"COMMUNITY EMPOWERMENT AND TROPICAL ANIMAL INDUSTRY"

PROCEEDINGS

Part 2

YOGYAKARTA, OCTOBER 19-22, 2010

Published by
Faculty of Animal Science, Universitas Gadjah Mada
2010
LIST OF CONTENTS

PREFACE .. iii
REPORT FROM ORGANIZING COMMITTEE ... iv
WELCOME ADDRESS .. v
OPENING REMARKS .. vi
LIST OF CONTENTS .. vii

PART I

PLENARY SESSION

1. Asian livestock: Opportunities, challenges and the response
 Vinoj Ahuja .. 1–5

2. Cattle extension programs and research for tropical agriculture
 Dale R. ZoBell ... 6–10

3. The revolving fund system in sustainable community development
 Grant Davidson, and E.R. Ørskov ... 11–18

4. Intensification of smallholder livestock production: Is it sustainable?
 Hendrik M.J. Udo and Fokje Steenstra ... 19–26

5. The development of Danish agriculture and agribusiness: Lessons to be learned in a global perspective
 Henning Otte Hansen and Mogens Lund .. 27–35

6. Genome research of gut bacteria, how to analyze and how to apply?
 Tohru Suzuki, Kouta Sakaguchi, and Kazumasa Yasui 36–40

7. Animal production in Thailand: Challenges and potentials in global market
 Yanin Opatpanakit ... 41–49

8. Improvement of forage quality by means of molecular breeding in tropical grasses
 Takahiro Gondo, Geñki Ishigaki, Yasuyo Himuro, Nafiatul Umami and Ryo Akashi 50–56

9. Advance research in function and healthy food from animal products – antihypertensive peptides derived from meat protein hydrolysates
 Michio Muguruma, Jamhari, Yuny Erwanto, and Satoshi Kawahara 57–63

SUPPORTING PAPERS

Animal Feed and Nutrition

1. Exploration of pathogenic and non-Pathogenic Fungi on Alfalfa (*Medicago sativa* L)
 Turrini Yudiarti, Sumarsono, and Didik Wisnu Widjajanto 64–67

2. Organic fertilizer application on performance and production of king grass in acid soil
 Sumarsono, Syaiful Anwar, Didik Wisnu Widjajanto, and Susilo Budiyanto 68–71
3. The effect of using earthworm (*Lumbricus rubellus*) meal additives as growth promoters on protein digestibility and performance of intestinal villi
 Hardi Julendra, Zuprizal, and Supadmo .. 72 – 78

4. Fermentation of Jatropha kernel cake (*Jatropha curcas* L.) using varieties of fungi on its chemical compositions, concentration of phorbolester, and digestibility
 Fatmawati, Hari Hartadi, and R. Djoko Soetrisno .. 79 – 88

5. Effect of protected crude palm oil on rumen microbial activities and methane production
 Nafly C. Tiven, Lies Mira Yusiat, Rusman, and Umar Santoso 89 – 94

6. Fermentation parameters and total gas production of some rumen protected fat-protein
 Lilis Hartati, Ali Agus, Budi Prasetyo Widyobroto, Lies Mira Yusiat 95 – 98

7. Dietary energy utilization of Local Sheep fed complete feed consisting of agricultural and agroindustrial by-products
 E. Purbowati, C.I. Sutrisno, E. Bialiarti, S.P.S. Budhi, W. Lestariana, A.
 Purnomoadi, and M.S. Mubarok .. 99 – 103

8. Reduction of phytic acid and aflatoxin content of rice bran through fermentation
 rhizopus spp. Combined with deproteinized-chitin waste addition
 Ahmad Sofyan, Ema Damayanti and Hardi Julendra ... 104 – 108

9. Implementation of fermented rice bran as flavor enhancer additive and its effect on feed utilization and cattle performance
 L. Istiqomah, A. Febrisiantosa, A. Sofyan, and E. Damayanti 109 – 114

10. The use of kume grass (sorghum plumosum var. Timorense) bioconverted with white-
 rot fungi (pleurotus ostreatus) fed on Local Goat in East Nusa Tenggara

11. The use of local-fodder based supplement and agricultural by-product for cattle
 Henuk ... 118 – 120

12. The use of kume grass (sorghum plumosum var. timorense) to substitute king grass
 (pennisetum purpureaphoides) fed on Bali Cattle in East Nusa Tenggara

13. The use of zeolite in low protein diet added with critical amino acids to reduce pollution
 Candara Elia Puspasari, Wihandoyo, and Supadmo ... 124 – 148

14. Effects of substitution of Elephant grass by corn waste and coffee pulp as basal diet on nutrient intake and digestibility in young male Ongole crossbred cattle
 Dicky Pamungkas, Ristianto Utomo, Nono Ngadyono, and Muhammad Winugroho 129 – 134

15. Effect of lactic acid bacteria inoculants applications to the quality and chemical composition silage waste of carrot plant (*Daucus carota*)
 Badat Muwakhid ... 135 – 140

16. The content of phytoestrogen on legume plants
 Bateba M.W. Tiro, Suvijjyo Pramono, Hari Hartadi, Djoko Soetrisno, and
 Endang Baliarti .. 141 – 145

17. Chemical composition and digestibility(*in vitro*) of cocoa pod husk (*theobroma cocoa* L.)
 Fermented with *aspergillus niger*
 F.F. Munier, H. Hartadi, and I.G.S. Budisatria ... 146 – 154
18. Intake and digestibility of feed in lamb of Sumatera composite breed when the commercial concentrate diet were substituted by gliricidia dan rice bran
Dwi Yuliastiani and Wisri Puastuti .. 155 - 158

19. Fermentative gas production of different feeds collected during wet and dry seasons when incubated with rumen fluid from Rusa Timor (Cervus timorensis)
M. S. Ariuddin, R. Utomo, H. Hartadi, and Damry 159 - 164

20. Effect of fed complete feed plus on quality and milk production of dairy cow
Ristianto Utomo, B.P. Widyo broto, L.M. Yusianti, R.A. Riahastuti, S.P.S. Budhi, and V.K. Dewi .. 165 - 170

21. In Vitro gas production of fermented cacao pod (Theobroma Cacao) added with celluololytic inoculum from cattle rumen fluid
Chusnul Hanim, L.M. Yusianti, and V.P. Budiyastuti 171 - 176

22. Hibiscus Schizopetalus as saponin source, reduce protozoa number and increase microbial protein synthesis on in vitro sheep rumen fermentation
Asih Kurnia wati and Nafi tatul Umami .. 177 - 182

23. The effect of gliricidia or mixture of rice bran and copra meal supplementation on feed intake, digestibility and live weight gain of early weaned Bali Calves fed A, Mulato grass
Marsetyo, Muhammad Ilyas Mumu, and Yohan Rusiyantono 183 - 188

24. A comparison of feeding management practices of beef cattle smallholders in lowland and upland sites in East Java

25. The effect of ketepeng cina leaf (cassia alata), as a source of anthraquinone, methanogenesis inhibitor agent on rumen microbial protein synthesis for beef cattle in Sedyo Rukun farmer group
Lies Mira Yusianti, Zenal Bachrudin, Chusnul Hanim, and Lila Indriana 196 - 200

26. The effects of feed restriction severity on compensatory growth of goat kids in Bushehr Province, Iran
Mahmoud Dashtizadeh, Azizollah Kamalzadeh, Mohammad Hadi Sadeghi, Amir Arsalan Kamali, and Abdol mehdi Kabirifard 201 - 207

27. Fermentation quality of king grass (Pennisetum Purpureo phoides) ensiled with epiphytic lactic acid bacteria and tannin of acacia
B. Santoso, B. Tj. Hariadiil, H. Manik and H. Abubakar 208 - 214

28. The effect of methionine on glutathion production to eliminate aflatoxin B1 toxicity
Yunianta, Ali Agus, Nuryono, and ZuprizaI 215 - 220

29. Rice bran fermentation tecnology and soya bean oil suplementation of transfer protection fatty acid omega-3 of unsaturated fatty acids conten of milk diary cow
Sudibya 221 - 226

30. Growth performance and blood profile of african cat fish fed sweet potato (ipomoea batatas) leaf meal
Olaniyi Christianah Oludayo 227 - 232

31. Application of complete feed formulated from agriculture by-products with undergraded protein suplementation on beef cattle productivity
Bambang Suhartanto, B.P. Widyo broto, I.G.S. Budisatria, Kustantinah, and R. Utomo 233-238
32. The effect of green tea extract (camellia sinensis) supplementation on blood profiles and lipid oxidation in broilers fed high pufa diet
Isti Astuti, Supadmo, Sugeng Riyanto, Supriyadi ... 239 - 242

33. The role of lactic acid bacteria on silage duration process and rumen content silage quality
Isnandar, R. Utomo, S. Chuzaemi, E. Sutariningri, and L.M. Yusiati .. 243 – 249

34. Replacing enzose by corn grains: impact on nutrients utilization and weight gain in growing buffalo calves
M.Nisa, M.Aasif Shahzad, and M.Sarwar ... 250 – 256

35. Nutrients utilization, nitrogen dynamics and weight gain in growing buffalo calves fed graded replacement of urea by corn steep liquor
M.Aasif Shahzad, M.Nisa, and M.Sarwar ... 257 – 261

36. Production and nutritive value of mulberry hay as potential feed supplement for ruminants
Z.A. Jelan and A.R. Alimon ... 262 – 265

37. The retention of copper in sheep fed palm kernel cake supplemented with molybdenum, molybdenum plus sulphur and zinc
A.R. Alimon, R.A. Al-kirsh and Z.A. Jelan ... 266 – 268

38. Utilization of complete feed based on fermented rice straw for australian commercial cross steer on carcass and meat quality
Bambang Swignyo, Ristianto Utomo, Yuny Erwanto and Ali Agus .. 269 – 273

39. The measurement of rate of passage using different pairs of alkane as markers for sheep fed hay or fresh grass
A. Kustantinah, R.W. Mayes, and E.R. Orskov ... 274 – 281

40. Aflatoxin m1 excretion in the milk of tropical dairy cow fed contaminated aflatoxin b1 in the diet

Poultry Production

1. The interaction of dietary lysine and temperature on egg laying performance of broiler breeders
Abdulameer Al-Saffar ... 286 – 290

2. Digestible methionine requirement for performance and carcass yield of broiler finisher
N.G.A. Mulyanti ... 291 – 295

3. Resource use efficiency in poultry production in Bureti District, Kenya

4. In vitro evaluation of phytoecnic potential of seed from mango (Mangifera indica), moringa (Moringa oleifera) and sweet apple (Annona squamosa) for poultry
Rusdi, Asrian Hasanuddin, Rosmiati Arief ... 303 – 307

5. The effect of adding vitamine C and E In native chicken semen extender stored at temperature 4 °c on semen quality and egg fertility
Widya Asmarawati, Ismaya, and Tri Yuwanta ... 308 – 313
6. The effects of single lactic acid bacteria probiotic supplementation on intestinal mucosa profile and immune response in broilers
 Bambang Ariyadi and Sri Harimurti ... 314 – 319

7. Identification of single nucleotide polymorphism of gen insulin-like growth factor binding protein 2 on growth of native chicken
 Sri Sudaryati, Jafendi HP Sidadoleg, Wihandoyo, and Wayan Tunas Artama 320 - 324

8. Cassava leaf meal inclusion in palm kernel meal diet could improve egg yolk color in post-molted native laying hens
 Adrizal, S. Fakhril, R. Murni, Yatno, T. Maranata, S. Asby, Yusrizal, and C. R. Angel ... 325 - 331

9. Egg production responses of laying hens to feed medicinal herbs after peak of production

10. Systems of poultry husbandry
 C.A. Bailey, S.Y.F.G. Dillak, S. Sembiring and Y.L. Henuk 335 – 341

11. Ovulation and oviposition patterns in quail (Cortunix Cortunix Japonica)
 S.Y.F.G. Dillak, A. Pigawati, and Y.L. Henuk .. 342 – 345

12. Evaluation of tofu waste treated with fermentation and enzyme supplementation in broiler chickens
 B. Sundu, Baharuddin and M. Basri .. 346 – 349

13. Influence of grit on performance of local chicken under intensive management system
 Jublin Franzina Bale-Therik, Cyske Sabuna ... 350 - 353

14. The growth and productivity of selected kampung chicken
 Heti Resuwati and Tike Sartika .. 354 – 357

15. Effect of divergent selection body weight to egg production during the six generation and GH gene polymorphism quail (Coturnix coturnix japonica)
 Ning Setiati, J.H.P. Sidadoleg, T. Hartatik and T. Yuwanta 358 – 363

16. Feeding management evaluation of duck farmer group in Brebes
 Heru Sasonoko .. 364 – 367

17. Heterosis and combining ability for body weight and feed conversion in four genetic groups of native chicken
 Franky M.S. Telupere ... 368 – 373

18. The implementation of forced molting technology on rejected laying hens for the people discharged from employment (a case study at Duvet Village, Klaten, Indonesia)
 Ali Mursyid Wahyu Mulyono, Sri Hartati, Ahimsa Kandi Sariri, and Engkus Ainul Yakin .. 374 – 379

19. Growth performance of Maleo birds (Macrocephalon maleo) by Means of feeding control in the captivity
 Hafsaah, Tri Yuwanta, and Kustono .. 380 – 384

20. Egg production and quality of Kedu chicken based on plumage color that reared intensively
 Ismoyowati, Dadang Mulyadi Saleh, Rosidi ... 385 – 390

21. Effect of indigenous lactic acid bacteria probiotics on broiler performance
 Sri Harimurti, Nasroedin, Endang Sutriswati Rahayu, Kurniasih 391 - 394
PART II

Livestock Production

1. Exterior characteristics of Kejobong goats kept by farmers

2. The effect of goat-sharing system on the performance of farmer groups raising etawah crossbred goats – a case study in ‘Sukorejo’, Girikerto, Turi, Sleman
 Yuni Suranindyah, Kustantinah, and E. R. Orskov .. 411 – 414

3. Growth and carcass production of Ongole grade cattle and Simmental Ongole crossbred cattle growing in a feedlot system
 Mateus da Cruz de Carvalho, Nono Ngadyono, and Soeparso .. 415 – 422

4. Available herbage sustainability under soil and water conservation for development of small ruminants
 Sutarno, Sumarsono, Widiyati Slamet, Didik Wisnu Widjajanto 423 – 426

5. A study on some aspects of equine husbandry in the Punjab-Pakistan
 Arshad Iqbal, Asif Hameed, M. Younas, Bakht B. Khan and S.A. Bhatti 427 – 432

6. Feeding strategies to increase growth of early weaned Bali calves in East Java

7. Response of brahman crossbred cows and their calves kept under semi-intensive and fed them on local-fodder supplement. In east Sumba Regency, East Nusa Tenggara Province

8. The relationship between heart-chest girth, body length and shoulder height, and liveweight in Indonesian goats
 Asmuuddin Natsir, Mawardi A. Asja, Nasrullah, Yusmasari, A. Nurhayu, Peter Murray, and Roy Murray-Prior ... 441 – 445

9. Growth performance of Ongole grade (Peranakan Ongole) cattle in Indonesia
 Budi Haryanto and Dicky Pamungkas .. 446 - 451

10. Growth of carcass and carcass component of different slaughter weight of local ram
 A.E. Manu, M.M. Kleden, S.A. Adjam, J.J.A. Ratuwaloe and Y.L. Henuk 452 – 454

11. Postpartum productivity of Simmental-Ongole crossed cows of the first generation compared to Ongole crossed cows kept by farmers
 E.Baliarti, W.T.H.M. Christoffor, and Soenardi ... 455 - 459
12. The effect of supplementation of different lysine sources on the performance of weaned pigs from 4 up to 10 weeks of age
 Risel Diana H. Likadja ... 460 - 463

13. Effect of fiber source on the performance of weaned pigs from 4 up to 10 weeks of age
 Johannis Ly and Risel D.H. Likadja ... 464 - 467

14. Influence the improvement of cattle feedlot production system to increase the welfare of feedlot farmers group in Indonesia through the implementation of integrated sustainability farming system
 Joko Riyanto, Susi Dwi Widyawati, and Wara Pratitos ... 468 - 473

15. Breeding bos sondaicus d’Alton cattle in eastern Indonesia: cattle growth
 Totok B. Julianto, Tanda Panjaitan, Geoffry Fordyce, and Dennis Poppi ... 474 - 477

16. Breeding Bos Javanicus d’Alton cattle in eastern Indonesia cattle control, diets, draught use and feeding
 Tanda Panjaitan, Geoffry Fordyce, Dennis Poppi ... 478 - 482

17. Breeding Bos javanicus d’Alton cattle in eastern Indonesia: Monitoring village cattle
 Dennis Poppi, Tanda Panjaitan, Dahlauddin, and Geoffry Fordyce ... 483 - 487

18. Application of non linear models in estimating growth curves of body weight and sizes of Holstein-Friesian female cattle
 Nia Kurniawan, and Anneke Anggraeni ... 488 - 496

 Widiyanto, M. Soejojo, Z. Bachruddin, H. Hartadi, and Surahmanto ... 497 - 501

20. Diversity on the exterior performance of crossbred cattle kept by farmers in central Java

21. Alternative control for endoparasites infection in goats by feeding fresh matured and immature leaves of terminalia catappa
 Mohd Azrul Lokman, and Mohd Effendy Abd. Wahid ... 509 - 514

22. Growth of nine month old male buffalo calves as affected by different crude protein and energy concentrations
 M. Sarwar, M. A. Shahzad, N.A. Tauqir, and M. Nisa ... 515 - 520

23. Performance of lactating buffaloes as affected by varying concentrations of essential amino acids
 N.A. Tauqir, M.A. Shahzad, M.Nisa, M.Sarwar, H.A. Saddiqi, M. Fayyaz, and M.A Tipu ... 521 - 526

Animal Physiology, Reproduction, and Genetics

1. Seasonal investigation of serum magnesium concentration in native cattle at Western Azerbaijan Province, Iran
 M.R. Valliou and A.R. Rotfi ... 527 - 530

2. Detection of Toxoplasma gondii based on sequence r529 and sagl gene probe
 Asmarani Kusumawati, Harto Widodo, Nafратилова Septiana, and Sri Hartati ... 531 - 534

3. Reproductive performance of dairy cows in Yogyakarta Province based on balanced ration given
 Ahmad Pramono, Kustono, and hari Hartadi ... 535 - 540
4. Breeding programme development of Bali cattle
Andoyo Supriyanto, Luqman hakim, Suyadi, and Ismudiono ... 541 - 546

5. Friesian holstein imported cows: physiological character and blood composition based
on altitude difference
Ratna Dewi Mundingsari, Adiarto, and Soenarjo Keman ... 547 – 551

6. Breeding value of Friesian Holstein bulls in PT. Naskara Kejora Rowoseneng,
Temanggung, Central Java
Hasyim Mulyadi, Indrawati Mei P., and RR. Mahardika N.P. ... 552 – 555

7. Genetic potency of weaning weight of boerawa F1, backcross 1, and backcross 2 does
at breeding centre, Tanggamus Regency, Lampung Province
Sulastri ... 556 – 560

8. Distribution of population and production estimate of some cattle breeds at Yogyakarta
Province, Indonesia
Sumadi, Tety Hartatik, and Sulastri ... 561 – 564

9. In vitro fresh sperm preparation for maintaining sperm viability at storage temperature
of 14°C using tannin supplementation of lamtoro leaves
Mirajuddin, Kustono, Ismaya, and A. Budiyanto .. 565 – 571

10. Phenotype and phylogenetic studies of local cattle in pacitan district, East Java,
Indonesia
Muhammad Cahyadi, and Tety Hartatik ... 572 – 577

11. The exploration of genetic characteristics on Madura cattle

12. Breeding Bos javanicus d’Alton cattle in Eastern Indonesia: Cattle reproduction
Geoffry Fordyce, Tanda Panjaitan, Totok B. Julianto, Eliza Kurtz, and Dennis Poppitis 585 - 589

13. Improvement quality of Bligon goat sperm trough separation by albumen
Sigit Bintara, Soenarjo Keman, Sumadi, and Ali Agus .. 590 – 594

14. Correlation between plasma progesterone concentrations and fecal Progestins during the
estrus cycle of Kedah Kelantan cows

15. Effect of PGF2α, or CIDR on ovarian follicular development during estrous cycle in
goats
Muhammad Modu Bukar, Rosnina Yusoff, Abd Wahid Haron, Gurmeet Kaur Dhaliwal, Mohammed Ariff Omar, Nur Husien Yimer, Mohd Azam Khan Goriman Khan ... 599 – 602

16. The use of frozen semen of Holstein-Friesian bulls with the BB genotype of the kappa
casein gene in Indonesia
A. Anggraeni, C. Sumantri, and E. Andreas ... 603 – 608

17. Effect of haylage made of kume grass standinghay fermented with liquid palm sugar
and local chicken manure on semen quality and serotum circumference of male local goat
Henderiana L.I. Belli and Nathan G.F. Katipan .. 609 – 613

18. The early identification of twinning trait genes on Indonesian local beef cattle
Aryogi, Endang Bariarti, Sumadi, and Kustono .. 614 - 622
19. Effect of bulls on pregnancy rate of estrous synchronized Brangus cows
A. Malik, H. Wahid, Y. Rosnina, A. Kasim, and M. Sabri ... 623 – 626

20. Analysis of Butyrophilin gene polymorphism in buffalo population in Khouzestan Province by PCR-RFLP Technique
Beigi Nassiri, M. T. Mozafari, K. N. T. Hartati, Fayazi J. and Mirzadeh K 627 – 630

Technology of Animal Products

1. The development of ripened cheese containing lactic acid bacteria: the effect on chemical composition, acid production and sensory value
Tridjoko Wisnu Murti ... 631 – 637

2. The restructured of local beef of low quality with different binders, fat emulsifiers and fortification with vitamin a in beef burger
Setiyono and Soeprono ... 638 – 643

3. The using of extract rabbits stomachs in the making goat milk cheese ripened with Lactobacillus Acidophilus
Inda Dewata Sari, Nurliyani and Indratiningsih .. 644 – 648

4. Effect of broiler age and extraction temperature on characteristic chicken feet skin gelatin
Muhammad Taufik, Suhrjono Triatmojo, Yuny Erwanto, Umar Santoso 649 – 656

5. Quality changes of burger from vegetable, wheat flour, rice flour with fat emulsion during frozen storage

6. Polymerization of meat and Tempeh protein using transglutaminase and their potency as an antihipertency and antioxidant agent
Yuny Erwanto, Jamhari dan Rusman .. 663 – 670

7. The application of local dahlia tuber (Dahlia pinnata L.) as prebiotics for improving viability of probiotics, Bifidobacterium bifidum in yoghurt
Widodo, Nosa Septiani Anindita, Endang Wahyuni, and Indratiningsih 671 - 676

Extension, Community Development and Agribusiness

1. Elephant Camps and their impacts to community: Case study in Keud Chang, Chiang Mai Province, Thailand
Weerapon Thongma and Budi Gunstoro ... 677 – 682

2. Soft technology innovation for farmer empowerment to bring about practice change in an agricultural r&d project: lesson learnt from Eastern Indonesia
Nurul Hilmianti, Elske van de Fliert, Medo Kote, Deborah Kana Hau, Toni Basuki 683 – 690

3. The effects of dairy cattle ownership and farmers’ demography factors on the evacuation moving farmers’ behavior at Merapi volcano area (case study at Kaliadem Sub Village, Yogyakarta, Indonesia)
Siti Andarwati and F. Trisakti Haryadi ... 691 – 694
4. Farmers’ profile and exterior characteristic of female Moa Buffaloes in Moa Island, Maluku Province
 Justhinus Pipiana, Endang Ballari, and I Gede Suparta Budisatria ... 695 – 701

5. Economic analysis of on-farm feeding strategies to increase post-weaning live weight gain of Bali calves
 Atien Prianti, Simon Quigley, Marsetyo, Dicky Pamungkas, Dahlauddin, Esnawan Budisantoso, and Dennis Poppi .. 702 – 708

6. The role of livestock service in order to cattle agribusiness development in regency of Kupang
 Maurinus Wilhelms Gili Tibo ... 709 – 716

7. Factors with the purchase of meat by consumers in Makassar, Sulawesi
 Nasrullah, Yusmasari, A. Nurhayu, Asmuddin Natsir, Mawardi A. Asja, Roy Murray-Prior, and Peter Murray .. 717 – 724

8. Goat supply from Enrekang, South Sulawesi to East Kalimantan: a long and winding road
 Mawardi A. Asja, Asmuddin Natsir, Roy Murray-Prior, Peter Murray, Nasrullah, Yusmasari, and A. Nurhayu .. 725 – 732

9. Goat meat consumption in Makassar, Sulawesi: Important for religious and cultural ceremonies, but many consider it a health risk
 Roy Murray-Prior, Asmuddin Natsir, Mawardi A. Asja, Nasrullah, Yusmasari, A. Nurhayu, and Peter Murray .. 733 – 740

10. Marketing practices of smallholder beef cattle producers in east java

11. Empowerment of goat farming: Lessons learnt from the development of goat farming group of Peranakan Etawah Gumelar Banyumas
 Akhmad Sodiq .. 747 – 752

12. Performance of credit program to small dairy cattle development in Indonesia
 Rini Widati ... 753 – 758

13. Analysis of demand of broiler meat in Central Java
 Nurdayati, Sudji Nurtini, Masyhuri, and Rini Widati .. 759 – 762

14. Decision making model analysis of technology adoption: empirical study on milk pasteurization retailer behavior
 Januar Tri Sukarna, Suci Paramitasari Syahlan, and Ahmadi ... 763 – 766

15. An education management model based on cognitive learning for small dairy farmers in the tropics
 Viriya Munprasert, Phahol Sakkatat, Varaporn Punyavadee, Siriporn Kiratikarnkul and Dumrong Leenanuruksa .. 767 – 770

16. Participation of women farmers on beef cattle farming management in Pandan Mulyo Group, Bantul, Yogyakarta
 Ida Wulandari, Budi Gunarto, and Endang Sulastri ... 771 – 777

17. The sources of dairy cows and concentrate feed among the dairy farmers in Sleman Regency, Yogyakarta
 Endang Sulastri and Budi Gunarto ... 778 – 780
18. Information access among chicken and cattle farmers in Gunung Kidul Yogyakarta and Ngada East Nusa Tenggara
 Budi Guntoro, Fathul Wahid, Ali Agus, and Stein Kristiansen 781 – 784

Reviews

1. The use of gewang tree (Corypha Elata Robx) as feed for livestock in the tropics
 Maritje A. Hilakore, U Ginting-Monthe, and Y.L. Henuk 785 – 789

2. Optimizing nutrition of commercial livestock for minimal negative impact on the environment through precision feed formulation
 Y.L. Henuk, S.Y.G. Dillak, S. Sembiring and C.A. Bailey 790 – 794

3. Performance and prospect of beef cattle development in Central Java
 W. Roessali, Masyhuri, Sudi Nurtini, dan D.H. Darwanto 795 – 801

4. Livestock husbandry in India: a blessing for poor
 Nizamuddin Khan, Anisur Rehman, Md. Asif Iqubal and Mohd. Sadiq Salman ..

5. Brown midrib resistance (BMR) corn

INSTRUCTIONS TO AUTHORS
Blood lipid status of “jawa ekor kurus” sheep supplemented by protected kapok seed oil

Widiyanto,*1 M. Soejono,† Z. Bachruddin,† H. Hartadi,† and Surahmanto*

*Faculty of Animal Agriculture, Diponegoro University, Tembalang Campus, Semarang 50275 Indonesia and †Faculty of Animal Science, Gadjah Mada University, Jl. Fauna 3 Yogyakarta 55281 Indonesia

ABSTRACT: This investigation was conducted to study the influence of protected kapok seed oil (KSO) supplementation in its combination with rice polishing (RP) on lipid status of “jawa ekor kurus” sheep fed with field grass as basal feed. The amounts of 24 heads of meal “jawa ekor kurus” sheep were used as experimental material. Those devided into 8 treatment groups, consist of 3 heads as replication, respectively. There were two treatment factors, i.e. : KSO supplementation (factor I) and concentrate supplementation (factor II). Factor I consist of 2 levels, i.e. 0% (S0) and 10% (S1), whereas factor II consist of 4 levels, i.e. 0% (K0), 15% (K1), 30% (K2) and 45% (K3) respectively, based on dry matter (DM) consumption. Several variables were measured, namely concentrations of blood triglyceride (TG), low density lipoprotein (LDL) and high density lipoprotein (HDL) cholesterol. The collected data were statistically analyzed by analysis of variance with factorial treatment pattern (2 x 4) in completely randomized design (CRD). Supplementation of RP increase blood total cholesterol (P < 0.05), i.e. : 1.35 mM In S0K0 became to 1.93 mM in S0K3 treatment group, whereas its combination with protected KSO did not result in significantly variation of blood plasm cholesterol (i.e. : 1.93 up to 1.99 mM), along with increasing of HDL cholesterol (from 0.98 mM in S1K0 became to 1.21 mM in S1K3 treatment group) and decreasing of LDL cholesterol.(from 0.70 mM in S1K1 up to 0.69 mM in S1K3).

Key words: kapok seed oil, protection, rice polishing, triglyceride, cholesterol, low density lipoprotein, high density lipoprotein, sheep

INTRODUCTION

There were several constraint in increasing of small ruminant productivity in Indonesia, among other, low in demand of those meat. Consumption rate of cattle, poultry, and pig meats in Indonesia, were 56, 23, and 13% respectively, whereas consumption rate of small ruminant meat, was 5% only (Direktorat Jenderal Produksi Peternakan, 2006). According to Arinto (2006), the consumption rate of small ruminant meat was low, be cause cholesterol phobia issue in Indonesian community.

The effort to solved those, must be conducted, with explanation and an introduction of technology to decrease the cholesterol level in small ruminant meat, so that the acceptability of those will be increased. Polyunsaturated fatty acid (PUFA) source supplementation (in this case, protected linoleic acid), is one of alternative technology to increases those content in animal product.

According to Sardesai (1992), PUFA had a biological roles, among other in controlling of cholesterol status. Raharlo (1995) stated, there was correlation between the increasing of blood cholesterol level and saturated fatty acid consumption, and unsaturated role in decreasing of blood cholesterol level. The PUFA, in this case linoleic acid, was phosphatidylcholine component, which the main phospholipids in HDL. High density lipoprotein (HDL) can carried the cholesterol from periphery tissue as well as another lipoprotein to be oxidized in liver (Bauchart, 1992).

Investigation about the influence of PUFA in controlling of cholesterol status in sheep, can explained those mechanism in consumer of sheep meat which had been increased in its linoleic acid content by supplementation of protected PUFA source. To obtain the usefulness of unsaturated fatty acid (UFA) significantly, the supplementation of adequate protected UFA was required. Protection was required to avoid the UFA from biohydrogenation by rumen microbes (Cook, 1978; Scott and

1 Corresponding author: widiyantowidiyanto75@yahoo.com
Ashes, 1993). Protection also useful to eliminated the negative impact of high level of UFA supplementation, namely decreasing of fiber degradability (Jenkins, 1993; Wang and Song, 2001; Aharoni et al., 2004). Protection was conducted partially, in order to obtained the influence of UFA on rumen metabolism efficiently, which reflected in decreasing of acetic acid level/propionic acid level ratio.

Kapok seed oil (KSO) is one of the potential UFA source. According to Sarosa (1990), proportion of PUFA in total lipid of KSO, was 71.95%. Amount of 54.29% from those was linoleic acid, whereas another, consist of oleic acid (43.50%) and linolenic acid (2.21%). The most of Indonesian KSO were resulted from north coastal area of Central Java, namely around of Muria Mountain, Pati and Jepara.

MATERIALS AND METHODS

The major materials used were protected kapok seed oil (KSO) as supplement, fibrous feed in this case field grass (FG) as basal feed, concentrate in this case rice polishing (RP), 24 heads of male "jawa ekor kurus" (JEK) local sheep as experimental units. The PUFA source (KSO) was used with 75% protection level. The experimental sheep age were selected about 6 months based on body weight (about 13 kg) (Sabrani and Levine, 1993). The major equipment, consist of animal balance, feed balance, analytical balance, individual pen and its equipment, venoject tubes and its needle, waterbatch, ultracentrifuge.

Protection of KSO was conducted by saponification using KOH and then was transformed to Ca salt by CaCl₂. Amount of KOH were used was suitable for protection level, calculated based on saponification number of KSO that determined according to Cabatit method (1979). Certain amount of KSO filled into beaker glass, then to be heated up to 90°C. Amount of KOH suitable with calculation was balanced, dissolved by aquadest then added to heating KSO, while stirred for 10 minutes up to kalium soap suspension was formed. In transformation of kalium soap to Ca salt, amount of CaCl₂ calculated by stoichimetri, to be balanced and dissolved by aquadest. The CaCl₂ solution added to kalium soap suspension, while heated in waterbatch at 90°C and stirred up to Ca salt was formed. After centrifugation at 2500 rpm for 10 minutes, supernatant was removed, the precipitate was added by unprotected KSO portion, ready for used as supplement. Before to be protected, the KSO was heated previously for 4 hours at 200°C to eliminate its anti nutrition substance.

This Research was started by preparation of pen and its equipment, and treatment. Twenty four heads of experimental sheep were devided into 8 groups based on treatment combination. Each group consist of 3 heads as réplications. There were 2 treatment factors, namely protected KSO supplementation as factor 1 and feeding concentrate (RP) as factor 2. Treatment factor 1 consist of 2 levels, namely without supplementation (S0) and with supplementation (S1). Treatment factor 2 consist of 4 levels, namely: 0% (K0); 15% (K1); 30% (K2) and 45% (K3).

The experiment proceeded for 3 months, including 10 days adaptation period, 10 days introduction period and 70 days observation period, while experiment, forage was fed ad libitum. Concentrate were fed every morning, whereas water supplied continously. Mineral mixture consist of limestone, bone meal and salt (1 : 1 : 1) to be fed free choice (Tillman, 1978).

Feed consumption and body weight data were collected after introduction period. Balancing of body weight were conducted periodically each week, in the morning before feeding, as the base of supplementation. Blood sampling was done for determination of plasm TG and cholesterol concentrations according to Liebermann-Bauchart method (Tranggono et al., 1989).

Table 1. Nutrient composition of experimental feed (dry matter basis)

<table>
<thead>
<tr>
<th>Feed</th>
<th>CP, %</th>
<th>CF, %</th>
<th>Lipid, %</th>
<th>Ash, %</th>
<th>NFE, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field grass</td>
<td>10.16</td>
<td>32.66</td>
<td>1.37</td>
<td>16.58</td>
<td>39.23</td>
</tr>
<tr>
<td>Rice polishing</td>
<td>14.04</td>
<td>15.81</td>
<td>1.08</td>
<td>10.08</td>
<td>42.99</td>
</tr>
</tbody>
</table>

CP : crude protein; CF : crude fiber, NFE : nitrogen free extract
The collected data were analyzed statistically by analysis of variance in completely randomized design. Difference of means between treatment groups were analyzed by Duncan method (Astuti, 1980; Sugandi and Sugianto, 1993).

RESULTS AND DISCUSSION

Triglyceride

Blood plasma TG concentration of sheep without KSO supplementation fed RP at 0; 15; 30 and 45% level (S0K0, S0K1, S0K2 and S0K3, were : 0.11; 0.15; 0.27 and 0.30 mM, respectively)(Table 3). Feeding of RP (up to 45% of ration DM) increased blood plasm TG concentration (P<0.05). Christie (1979) suggested that blood plasm TG concentration was influenced by lipid consumption. Lipid consumption as long chain fatty acid source and concentrate as source of alfa gliserol phosphat, were very important for the blood plasm TG concentration.

Table 2. Average of dry matter (DM), organic matter (OM), crude protein (CP) and lipid consumption per head per day

<table>
<thead>
<tr>
<th>Treatment</th>
<th>DM, g</th>
<th>OM, g</th>
<th>CP, g</th>
<th>Lipid, g</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0K0</td>
<td>391</td>
<td>336</td>
<td>47</td>
<td>6.04</td>
</tr>
<tr>
<td>S0K1</td>
<td>437</td>
<td>379</td>
<td>53</td>
<td>16.66</td>
</tr>
<tr>
<td>S0K2</td>
<td>539</td>
<td>468</td>
<td>68</td>
<td>31.76</td>
</tr>
<tr>
<td>S0K3</td>
<td>548</td>
<td>481</td>
<td>71</td>
<td>45.21</td>
</tr>
<tr>
<td>S1K0</td>
<td>455</td>
<td>396</td>
<td>50</td>
<td>48.54</td>
</tr>
<tr>
<td>S1K1</td>
<td>599</td>
<td>519</td>
<td>64</td>
<td>73.71</td>
</tr>
<tr>
<td>S1K2</td>
<td>666</td>
<td>577</td>
<td>74</td>
<td>87.95</td>
</tr>
<tr>
<td>S1K3</td>
<td>612</td>
<td>535</td>
<td>71</td>
<td>98.87</td>
</tr>
</tbody>
</table>

Protected KSO supplementation to sheep without feeding of RP (S1K0) resulted in lipid consumption was 48.54 g/day (Table 2), those were equivalent to lipid consumption by sheep in S0K3 group. Blood plasma TG concentration of sheep in S1K0 treatment group were not significantly different from blood plasma TG concentration of sheep in S0K1 group, even if its lipid consumption were much higher. Those were understood, because most of fatty acids consumed by sheep in protected S1K0 group, so that most of that were absorbed as PUFA. The absorbed unsaturated fatty acids were esterified in intestinal mucosal cell was not as TG, but as phospholipids and cholesterylester (Christie, 1979; Bauchart, 1992; Ashes et al., 1995). The fact showed that blood plasma TG concentration of sheep in S1K3 group (0.31%), were not significantly different from S1K2 (0.33%) and even tended to decrease, and not significantly different from blood plasma TG concentration of sheep in S0K3 and S0K2 groups. Those phenomenon supposed to be occurred because increasing of unprotected PUFA were bypassed from ruminal biohydrogenation, so that amount of esterified fatty acids became to TG were decreased. Gerson et al. (1985) and Pantoja et al. (1996) stated that decreasing of rumen fluid pH inhibited ruminal glyceride lipolysis.

Cholesterol

Blood plasma cholesterol concentration in sheep without KSO supplementation which received RP. Were higher (P<0.05) than those without KSO supplementation and without RP (1.54; 1.75; 1.93 mM, in S0K1, S0K2 and S0K3, respectively vs 1.35 mM in S0K0). Lipid consumption increased along with increasing of RP feeding levels, from 6.04 g in S0K0 to 16.06 ; 31.76 and 45.21 g in S0K0, S0K2 and S0K3, respectively. Those increasing of consumption were followed by the improving of its absorption, as reflected in blood plasma TG concentration. The improving of lipid absorption would be followed by rising of lipoprotein synthesis to lipid transported in blood, as
reflected by the rising of blood plasm cholesterol concentration. Those could occur because increasing of intestinal cholesterogenesis to facilitate the absorbed lipid transport.

Table 3. Blood plasm triglyceride (TG), and cholesterol levels of experimental Sheep

<table>
<thead>
<tr>
<th>Supplementation</th>
<th>Concentrate</th>
<th>TG, mM</th>
<th>Total chol, mM</th>
<th>LDL chol, mM</th>
<th>HDL chol, mM</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>K0</td>
<td>0.11^d</td>
<td>1.35^d</td>
<td>0.57^f</td>
<td>0.67^f</td>
</tr>
<tr>
<td></td>
<td>K1</td>
<td>0.15^c</td>
<td>1.54^c</td>
<td>0.66^d</td>
<td>0.75^e</td>
</tr>
<tr>
<td></td>
<td>K2</td>
<td>0.27^b</td>
<td>1.75^b</td>
<td>0.75^bc</td>
<td>0.81^d</td>
</tr>
<tr>
<td></td>
<td>K3</td>
<td>0.30^ab</td>
<td>1.93^a</td>
<td>0.85^a</td>
<td>0.92^c</td>
</tr>
<tr>
<td>S1</td>
<td>K0</td>
<td>0.17^c</td>
<td>1.98^a</td>
<td>0.70^cd</td>
<td>0.98^c</td>
</tr>
<tr>
<td></td>
<td>K1</td>
<td>0.28^b</td>
<td>1.93^a</td>
<td>0.79^ab</td>
<td>0.97^c</td>
</tr>
<tr>
<td></td>
<td>K2</td>
<td>0.33^a</td>
<td>1.96^a</td>
<td>0.73^bcd</td>
<td>1.14^b</td>
</tr>
<tr>
<td></td>
<td>K3</td>
<td>0.31^ab</td>
<td>1.99^a</td>
<td>0.69^cd</td>
<td>1.21^a</td>
</tr>
<tr>
<td>Combination average</td>
<td>S0</td>
<td>0.21^b</td>
<td>1.64^b</td>
<td>0.70</td>
<td>0.79^b</td>
</tr>
<tr>
<td></td>
<td>S1</td>
<td>0.27a</td>
<td>1.96^a</td>
<td>0.73</td>
<td>1.07^a</td>
</tr>
<tr>
<td>Combination average</td>
<td>K0</td>
<td>0.14^c</td>
<td>1.66^d</td>
<td>0.63^b</td>
<td>0.82^c</td>
</tr>
<tr>
<td></td>
<td>K1</td>
<td>0.22^b</td>
<td>1.74^c</td>
<td>0.72^a</td>
<td>0.86^e</td>
</tr>
<tr>
<td></td>
<td>K2</td>
<td>0.30^a</td>
<td>1.85^b</td>
<td>0.74^a</td>
<td>0.98^b</td>
</tr>
<tr>
<td></td>
<td>K3</td>
<td>0.31^a</td>
<td>1.96^a</td>
<td>0.77^a</td>
<td>1.06^a</td>
</tr>
</tbody>
</table>

abcd ef Different superscripts in the same column-row, showed the significantly difference (P <0.05).

Blood plasm LDL cholesterol of sheep without KSO supplementation to total blood plasm cholesterol concentration (0.57; 0.66; 0.75 and 0.85 mM, in S0K0, S0K1, S0K2 and S0K3, respectively). Most of LDL cholesterol in ruminant reflected absorbed lipid from small intestine. The HDL cholesterol in sheep without KSO supplementation which received RP were also higher than those without KSO supplementation as well as RP (0.75; 0.81; 0.92 mM in S0K1, S0K2, S0K3 vs mM in S0K0). The increasing of RP level, enhanced the HDL cholesterol concentration. The increasing of HDL cholesterol concentration was response to the increasing of total blood plasm cholesterol, especially LDL cholesterol portion. Bauchart (1992) described that HDL facilitated the taking and/or transporting of cholesterol from extrahepatic tissues to liver.

The protected KSO supplementation to sheep without feeding RP (S1K0) resulted in non significantly different blood plasm TG concentration from sheep without KSO supplementation received 15% RP (S0K1), but its blood plasm cholesterol concentration were higher (P<0.05) than sheep in S0K1 group (1.98 vs 1.54 mM). Those could occur because protected PUFA portion will be absorbed and stimulated the cholesterogenesis in small intestine mucosal cells. Cholesterol was synthesized, particularly in intestine further more esterified preferentially to linoleic acid of lecithin, formed cholesteryl ester. Esterification of cholesterol to linoleic acid in HDL in this experiment was indicated in the higher of HDL cholesterol in S1K0 group sheep than S0K1 (0.98 mM vs 0.75 mM) whereas the blood plasm cholesterol was not significantly different, namely 0.70 and 0.66 mM in S0K0 and S0K1, respectively. The protected KSO supplementation to sheep fed 15% RP (S1K1) increased lipid consumption, but its PUFA proportion were lower than those in S2K0 group, so that its LDL cholesterol was higher than S1K0 (0.79 vs 0.70 mM). The increasing of PUFA absorption in S1K2 and S1K3 caused the high of blood plasm HDL cholesterol in sheep of those treatment group (1.14 and 1.23 mM) compared to the other treatment group. The high of blood plasm HDL cholesterol concentration in S1K2 and S1K3 treatment group, were supposed because the requirement of bile acid production was increased. The uptake of LDL cholesterol by HDL caused the low of blood plasm LDL cholesterol concentration in S1K2 and S1K3 treatment group (0.73 and 0.69 mM). The increasing of the use of bile acid synthesis, caused the non significantly difference of blood plasm total cholesterol between S1K2 as well as S1K3 and S1K1 as well as S1K0 (1.96 and 1.99 mM vs 1.93 and 1.98 mM).
CONCLUSIONS

There was not variation in blood total cholesterol concentration in related to increasing of concentrate level, in KSO supplemented sheep. Supplementation of protected KSO as unsaturated fatty acid source, controlled the blood cholesterol concentration, by increasing of HDL cholesterol concentration and decreasing of LDL cholesterol concentration.

LITERATURE CITED

