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Abstract  

Titanium dioxide (TiO2) has gained much attentions for the last few decades due to its remarkable 

performance in photocatalysis and some other related properties. However, its wide bandgap (~3.2 eV) 

can only absorb UV energy which is only ~5% of solar light spectrum. The objective of this research 

was to improve the photocatalytic activity of TiO2 by improving the optical absorption to the visible 

light range. Here, colored TiO2 nanoparticles range from light to dark grey were prepared via alumin-

ium treatment at the temperatures ranging from 400 to 600 oC. The modified TiO2 is able to absorb up 

to 50% of visible light (400-700 nm) and shows a relatively good photocatalytic activity in organic dye 

(Rhodamine B) degradation under visible light irradiation compared with the commercial TiO2. Copy-
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Research Article 

1. Introduction  

Fujishima and Honda reported water split-

ting breakthrough using TiO2 semiconductor in 

1972 [1]. Since then, TiO2 has been extensively 

investigated as a promising material used in 

broad range of research areas, especially in en-

vironmental and energy-related fields [2-4]. 

The absorption of photons by a semiconductor 

provokes photocatalytic reactions at its surface 

such as water splitting or the degradation of or-

ganic compounds. Compared to other semicon-

ductor photocatalyst, TiO2 shows higher chemi-

cal stability, nontoxicity, and photoreactivity 

[5]. Its capability in harvesting photon can be 

used to oxidize or to produce hydrogen and hy-

drocarbons, decompose organic compounds, and 

remove pollutants from various media.  

Photocatalytic activity of TiO2 nanomaterial 

is related to their optical absorption properties, 

crystallinity, defect structure and surface area 

[6]. In terms of the optical absorption proper-

ties, larger optical absorption can increase the 

amount of light absorbed, and generate more 

electrons and holes [7]. Common crystal phases 

of TiO2 (anatase, rutile and brookite) were re-

ported to have large bandgap of ~3.2 eV which 

limits their optical absorption only in the ultra-

violet region (290-400 nm) of solar light spec-
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trum [8]. It is a common knowledge that UV 

spectra only accounts ~5% from full spectrum 

of solar energy. Even if TiO2 is very efficient in 

utilizing energy from UV light, its overall 

photocatalytic activity in solar light is rela-

tively limited [4].  

Various synthetic methods such as hydrogen 

thermal treatment, hydrogen plasma, chemical 

reduction, chemical oxidation, and electro-

chemical reduction have been developed to 

make engineered TiO2 with different shapes, 

particle sizes, morphologies, and extend the 

light absorption towards the visible light region 

[4]. The result of those methods still varied in 

terms of optical properties and rate of recombi-

nation. Al reduction has been reported as one of 

the method that can enhance the optical ab-

sorption of TiO2. It is more technically feasible 

for the visible light TiO2 production compared 

to other processes. The basic principle is the re-

duction of oxide by other metal has been known 

for years as a method to produce transition 

metal alloy including Ti-Al Alloy [9]. Reduction 

of oxide can be accomplished by the removal of 

lattice oxygen and/or dissolution of reductant 

into the lattice structure. Here we present the 

result of a study in development of modified 

TiO2 via Al treatment at atmospheric pressure, 

including its structure, morphology, optical 

properties and photocatalytic activity. 

 

2. Experimental Section 

2.1. Preparation of modified TiO2 

TiO2 nanopowder (ECP Ltd, 20-30 nm in 

size) were mixed with Al powder (ECP Ltd, 30 

micron) with weight ratio of 1:1. The mixture 

was put in ceramic crucible and heated to 400, 

500, and 600 oC in a furnace for 3 hours. After 

cooling, the samples were treated with HCl 

(ECP Ltd., 10% in concentration) for 2 h and 

then dried overnight in oven at temperature 30 
oC. Another HCl treatment was needed to re-

move excess of Al.  

 

2.2. Sample Characterizations 

The prepared samples were characterized by 

X-ray diffraction (XRD). Scanning Electron Mi-

croscope with Energy Dispersive X-ray Spec-

trometer (SEM-EDS, Philips XL30S FEG) was 

used to examine the microstructure and surface 

composition of modified TiO2. UV-Vis-NIR 

Spectrophotometer (Shimadzu UV-3600) 

equipped with an integrating sphere was used 

to measure the light absorbance on the sam-

ples.  

 

2.3. Photocatalytic Degradation 

Photocatalytic activity was evaluated by 

monitoring the decomposition of Rhodamine B 

(RhB) in an aqueous solution under UV and 

visible light irradiation. Photocatalyst (50 mg) 

was mixed with RhB solution (50 mL, 5 ppm). 

After stirring for 60 min in the dark to reach 

the adsorption equilibrium, the solution was il-

luminated with UV light (Spectroline ENF-

260C 6W SW BLE-6254S) or blue light (Dulux 

S BL 9W/71) for visible light irradiation. Sam-

ple (2 mL) was taken every 20 minutes and fil-

tered by 0.2 µm PVDF syringe filter prior 

analysis. The concentration of aqueous RhB 

was determined with a UV-Vis spectropho-

tometer (Perkin Elmer Instrument) by measur-

ing the peak intensity at 553 nm. 

 

3. Results and Discussion 

3.1. Structure features and physical prop-

erties 

The color of commercial TiO2 changed to 

light and dark grey respectively after Al treat-

ment at 400 and 500 °C (samples T400 and 

T500), as shown in Figure 1A. However, the 

samples were not very stable since color 

changes were observed after one week at room 

temperature in ambient atmosphere. As re-

ported, oxygen deficiencies in TiO2 are reflected 

in a pronounced color change from transparent 

to light, and dark blue, which introduce 

changes in electronic structure (in particular a 

bandgap feature at ∼0.8 eV below EFermi) [10]. 

However, upon exposure to molecular oxygen 

gas even at room temperature, the oxygen de-

fect stated disappears [11, 12] due to dissocia-

tion of the gaseous oxygen and filling of the 

oxygen vacancies [6]. In the case of modified 

TiO2 via Al treatment, oxygen deficiencies was 

appeared after the process with the color 

change from white to grayish; and then after a 

week placed in the open air, the oxygen gas 

from its surrounding started to enter the oxy-

gen vacancies (color changes were observed).  

Meanwhile, X-ray diffraction patterns illus-

trated in Figure 1B shows strong diffraction 

peaks in both commercial TiO2 and modified 

TiO2 which indicate that all the samples were 

highly crystalline. The patterns also reveal no 

evident of change in the XRD peak position and 

directions of T400 and T500, which means both 

have the same phase as commercial TiO2 

(anatase). On the other hands, the remains of 

Al still detected in T600 after two sequences of 

HCl treatment. A major difference between the 

commercial TiO2 and modified TiO2 was that 
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the peak intensity (T400 < T500 < commercial 

TiO2 < T600).  

Scanning electron microscopy (SEM) was 

used to investigate the morphology and micro-

structure of modified TiO2 (Figure 2). Similar 

shapes of nanoparticles were observed in T400, 

T500 and T600 compared to commercial TiO2. 

Aluminium treatment are subjected to reduce 

the surface of TiO2 which means to assist the 

formation of oxygen vacancies and keeping the 

similar morphology to the TiO2 prior Al treat-

ment. Some of the Al particles also found in 

T600 sample (Figure 2D), confirming the XRD 

pattern result. 

 

3.2. UV-Vis diffuse reflectance spectra 

Optical absorption properties of the com-

mercial TiO2 and modified TiO2 were measured 

by UV-Vis spectrophotometry equipped with 

diffuse reflectance accessory. As displayed in 

Figure 3A, red-shift were imposed onto the cut-

off edge of the absorption spectrum of T400 and 

T500, which extended the absorption from near 

400 nm to 800 nm.  

The absorbance intensity in the wavelength 

range from near 400 nm to 800 nm increased as 

the Al treatment temperature increased. Such 

light absorbance enhancement in the visible 

light range was consistent with the grayish 

color characteristic of the modified TiO2 via Al 

treatment samples. Only T600 possesses low 

light absorption in UV region, as the presence 

of Al in the sample may contribute to the de-

creased light absorption behavior. The relation 

of colored TiO2 with the enhancement of light 

absorption properties in visible light range in 

different methods and morphologies were also 

reported in several papers [9, 13-16].  

The broadening of the light absorption 

range from the UV to the visible light arises 

maybe because of the contributions of the oxy-

gen vacancies in the lattice due to Al reduction 

or Al atom attachment. The Al atoms induced 

the local states near the valence band edge and 

the oxygen vacancies give rise to the local 

states below the conduction edge. The oxygen 

vacancies can act as the color centre. The color 

centre is the electrons vacancy that tend to ab-

sorb light in the visible spectrum and material 

that is usually transparent becomes colored. In 

addition, the electrons left in the oxygen vacan-

cies can also interact with adjacent Ti4+ to give 

the Ti3+ color centre. The presence of these col-

our centres in TiO2 also contributes to the visi-

ble light absorption [13, 17].  

In line with the optical absorption proper-

ties, indirect bandgap energy (Eg) of commer-

cial TiO2 and modified TiO2 (T400; T500; T600) 

can be estimated by employing Kubelka-Munk 

equation (Equation 1).  

 

         (1) 

 

Reflectance data of UV-Vis spectra was con-

verted to the absorption coefficient F(R); plot-

ted in ordinate as (hvF(R))1/2 with photon en-

ergy (hv) values as the axis and determine the 

extrapolation of the linear portions of curves to 

energy axis [18]. Using the Kubelka–Munk 

function, the variation of (hvF(R))1/2 versus hν 

for all samples were plotted in Figure 3B. The 

calculated bandgap for commercial TiO2, T400, 

T500 and T600 were 3.31, 3.17, 3.24 and 3.19 

eV, respectively, with 99.7% of confidence inter-

val. Narrowed bandgap were observed within 

the results, compared to the commercial TiO2. 

The bandgap narrowing is dictated by the syn-

ergistic presence of oxygen vacancies and sur-

face disorder [19]. However, we still could not 

confirm the presence of stable oxygen vacancies 

and also surface disorder in the modified TiO2.  
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Figure 1. Photographs (A) and XRD patterns 

(B) of commercial TiO2 and modified TiO2 in dif-

ferent temperature  



 

3.3. Photocatalytic activity 

The photocatalytic activities of modified 

TiO2 samples were evaluated by the decomposi-

tion of RhB under UV (254 nm) and visible 

light (400-500 nm) irradiation. Direct decompo-

sition of RhB solution in the absence of photo-

catalyst is not detected under light irradiation 

in a control experiment. Figure 4A shows the 

degradation curves of 5 ppm RhB solution cata-

lyzed by T500 with 60 minutes of stirring in 

dark prior UV irradiation. The concentration of 

RhB decreased almost 35% after 90 minutes as 

monitored at 553 nm over time. Compared to 

TiO2 commercial (Figures 4B and 4C), modified 

TiO2 exhibited lower photocatalytic activity 

(T600 < T400 = T500 < commercial TiO2), al-

though it has higher UV light absorption as 

shown in UV-Vis diffuse reflectance and ab-

sorbance spectrum result.  

The following photocatalytic activity was 

measured by the degradation of RhB solution 

in visible light (400-500 nm) irradiation em-

ploying the same concentration of photocatalyst 

and the concentration of solution. As illustrated 

in Figure 4D, T500 photocatalyst was able to de-

compose almost 40% of 5 ppm RhB solution in 

90 minutes. Plotted with TiO2 commercial 

(Figures 4E and 4F), modified TiO2 (T400, T500) 

possess higher photocatalytic activity. 

Based on the experimental data, the rate of 

RhB solution degradation using commercial and 

modified TiO2 was calculated as illustrated in 

Figures 4C and 4F. The photocatalytic degrada-

tion is following pseudo first-order reaction ki-

netics. The reaction kinetics has often been de-

scribed and widely used in terms of Langmuir-

Hinshelwood model as the concentration of ad-

sorption in the dark condition is relatively small 

(negligible). The kinetics equation can be de-

scribed as Equation (2) where C is concentration 

of RhB at the stated time; Co is initial concen-

tration of RhB; k is kinetics rate constant; and t 

is time [20]. 
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Figure 2. SEM images of commercial TiO2 (A) and modified TiO2 in different temperature (B = T400; 

C = T500; D = T600)  
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           (2) 

 

In UV light irradiation, the degradation rate 

constant of commercial TiO2, T400, T500 and 

T600 is 0.0265, 0.004, 0.004 and 0.0021 min-1 

respectively with the 95-99% of confidence in-

terval. While in visible light irradiation, the 

degradation rate constant is 0.0017, 0.0025, 

0.0047 and 0.0007 min-1 in the same sequence.  

When the energy of an incident light ex-

ceeds the bandgap of the semiconductor photo-

catalyst during the photocatalysis process, elec-

trons in the valence band will be excited into 

the conduction band, leaving holes in the va-

lence band. Some of the electrons and holes will 

be further transferred to the photocatalyst sur-

face and the charge carriers can form superox-

ide anions (electrons combine with adsorbed 

oxygen) and hydroxyl radicals (holes react with 

OH-). The charge carriers will react with reac-

tants [13]. However, not all electrons and holes 

can be transferred to the surface of photocata-

lyst, some of them will recombine each other, 

such the photocatalytic activities of TiO2 photo-

catalysts are usually limited by the fast recom-

bination of the photogenerated electron and 

hole pairs [5].  

In the case of the modified TiO2 via Al treat-

ment, our speculation is that Al not only assist 

the creation of oxygen vacancies (temporary de-

fect) but also attach to the structure as a 

dopant. Oxygen vacancies caused by Al reduc-

tion contribute to the colour change in modified 

TiO2 and enhancement in the optical absorp-

tion properties which lead to the increased 

amount of excited electrons and holes. The 

presence of oxygen vacancies were also re-

ported to cause trapped states in the forbid-

den bandgap, 0.75-1.18 eV away from the con-

duction band minimum (CBM) [12, 21, 22]. On 

the other hand, Al is also found in the sam-

ples and it may attached as a dopant. Doping 

with transition metals such as Fe(III), Ru(III), 

V(IV), Mo(V), Os(III), Re(V), Rh(III) ions sub-

stantially increased photocatalytic activity un-

der UV irradiation, whereas doping with 

Co(III) and Al(III) decreased the photoactivity 

[2]. The presence of Al in the samples acts as 

a centre of recombination, leading to the de-

creasing photocatalytic activity. Even there 

were enhancement in the amount of excited 

electrons and holes due to oxygen vacancies, 

the amount of working electrons and holes 

that transferred to the surface is limited due 

to the presence of Al. In addition, excessive 

oxygen vacancies reported to become e-h re-

combination centres and harm photocatalysis 

[9]. That might be the explanation why the 

modified TiO2 (T400 and T500) do not have a 

good photocatalytic activity in UV region. 

 

4. Conclusions 

Aluminium treatment in ambient atmos-

phere and pressure is used to create defect at 

the surface of TiO2 nanoparticles. However Al 

seems to not only create temporary defect 

(color change) but also attached to the struc-

ture as a dopant. The modified TiO2 at 500 oC 

Figure 3. (A) UV-Vis diffuse reflectance and absorbance spectrum; (B) the plots [hvF(R)1/2]  vs photon 

energy of samples  
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Figure 4. (A-C) under UV light irradiation: (A) RhB decomposition by sample T500; (B) Comparison of 

photocatalytic activities of samples and standard commercial TiO2; (C) First order kinetics of photo-

catalytic RhB degradation of samples; (D-F) under Blue light irradiation: (D) RhB decomposition by 

sample T500; (E) Comparison of photocatalytic activities of samples and standard commercial TiO2 un-

der Blue light irradiation; (F) First order kinetics of photocatalytic RhB degradation of samples (per 

min) 
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possesses the visible light absorption up to 40% 

and relatively increase the photocatalytic activ-

ity by 20% compared to the commercial TiO2. 

However, at the same time the Al treatment in-

fluence its photocatalytic activity in UV region 

to become lower than commercial TiO2 as the 

attachment of Al to the structure tend to in-

crease the centre of recombination for electrons 

and holes excited after photon absorption. Fur-

ther work should be conducted to reduce the Al 

content on the treated samples, and the exami-

nation of the photocatalytic behavior of Al 

modified TiO2 needs to be proved. Furthermore, 

the approach of using Al treatment at ambient 

pressure does not work well to enhance its 

photocatalytic activity in overall spectrum of 

solar light. 
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