Proceedings of
The 9th Joint Conference on Chemistry

Diponegoro University (UNDIP),
Semarang State University (UNNES), Sebelas Maret University (UNS) and
Jenderal Soedirman University (UNSOED)

Grand Candi Hotel, Semarang, 12-13 November, 2014

Green Chemistry

Editors
Dwi Hudiyanti
Agustina L.N. Aminin
Adi Darmawan
Yayuk Astuti

UNNES Press
2015
Cetakan ke 1

©2015 Chemistry Department, FSM, Diponegoro University

Judul Buku: Green Chemistry: Proceedings of The 9th Joint Conference on Chemistry

Editor: Dwi Hudiyanti, Agustina L.N. Aminin, Adi Darmawan, Yayuk Astuti

Penerbit: UNNES Press

Preface to The Conference Proceedings

We are very pleased to introduce The 9th Joint Conference on Chemistry (9th JCC) held by Diponegoro University (UNDIP) On behalf of the Chemistry Consortium in Central Java, Indonesia. The JCC is an annual conference organized by the consortium of Chemistry Department of four universities in Central Java; Diponegoro University (UNDIP), Semarang State University (UNNES), Sebesa Maret University (UNS) and Jenderal Soedirman University (UNSOED); since 2006. The growing of environmental problems that persist to escalate worldwide has compelled us to select "Green Chemistry" as the leading theme of the 9th JCC.

We had 10 plenary speakers, 10 invited speakers and over 120 suitable papers from 11 countries were submitted for presentation at the conference. This required the program to be organized in five parallel sessions, each on a specific theme, to provide each paper with sufficient time for presentation and to accommodate all of them within the overall time allocated. One of the five sessions contained analytical chemistry. A second session was devoted to the theme of biochemistry. The third and fourth session were dedicated to physical and material chemistry. The fifth session was concerned with chemical education. These were well represented in the program of the conference and were clearly topics which continue to stimulate a global interest. The programs were chaired in a professional and efficient way by the session chairmen who were selected for their international standing in the subject.

All the papers went through a peer-review procedure prior to being accepted for publication in this book. These Proceedings present the permanent documentation of what was presented. They indicated the state of advancement at the time of writing of all aspects of this theme and will be very useful to all people in the field.

As a final point, it is appropriate that we record our thanks to our fellow members of the steering committee, organizing committee, and scientific committee. We are also indebted to those who served as chairmen. Without their support, the conference could not have been the success that it was. We also would like to express our sincere gratitude to all authors for their valuable contributions. We are thankful to the students of Chemistry Department Faculty of Science and Mathematics Diponegoro University especially to Maya and Fuad for their support during preparation of the manuscript.

Dwi Hudiyanti
Agustina L.N. Aminin
Adi Darmawan
Yayuk Astuti
Board of Reviewers

Prof. Joe da Costa, FIMLab – Films and Inorganic Membrane Laboratory, School of Chemical Engineering, The University of Queensland, Brisbane Qld 4072, Australia

Prof. Farook Adam, Universiti Sains Malaysia

Prof. Mohd Marsin Sanagi, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia

David G. Churchill, Department of Chemistry, Korea Advanced Institute of Science and Technology, South Korea

Dwi Hudiyanti, Chemistry Department, Diponegoro University

Agustina L.N. Aminin, Chemistry Department, Diponegoro University

Adi Darmawan, Chemistry Department, Diponegoro University

Yayuk Astuti, Chemistry Department, Diponegoro University

Khairul Anam, Chemistry Department, Diponegoro University

Parsaoran Siahaan, Chemistry Department, Diponegoro University

Bambang Cahyono, Chemistry Department, Diponegoro University

Meiny Suzery, Chemistry Department, Diponegoro University

Eddy Heraldy, Chemistry Department, Sebelas Maret University

Fitria Rahmawati, Chemistry Department, Sebelas Maret University

Maulidan Firdaus, Chemistry Department, Sebelas Maret University

Sayeki Wahyuningsih, Chemistry Department, Sebelas Maret University

Sudarmin, Chemistry Department, Sebelas Maret University

Samuel Budi Wardhana Kusuma, Chemistry Department, Semarang State University

Uyi Sulaeman, Chemistry Department, Jenderal Soedirman University

Dadan Hermawan, Chemistry Department, Jenderal Soedirman University
Table of Contents

Title Page i
Copyright page ii
Preface iii
Board of Reviewers v
Table of Contents vii

Section 1: Material Chemistry 1

TiO2-SiO2 Modified on Acrylic Paint with Self-Cleaning Characteristic 3
Agus Ridwan, Sri Wahyuni

Synthesis and Characterization of Cellulose Based Superabsorbent Polymer Composites 8
Ahmad Zainal Abidin, N. M. T. P. Sastro, G. Susanto, H.P.R. Graha

Synthesis and Characterization of Nano Scale Zero-Valent Iron Supported on Mesoporous Silica 13
Atyaf Khalid Hammed, Nugroho Dewayanto, D. Dongyun, Mohd Ridzuan Nordin

Synthesis of 2, 7-Disulfonatonaphthalene-5-Hydroxy-4-Amino-N-Propyl Silica Hybrid by Sol-Gel and Grafting Processes 21
Choiril Azmiyawati, Nuryono, Norsito

Modification of Ni/Zn-HZSM-5 Double Promoted Catalyst for Biofuel Production from Cerbera Manghas Oil 25
Danawati Hari Prajitno, Agus Budianto, Muhammad Iqbal, Achmad Roesyadi, Victor Purnomo

Influences of Ammonia for Synthesis of 8-hydroxiquinoline Copper(II) 29
Suhartana, Laelatri Agustina, Sriatun

Influence of Variation Temperature on Phase Composition of Ca-Mg-Al Hydrotalcite 34
Eddy Heraldy, Khoirina Dwi Nugrahaningtyas, Fendry Bangkit Sanjoya, Desi Suci Handayani, Yuniaswan Hidayat

Synthesis and Characterization of Chitosan – Rice Husk Ash Silica Composite as Polymer Electrolyte Membrane (PEM) 38
Eva Mardiningsih, Ella Kusumastuti

Synthesis and Characterization of the Zn(II) Complex with Dimethyl Hydroxyl Pyridine-2,6-Dicarboxylate 44
Fahimah Martak
Synthesis and Characterization of $\text{La}_3\text{y}\text{Sr}_x\text{Co}_{0.8}\text{Fe}_{0.2}\text{O}_3$ and $\text{La}_1\text{y}\text{Ba}_x\text{Co}_{0.8}\text{Fe}_{0.2}\text{O}_3$ ($0.05 \leq y \leq 0.4$) Dense Membranes
Hamzah Fansuri, N. Widiastuti, A. Aliyatulmuna, W. P. Utomo, D. Prasetyoko, B. Prijamboedi

Synthesis, Characterization and Catalytic Activity of CuO/ZnO on Phenol Oxidation
Nuni Widiarti, Sri Wahyuni, S Barakah

Characterization of Enzyme Electrode from Nanochitosan Immobilized Glucose Oxidase on Carbon Paste Modified with Nanofiber Polyaniline for Biosensor Application
Popi Asri Kurniati, Laksmi Ambarsari, Inda Setyawati, Puspa Julistia Puspita, Anesti

Andisol Soil Utilization of Mount Lawu as Natural Adsorbent Multi Soil Layering Materials for Domestic Waste
Pranoto, R. Sudaryanto, Supriyadi

Modifying Surface Charge of Chitosan Membrane by Carboxymethylchitosan Blended with Poly(vinylalcohol)
Retro Ariadi Lusiana, Dwi Siswanto, Mudasir, T. Hayashita

Effect of N-doped Graphene for Pt/N-doped Graphene Catalyst
Rikson Siburian, Minsyahril Bukit

The utility of Aqueous Extract of Air-dried Callophyllum inophyllum L. Leaf as Medium/Reduction System for Synthesis of Gold Nanoparticles (AuNPs)
Salprima Yudha S., Zulfikri Achid Mardia, Eka Angasa, Totok Eka Suharto, Yuta Nishina

The Impregnated Boron Oxide Catalysts for the Reaction of Dehydrogenation of Ethane
Setiadi

Preparation of Zn-Ni/TiO$_2$ Photocatalyst by Sol-gel Method and Its Activity in Water Decomposition
Sigit Priatmoko, E. Cahyono, S. Wahyuni, Ella Kusumastuti, Satrio Bakti Uji Prambasto

Synthesis of Humic Acid Coated Fe$_3$O$_4$ Magnetic Nanoparticle and its Application to Adsorp Cu(II)
Soerja Koesnarpadi, Daniel

Modification of Synthetic Zeolite from Bagasse Ash and Their Characterization
Sriatun, Taslimah, Linda Suyati

Synthesis and Surface Modification of TiO$_2$/Carbon Photocatalyst Produced by Arc Discharge in Ethanol Medium
Teguh Endah Saraswati, Isya Fitri Andhika, Astrid Olivia Nandika, Sayekti Wahyuningsih, Candra Purnawana

The Effect of Vulcanization Time on Mechanical and Chemical Properties of Liquid Rubber Compound
Teja Dwi Sutanto, Bambang Setiati, Karna Wijaya, Totok Eka Suharto

Calcium Phosphate-Chitosan Composite as a Bone Cement Candidate
Tri Windarti and Benjamin Horrocks
Optimization Process of H-Zeolite Catalyst Preparation with Surface Response Methods
Widayat, H. Susanto, H. Satriadi

Preparation of Activated Carbon from Oil Palm Shell by Activating ZnCl₂ as Carbon Monoxide Adsorbent
Yuliusman, Widodo W. Purwanto, Yulianto S. Nugroho, Randy Anggriany

Section 2: Physical Chemistry

Effects of Voltage and Number of Cell on Desalination of Brackish Water using Electrolysis Method
Afon Purnomo, Zakiatul Mirfada, Arseto Yekt Bagastyo

Mesostructured Titanosilicates Catalyst for Synthesis of Vitamin K3
Alfa Akustia Widati, Hamami, Handoko Darmokoesomo, Nada Adhisty Stevany

XRD of Synthetic Zeolite for Surfactant Builder: NaOH Concentration Variation in Sodium Silicate Decision of Rice Husk Ash
Arnelli, Ahmad Suseno, Teguh Imam Prasetyo

Catalytic Conversion of 1-Octadecene to Shorten Chains Alkane (C₆ – C₁₂)
D. Setyawan Purwo H, Triyono, Narsito, Tutik Dwi Wahyuni

Electrochemical Characterization of Direct Ethanol Fuel Cell (DEFC) with Crude Bioethanol Feed
Dwi Kemala Putri, Mitra Eviani, Aditya Yudistira, Isdriyani M. Nurdin, Hary Devianto, Ardiyan Harimowarn

Conversion of Glycerol into Polyhydroxybutyrate(PHB) using Escherichia coli
Endah Fitriani Rahayu, Wega Trisunaryanti, Karna Wijaya

The Effects of Hydrolysis Temperature and Catalyst Concentration on Bio-ethanol Production from Banana Weevil
Eni Budiyati and Umar Bandi

The Effect of Coconut Oil Concentration on Physical and Chemical Properties of Cosmetic Emulsions
Eni Widiyati, AH. Bambang Setiaji, Totok Eka Suharto, Triyono

Adsorption of Pb(II) and Co(II) on Adsorbent Clay Immobilized Saccharomyces cerevisiae Biomass
Fahmiati, Mashun, L.D. Syahdam Hamidi, Nasra

Utilization of Cassava Peel as Electric Energy Source through Microbial Fuel Cell
Lindo Suyati, Didik Setiyo Widodo, Abdul Haris, Wuryanti, Rahmad Nuryanto

Effect of Activated Bagasse Charcoal Size as Biomaterial Pretreatment on Waste Cooking Oil Biodiesel Characteristics
Liza Johar Mawarani, Tatik Farihah
Electrochemical Characterization of Direct Ethanol Fuel Cell (DEFC) with Bioethanol Feed Containing Acetic Acid as Impurity
Mitra Eviani, Isdrialayani M. Nurdin, Hary Devianto

The In Silico Molecular Interaction of Organoboron Compounds as Curative Measure toward Cervical Cancer
Ridla Bakri, Arli Aditya Parikesit, Cipta Priyo Satrianto, Djati Kerami, Usman Sumo Friend Tambunan

Catalytic Properties of Bimetallic NINP-M/AIOH (M = Sn, In, Ga, Ag, Nb, and Zr) on Selective Hydrogenation of Furfural
Rodiansono, M. D. Astuti, A. Ghofur, Shogo Shimazu

Adsorption Study of 2-mercaptobenzothiazole at Copper Surface as Corrosion Inhibitor in HCl
Tauny Alif Firman, Yoki Yulizar

Emulsification Ability of Surfactant-Like Peptides Predicted by Coarse Grained Molecular Dynamics Simulations
Tegar Nurwahyu Wijaya, Rukman Hertadi

Biofuel from Light Tar Resulted from Coconut Shell Pyrolysis by Distillation Process
Uswatun Hasanah, Bambang Setiadi, Tryono, Chairil Anwar

Adsorption of Cyanide Ion from Aqueous Solutions by Saccharomyces cerevisiae Biomass
Venty Suryanti, Fitria Rahmawati, Yudha Anggara Haeqal

Biosorption of Cu^{2+}, Zn^{2+}, and Cd^{2+} by Nannochloropsis salina in a Three-Metal System
Yusofir Hula, Emma Suryati, Paulina Taba, Nesty MudiTumale

The Effect of Annealing Temperature to The X-Ray Diffraction Patterns of The Thin Film of Cardanol Compound from Alor Regency NTT Province
Zakarias Seba Ngara, I Gusti M. Budiana, Aliwarsito

Section 3: Analytical Chemistry

Effect of pH on Cu-S TiO_2 Photocatalytic Performance toward Phenol Photodegradation and Cr(VI) Photoreduction by Visible Light Irradiation
Abdul Haris, Didik Setiyono Widodo, Rahmad Nuryanto

Electrochemical Impedance Spectroscopy Analysis of Lithium Polymer Batteries during Charge/Discharge Cycle
Achmad Rochliadi, Multazam, I Made Arcana, Bubun Bundjoli

Influence of C/N Ratio in Activated Sludge to Remove Cr(VI)
Arseto Yekti Bagastyo, Natalia Diani Triana

Method Development and Validation for Lead (Pb) Analysis in Natural Honey from East Kalimantan
Bohari Yusuf, Fingo Aprianto
Electroremediation of Polluted Water: Electrododecolorization of Batik Wastewater
Didik Setiyo Widodo, Abdul Haris, Gunawan

243

Influence on The Degree of Increase in Natrium Metabisulphite White Bread Flour
Heny Kusumoyanti, Laila Faizah, R.T.D. Wisnu Broto, Hanifah, M. Taqiuddin

248

Selective Adsorption of Phenol and Vanillin Using Eugenol Based Molecularily Imprinted Polymer
M. Cholid Djunaedi, Dwi Siswanta, Jumina

251

The Influence of Ascorbic Acid, Creatinine and Urea on the Analysis of Uric Acid in the Blood Serum by Stripping Voltammetry using Graphite Electrode
Miratul Khasanah, Handoko Darmokusumo, Ganden Supriyanto, Ahmad Zaky Pulungan, Putut Satria Dahono

258

Optimization and Validation of HPLC for Analysis of Rhodamine B in Sponge Cake
Novi Yanti, Zuhelmi Aziz, Aditya Dicky Prasetya

263

Analysis of 8 Human Pharmaceuticals in Water Samples Using Solid Phase Extraction Followed by Liquid Chromatography Tandem Mass Spectrometry
Samuel Budi Wardhana Kusuma, Ibrahim Al Tarawneh, Robert Kreuzig

267

Analysis of Nitrosodiethylamine (NDEA) in Salted Fish with Hollow Fibre-Liquid Phase Microextraction Gas Chromatography Flame Ionization Detector(HF-LPME-GC-FID) Method
Usreg Sri Handajani, Ganden Supriyanto, Yanuardi Raharjo, Gunawan Dwi Saputra

273

Application of Cone Shaped Membrane-Liquid Phase Microextraction for Analysis Nitrosodipropylamine in Salted Fish
Yanuardi Raharjo, Usreg Sri Handajani, Eko Aryo Wijaksono

278

Section 4: Organic Chemistry

Phytochemical Screening and Toxicity Test BSLT for Ethanol Extract of Agarwood(Aquilaria microcapa Bail)
Ahmad Musir, Risma M. Tambunan, Bambang Triseno

283

Determination of Glabridin in Licorice Root (Glycyrrhiza glabra L.) Using High Performance Liquid Chromatography
Faridah, Siti Umrah Noor, Rahmawati T.

285

Antidiabetic and Antihypercholesterolemic Activities of Citrus Sinensis Peel in Rats
Haryoto, Muhtadi, Tanti Azizah, Andi Suhendi

289

Acute Toxicity for Combination Extract of Terminalia muelleri Benth. and Curcuma xanthorrhiza
Khairul Anam, Dewi Kusriini, Ratna Megawati Widharna

294

The Effect of Oil Types on The Characteristics of Solid Soap
Mardiyah Kurniasih, Purwati, Anung Riapanitra, Zusfahair, Tri Wahyuni

298

303
Antibacterial Activities Some Compounds Clove Leaf Oil Derivatives
Ngadiyiyan, Purbowatiningrum Ria Sarjono, Enny Fachriyah, Nor Basid Adiwibawa Prasetya

The Effect of the Addition of Glycerol and Chitosan in the Biodegradable Plastics
Production from “Porang” Flour (Amorphophallus muelleri Blueme)
Niniek Fajar Puspita, Saidaht Altway, Lizda Johar Mawaran, Dwi Ayu, Desy Rosita

Standardization and α-Glucosidase Inhibitory of Extract from Anredera Cordifolia Leaves
Ratna Djamil, Wiwi Winarti, Syamsudin, Merysca Rasa

Determination of Total Flavonoid Content and Standardization Orthosiphon aristatus
Leaves Extracts
Sarah Zaidan, Ratna Djamil

Effect of Reaction Time toward Formation of 1,5-Bis-(2-Furanyl)-1,4-Pentadien-3-One
from Claisen-Schmidt Condensation of Furfural and Acetone
Siti Mariyah Ulfia, Indah Nurpramesti, M. Farid Rahman, Hideki Okamoto

Blood Chemistry Data Base of Kedu Chicken:-The Indonesian Indigenous Poultry
Siti Susanti, Rina Muryani, Isroli, Hanny Indrat Wahyuni, Agus Sucipto

The Potency of Liquorice Extract (Glycyrrhiza glabra L.) as Skin Whitening
Siti Umrah Noor, Faridah, Astri Windi

Triterpenoids from Tembelekan (Lantana camara) Leaf Extract and Its Activity as an
Antibacterial (Escherichia coli)
Sitti Hadjiuh Sabarwati, Oce Astuti, Indriyani Nur

Hydrothermal Methods for Hydrolysis Cellulose to Glucose and/or Oligosaccharide: A
Comparative Study with and without Ultrasound Pretreatment
Sumari, A. Roesyadi, Sumarno

Chemical Constituent of DCM Extract and Neutral-Acid Fraction of Voacangafotida (Bl.)
Roif Leaves from Three Locations of Lombok Island on The Basis of GC-MS Analysis
Surya Hadi, Lely Kurniawati, Baq Mariana, Honda Muliasari, Sri Rahayu

Preparation and Characterization of Inclusion Complex of Xanthone with
Sulfonatocalix[4]arene
Triana Kusumaningsih, Maulidin Firdaus, Muhammad Widyo Wartono, Desi Suci Handayani, Sidiq Nugraha, Tegar Parnandi Golih Rosdian

Quality Standardization and Determination of in Vitro Antihypertensive Activity of
Ethanolic Extract of Pacar Kuku (Lawsonia inermis Linn.)
Wiwi Winarti, Syamsudin, Ratna Djamil, Aloysius Sebastian

Phenolic Compounds from the Leaves of Kalanchoe blossfeldiana (Crassulaceae) Plant
Yenny Febriani Yun, Lilis Siti Aisyah, Tri Reksa Saputra, Arif Rahman Hakim, Tati Herlina,
Euis Julaeha, Achmad Zainuddin, Unang Supratman

Bioactive Components and Antioxidant Properties of Stevia Beverage
Yohanes Martono, Hartati Soetjipto
Section 5: Biochemistry

Isolation and Partial Purification of New Protease form Thermophilic Bacteria
Pseudomonas otitidis WN 1 obtained from Indonesian Hot Spring
Amin Fatoni, Zusfahair
The Complexity of Molecular Interactions and Bindings between Cyclic Peptide and
Inhibit Polymerase A and B1 (PAC-PB1N) H1N1
Arli Aditya Parikesit, Harry Noviardi, Djati Kerami, Usman Sumo Friend Tambunan
Identification and Characterisation of Bioactive Peptides of Fermented Goat Milk
Chanif Mahdi, H. Untari, M. Padaga
Comparative of Biomass for Pretreatment with Biological Process for Efficient Hydrolysis
Desy Kurniawati, Muhamad Natsir, Rahmi Febrialis, Prima Endang Susilowati
Characterization of Immobilized Lipase from Fractionation Result of Azospirillum Sp.
Prd1 using Chitosan
Dian Riona Ningsih, Zusfahair, Santi Nur Handayani, Puji Lestari
Hydrolysis Enzyme Production α-Amylase and β-Glucosidase from Aspergillus niger with
Solid State Fermentation Method on Rice Husk, Bagasse and Corn Cob Substrate
Heri Hermansyah, Rizky Ramadhani, Adinda Putri Wisman, Rita Arbianti
Alkaline protease activity of Black Aspergilli isolated from soil of West Sukolilo Madura
Isworo Rukmi, Wuryanti, Arina Tri Lunggani
Anti Hyperuricemia Activity of Salam (Syzygium Polyanthum Walp.) and Meniran
(Phyllanthus niruri Linn.) Herbs Extracts in Oxonate-Induced Mice
Muhtarbi, Andi Suhendi, Nurcahyanti W., EM. Sutrisna
Lignocellulolytic Enzyme Complex of Thermophilic Compost for Agriculture Biomass
Conversion
Nies Suci Mulyani, Octafsari K. Saputri, Agustina L.N. Aminin
Biogas from the Solid Waste of Dairy Cattle as Renewable Alternative Energy at Mowila
and Konda, Konawe Selatan, Sulawesi Tenggara
Prima Endang Susilowati, Ahmad Zaein, Dorwil
Production and Characterization of Biosurfactant from Halophilic Bacteria Pseudomonas
stutzeri Strain BK-AB12
Rukman Hertadi, Desyka Sari Sihaloho, Deana Wahyunigrum
The Ability of Bacterial Isolates of Actinobacillus sp. in Degradating Pollutants p-Cresols
and Sunset Yellow
Subandi, Muntholib, Eli Hendrik Sanjaya, Prita Olivia Putri
Section 6: Chemical Education

The Model Development of Chemical Practical Work Approach and Performance Assessment to Increase the Performance of the Laboratory Practitioners
Endang Susilaningsih, Murbangun Nuswowati

Measure Student Teachers’ Ability to Implement Authentic Assessment
Harjito, Sri Nurhayati

Chemical-Science Education Integrated with Religion
Kasmadi Imam Supardi

Giving Task Designing and Presenting Environmental Problem Solving through Environmental Chemistry Course to Increase Character Values and Knowledge of the Students
Murbangun Nuswowati

The Application of Discovery Learning with Scientific Approach to Improve the Students’ Science Process Skill
Naila Ayadiya, Woro Sumarni

Science, Environment, Technology and Society (SETS) Oriented Mini-Chem Book
Nor Harisah, Woro Sumarni

Inquiry Learning in Laboratory by HPLC Reversed-Phase Method Development in Taking the Conditions of Heavy Metals Separation
Sri Wardani
Green Chemistry Section 1:
Material Chemistry
Optimization Process of H-Zeolite Catalyst Preparation with Surface Response Methods

Widayat a, H. Susanto b, H. Satriadi c

Abstract

H-zelite have been produced from natural zeolites by chemical and physical activation process. The producing process has been optimized by the response surface method with variables process: X1 is a dimensionless number value for the concentration of NH4Cl solvent, and X2 is a dimensionless number value for the diameter of natural zeolite. The response in this experiment is a surface area and pore diameter that analysed by Brunauer, Emmet dan Teller. Regression analysis was obtained determination coefficient R²=0.84425. The optimization process produces a saddle-shaped contour with the critical value at the saddle area is -1.0759 for X1 and 0.8159 for X2.

Keywords: Catalyst, surface response method, optimization and natural zeolite

Introduction

Zeolite is an inorganic polymer, which is composed of monomer units and form of tetrahedral SiO4 and AlO4 (Bekkum et al, 1991). Based on the manufacturing process, zeolite can be divided into synthetic zeolite and natural zeolite. Natural zeolite has various types, which is currently approximately 40 types. In Indonesia, natural zeolite deposits are large enough and high enough purity. Areas that have zeolite mine are; South Lampung, Bayah, Cikembar, Cipatujah, Nanggapa West Java, NTT Ende, Malang Regency, and Gunung Kidul Regency. Silica concentration is approximately 60% [1, 2]. Zeolites are widely used in industry for processes such as catalytic cracking, alkylation processes, the process of dehydration and hydration. As a catalyst natural zeolites require a process, to have the large activity.

Some research has used a lot of natural zeolite as a catalyst, either directly or through the activation process. Utilization of natural zeolite directly as a catalyst was in the cooking oil cracking process conducted by Widayat [3, 4] which the natural zeolite has the ability to cracking process of cooking oil and produce diesel fuel types. Utilization of natural zeolite through the activation process was in the conversion ABE compound into hydrocarbon [5], impregnation of the Cr [6], impregnation of the Fe2O3 [7]. Results developing of the metals Cr and Fe2O3 can increase the acidity level of the natural zeolite. Widayat and workers [1, 2] have done the activation process with some of the methods and the results showed that the chemical treatment and continued by physical treatment that catalysts have higher surface area than the reaction of the alcohol compound template and ion exchange. Widayat and workers also have done the catalytic H-zelite catalyst test for ethanol dehydration process. The results showed that the H-zelite catalyst has the ability to convert ethanol into diethyl ether products, ethylene and methanol with capabilities that are not much different from alumina catalyst [8-10].

Takahara and workers (2005) have researched utilization of mordenite type zeolite catalyst to produce ethylene [11]. Dealumination mordenite type zeolite catalysts process has also been conducted by Chung (2007). Mordenite type of zeolite catalysts were dealuminated by acetic acid solvent. The results obtained showed that acid treatment can increase the pore size to the meso although that is not significant. Catalyst results dealumination process used for alkylation process of cumene compound [12]. Both researchers use synthetic mordenite catalyst which has a surface area that is already quite high. Ferrierte type zeolite was dealuminated by various concentrations of hydrochloric acid solution [13]. The results showed that increasing the concentration will increase the surface area of the catalyst. The results of catalysts activation can be used for xylene compound isomerization process. Widayat and workers (2009) research showed that the process of dealumination using ammonium chloride solvent was obtained H-zelite catalysts with...
ethanol conversion better than hydrochloric acid solvent and EDTA[9].

The objective of the research is to obtain optimum condition on H-zeolite catalyst preparation from natural zeolite by using surface response method.

Methodology

Materials

Natural zeolite was obtained from Gunung Kidul District. Hydrochloric acid has technical grade. AgNO₃ has analytical specification (Merck) and used as indicator of chloride ion on washing processing. The equipment for catalyst preparation shown in Figure 1.

![Catalyst preparation equipment](image)

Figure 1. Catalyst preparation equipment

Catalyst Preparation

H-zeolite is produced from natural zeolite which is obtained from Wonosari-Gunung Kidul district. H-zeolite was prepared with Widayat et al. methods[9-10]. H-zeolite catalysts were produced with chemical and physical treatments include washing, drying and calcinations process. The chemical treatment was done in a three-neck flask which equipped with condenser, water heater, and magnetic stirrer. 40 grams of natural zeolite added with ammonium chloride solution amounts 800 ml. The process was at reflux temperature for 10 hours. The washing process aims to remove the Cl⁻ ion. After the time is reached, the solution was filtered and washed with distilled water until chloride ions (Cl⁻) in the zeolite was zero. Then the solid zeolites dried in an oven at 110 °C temperature for 5 hours. Furthermore zeolite catalyst was calcined. The catalyst was placed in crucible and heated at a temperature of 500 °C which added by nitrogen gas flowing at a rate of 500 ml/min. The process was 5 hours. Once the time is reached, the furnace is cooled and the catalyst removed for analysis and testing of catalytic characteristics.

Catalyst Characteristic

The characterization of catalyst includes surface area, pore diameter and crystallography. Surface area and pore diameter were analysed in Instrumentation laboratory Department of Chemical Engineering FTI Institute of Technology Bandung. The measurement of surface area and total pores volume was using Quantachrome NOVA 1000 High Speed Gas Sorption Analyser with P = 711.65 mmHg and nitrogen gas as adsorb gas/inert.

The crystals are characterized by X-ray Diffraction (XRD) which analysed in Research Centre Institute of Technology Sepuluh Nopember Surabaya. The analysis crystallography used x-ray diffraction photographs a Philips 57.3 mm diameter camera, with Cu Kα radiation.

Results and Discussion

The experiments data found include surface area and pore diameter. The data used calculated the increase in surface area of zeolite catalyst (Y₁) and the pore diameter decreases (Y₂). Y₁ and Y₂ was calculated with 1,2 equations.

\[
Y_i = \frac{A_i}{A_o} \quad (1)
\]

\[
Y_i = \frac{D_i}{D_o} \quad (2)
\]

Experiments Data

The experiment design used surface response methods with 2 variable processes. X₁ is coding of ammonium chloride concentration and X₂ is coding of initial diameter natural zeolite. The value for ammonium chloride concentration and initial diameter natural zeolite that used on experiment can be calculated with equation 3-4. The experiments data and variable presented in Table 1. The data analysed with Statistica software.

\[
X_1 = \frac{C_{am} - 3}{1} \quad (3)
\]

\[
X_2 = \frac{D_o - 0.425}{0.175} \quad (4)
\]
Table 1. The result and experiments design of SRM

<table>
<thead>
<tr>
<th>Variable</th>
<th>Real value</th>
<th>Y1</th>
<th>Y2</th>
<th>A/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>0.425</td>
<td>26.735</td>
<td>33.987</td>
<td></td>
</tr>
<tr>
<td>X2</td>
<td>2</td>
<td>0.25</td>
<td>94.993</td>
<td></td>
</tr>
<tr>
<td>X3</td>
<td>0.425</td>
<td>7.444</td>
<td>95.098</td>
<td></td>
</tr>
<tr>
<td>X4</td>
<td>4.6</td>
<td>101.943</td>
<td>31.641</td>
<td></td>
</tr>
<tr>
<td>X5</td>
<td>4</td>
<td>0.25</td>
<td>24.163</td>
<td>94.346</td>
</tr>
<tr>
<td>X6</td>
<td>0.425</td>
<td>18.290</td>
<td>125.285</td>
<td></td>
</tr>
<tr>
<td>X7</td>
<td>2</td>
<td>0.25</td>
<td>28.597</td>
<td>33.897</td>
</tr>
<tr>
<td>X8</td>
<td>1.786</td>
<td>11.274</td>
<td>122.070</td>
<td></td>
</tr>
<tr>
<td>X9</td>
<td>0.425</td>
<td>12.746</td>
<td>121.049</td>
<td></td>
</tr>
<tr>
<td>X10</td>
<td>0.672</td>
<td>130.657</td>
<td>34.023</td>
<td></td>
</tr>
</tbody>
</table>

Where: X1 = (-1) 2 (0) 3 and (1) 4
X2 = (-1) 0.25 (0) 0.425 and (1) 0.6
X3 = below value (bv)
X4 = central value (cv)
X5 = upper value (uv)

Y = 17.0895 + 12.1826X1 + 28.2924X2
+ 0.6305X1^2 + 28.2775X2^2 + 16.5935X1X2

Furthermore coefficients in equation 6 evaluated with t test and variance that used an α = 0.05. The results of analysis presented in Tables 2 and 3. Table 2 show that the all coefficients have a value of t (3) is greater than value of p, except for quadratic X1 variable and blocking variable. The t(3) values in Table 2 is positive. It is indicate that the all variable (single, quadratic and interaction variable) have a direct relationship with Y. So it can be concluded all variable have a significant influence on Y.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Regression</th>
<th>Std.Err.</th>
<th>t(3)</th>
<th>p</th>
<th>-95.5%</th>
<th>+95.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean/Inter.</td>
<td>17.0895</td>
<td>20.1874</td>
<td>0.8465</td>
<td>0.4594</td>
<td>-47.1560</td>
<td>81.33497</td>
</tr>
<tr>
<td>Block</td>
<td>-4.0723</td>
<td>9.0281</td>
<td>-0.4511</td>
<td>0.6825</td>
<td>-32.8037</td>
<td>24.65915</td>
</tr>
<tr>
<td>X1 (L)</td>
<td>12.1826</td>
<td>10.0937</td>
<td>1.2069</td>
<td>0.3139</td>
<td>-19.9402</td>
<td>44.30530</td>
</tr>
<tr>
<td>X2 (Q)</td>
<td>0.6305</td>
<td>13.3527</td>
<td>0.0472</td>
<td>0.9653</td>
<td>-41.8639</td>
<td>43.12488</td>
</tr>
<tr>
<td>X3 (L)</td>
<td>28.2924</td>
<td>10.0937</td>
<td>2.8029</td>
<td>0.0676</td>
<td>-3.8304</td>
<td>60.41512</td>
</tr>
<tr>
<td>X4 (Q)</td>
<td>28.2775</td>
<td>13.3527</td>
<td>2.1177</td>
<td>0.1244</td>
<td>-14.2169</td>
<td>70.77188</td>
</tr>
<tr>
<td>X1 by X2</td>
<td>16.5935</td>
<td>14.2746</td>
<td>1.1624</td>
<td>0.3291</td>
<td>-28.8349</td>
<td>62.02191</td>
</tr>
</tbody>
</table>

F test is used to determine whether the independent variables simultaneously significant effect on the dependent variable. The degree of confidence that is used is 0.05[13-14]. Their value has more than p for all parameter except X1 quadratic variable and blocking.
Table 3. Result of analysis of variance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blocks</td>
<td>165.84</td>
<td>1</td>
<td>165.836</td>
<td>0.2035</td>
<td>0.6825</td>
</tr>
<tr>
<td>X1 (L)</td>
<td>1187.32</td>
<td>1</td>
<td>1187.320</td>
<td>1.4567</td>
<td>0.3139</td>
</tr>
<tr>
<td>X1 (Q)</td>
<td>1.82</td>
<td>1</td>
<td>1.817</td>
<td>0.0022</td>
<td>0.9653</td>
</tr>
<tr>
<td>X1 (L)</td>
<td>6403.67</td>
<td>1</td>
<td>6403.671</td>
<td>7.8566</td>
<td>0.0677</td>
</tr>
<tr>
<td>X1 (Q)</td>
<td>3655.39</td>
<td>1</td>
<td>3655.392</td>
<td>4.4848</td>
<td>0.1244</td>
</tr>
<tr>
<td>1L by 2L</td>
<td>1101.38</td>
<td>1</td>
<td>1101.377</td>
<td>1.3513</td>
<td>0.3291</td>
</tr>
<tr>
<td>Error</td>
<td>2445.20</td>
<td>3</td>
<td>815.066</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total SS</td>
<td>15697.91</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2. Pareto chart

Pareto diagram is histogram of the data that sorted based on categories of greatest to smallest. Thus, pareto diagrams can assist in efforts on the most important on process [13-14]. Pareto diagram of data processing results in this study are presented in Figure 2. Figure 2 show that a quadratic variable of X3 has smaller value. So this variable can be neglected or not effect in this process. The all variable have histogram don't cross the line p = 0.05. Pareto chart show liner variable of X2 has a histogram near with line p = 0.05. This is show a liner variable X2 most effect in preparation catalyst and indicate that ammonium chloride concentration and initial diameter of natural zeolite is not optimum. This condition can be increase for optimum condition.

Mathematical model in 6 equations was validated with experiments data. The result of this analysis presented in Figure 3. Mathematical model is less valid because the experimental data coincide with the results of the calculation very little. The coefficient determination obtain R²=0.8442. This value is more than 0.7, that mathematical model can be used in experiment analysis or optimization process can be follow to obtain optimum condition.

Figure 3. Graph of validation model mathematics

Optimization Results

The optimum conditions can be seen in Figure 4. Figure 4 is 3-dimensional graph (Figure 4. a) and surface contours graph (Figure 4. b). Figure 4. a /surface responsivegraph consists of axis x, y, and z and the z-axis was dependent variable (X1 and X2) and the x-axis was independent variable (X3) and this research was the increasing of surface area (Y). Surface contour graph consists of axis x and y. In surface contours figuring in colour areas, so it can be seen from this graph the points of interaction of two variables is clear, where most interactions are optimal in the red region of the oldest. Figure 4 has the form a saddle point. This is shown the type of optimization process is already minimized. The critical value for each variable is shown in the following table:

Table 3. Critical value each variables

<table>
<thead>
<tr>
<th>variable</th>
<th>Observed</th>
<th>Critical</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>-1.4142</td>
<td>1.0759</td>
<td>1.4142</td>
</tr>
<tr>
<td>X2</td>
<td>-1.4142</td>
<td>-0.8159</td>
<td>1.4142</td>
</tr>
</tbody>
</table>
In table 3, the critical value of dimensionless numbers for each variable. Critical dimensionless value obtained for X_1 (ammonium chloride concentration) is 1.0759 and X_2 (initial diameter of natural zeolite) is 0.8159. These values were input in 6 equations and obtained increasing of surface area is 16.1730%. These values were obtained in condition are ammonium chloride concentration 4.0750 M and initial diameter of natural zeolite 0.2822 mm.

X-ray Diffraction Analysis

The catalyst product commonly have grey colour. After calcination process, the colour of catalyst change to become yellow, white or grey. The catalyst products have a yellow and brown colour because the catalyst contain Fe, ZnPb and Cu component$^{[15]}$. The characteristic of catalyst was also analysed by X-ray Diffraction (XRD). The result of XRD analysis like as presented in Figure 5. Figure 5. was compared diffractogram of catalyst product and natural zeolite. The catalyst product has diffractogram that similar with diffractogram of raw material or natural zeolite. This is shown, the impurities in catalyst product did not dissolve in ammonium chloride solution. The catalyst product have intensity similar with intensity in natural zeolite at 2 8 angle 30 and 40-50. In 2 8 angle of 30, showing existence of calcium oxide in catalyst product. Xia and workers (2006) reported about deamination process for HMCM-22 (new type of zeolite catalyst). This process can be increase ratio of $\text{SiO}_2/\text{Al}_2\text{O}_3$. The deamination process by using acid (citric and oxalic acid) and steaming$^{[16]}$. Boveri and workers (2006) also research about deamination process on zeolite type mordenite. It has been found that catalysts obtained by combined steam deamination and acid washing show a dramatic increase in the intrinsic activity and a significantly lower tendency to suffer deactivation when compared to the parent zeolite and samples obtained by acid treatments$^{[17]}$.

![Graph](image)

Figure 4. Y_2 versus X_1 and X_2

Figure 5. X-ray Diffractogram of catalyst product (green) and natural zeolite (red)

Conclusions

The Surface Response Method (SRM) employed for optimization and analysis of preparation of H-zeolite from natural zeolite. The experiments conducted in reactor and batch system. The minimum of increasing surface was obtained at 16.1730% that found at ammonium chloride concentration 4.0750 M and initial diameter natural zeolite 0.2822. The coefficient determination for mathematical model is 0.8442.

Acknowledgments

This research was supported by Research Grant from Directorate General of Higher Education Republic of Indonesia.
References

Certificate no.: 240/UN7.3.8/2014

The conference on **Green Chemistry**

This is to certify that

Widayat

has presented a paper entitled

Optimisation Process of H-Zeolite Catalyst with Surface Response Methods

at the 9th Joint Conference on Chemistry held on 12-13 November 2014 in Semarang that organised by Chemistry Department, Diponegoro University

Semarang, 13 November 2014

6th Joint Conference on Chemistry Chair

Dr. Agustina L.N. Aminin, M.Si
NIP 19700801 199803 2 001

Dean of Faculty of Science and Mathematics
Diponegoro University

Dr. Muhammad Nur, DEA
NIP 19671126 199001 1 001