td>
<td>1.143</td>
</tr>
<tr>
<td></td>
<td>1.537</td>
<td></td>
</tr>
<tr>
<td></td>
<td>58</td>
<td></td>
</tr>
</tbody>
</table>
Logistic Regression

Block 1: Method = Backward Stepwise (Likelihood Ratio)

<table>
<thead>
<tr>
<th>Step</th>
<th>Variable(s) entered</th>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
<th>95.0% C.I. for EXP(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kat_umur, Kat_higiena</td>
<td>1.094</td>
<td>.729</td>
<td>2.252</td>
<td>1</td>
<td>.133</td>
<td>2.988</td>
<td>.715 - 12.478</td>
</tr>
<tr>
<td></td>
<td>Kat_higiena</td>
<td>1.089</td>
<td>.908</td>
<td>1.439</td>
<td>1</td>
<td>.230</td>
<td>2.972</td>
<td>.502 - 17.612</td>
</tr>
<tr>
<td></td>
<td>Constant</td>
<td>-2.356</td>
<td>1.848</td>
<td>1.626</td>
<td>1</td>
<td>.202</td>
<td>.095</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Kat_umur</td>
<td>1.208</td>
<td>.718</td>
<td>2.833</td>
<td>1</td>
<td>.092</td>
<td>3.348</td>
<td>.820 - 13.672</td>
</tr>
<tr>
<td></td>
<td>Constant</td>
<td>-.471</td>
<td>.958</td>
<td>.241</td>
<td>1</td>
<td>.623</td>
<td>.625</td>
<td></td>
</tr>
</tbody>
</table>

a. Variable(s) entered on step 1: Kat_umur, Kat_higiena.
Tabel ROC Umur berdasarkan Ketombe

<table>
<thead>
<tr>
<th>AUC</th>
<th>Std. Error</th>
<th>Asymp. Sig.</th>
<th>Asymp. 95% CI</th>
<th>Sensitif</th>
<th>Spesitif</th>
<th>Cut off Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,547</td>
<td>0,087</td>
<td>0,598</td>
<td>0,377</td>
<td>0,717</td>
<td>0,786</td>
<td>0,477</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sensitif</td>
<td>Spesitif</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Asymp. 95% CI</td>
<td>Lower</td>
<td>Upper</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,377</td>
<td>0,717</td>
<td></td>
</tr>
</tbody>
</table>

ROC Curve

Diagonal segments are produced by ties.

Cut-off point = 30,5
<table>
<thead>
<tr>
<th>AUC</th>
<th>Std. Error</th>
<th>Asymp. Sig.</th>
<th>Asymp. 95% CI Lower</th>
<th>Asymp. 95% CI Upper</th>
<th>Sensitif</th>
<th>Spesitif</th>
<th>Cut off Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,502</td>
<td>0,097</td>
<td>0,978</td>
<td>0,312</td>
<td>0,692</td>
<td>0,932</td>
<td>0,214</td>
<td>4,5</td>
</tr>
</tbody>
</table>

ROC Curve

Diagonal segments are produced by ties.
Lampiran 5. Dokumentasi Penelitian
Identitas

<table>
<thead>
<tr>
<th>Nama</th>
<th>Mitha Ismi Istiqomah</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nim</td>
<td>22010112140051</td>
</tr>
<tr>
<td>Tempat, Tanggal Lahir</td>
<td>Cirebon, 29 Desember 1994</td>
</tr>
<tr>
<td>Jenis Kelamin</td>
<td>Perempuan</td>
</tr>
<tr>
<td>Alamat</td>
<td>Jalan Sunan Gunung Jati Ds. Purwawinangun 04/01 Surangenggala, Cirebon</td>
</tr>
<tr>
<td>No HP</td>
<td>087829180343</td>
</tr>
<tr>
<td>E-mail</td>
<td>mithaism@yahoo.com</td>
</tr>
</tbody>
</table>

Riwayat Pendidikan Formal:

1. **SD** : SD Negeri 1 Purwawinangun. Lulus tahun : 2006
2. **SMP** : SMP Negeri 14 Cirebon. (1 Semester)

 MTs Negeri 1 Cirebn. Lulus tahun : 2009
4. **FK UNDIP** : Masuk tahun 2012