PEMILIHAN CLUSTER OPTIMUM PADA FUZZY C-MEANS (Studi kasus: Pengelompokan Kabupaten/Kota di Jawa Tengah berdasarkan Indikator Indeks Pembangunan Manusia)

PURNAMASARI, SARITA BUDIYANI (2014) PEMILIHAN CLUSTER OPTIMUM PADA FUZZY C-MEANS (Studi kasus: Pengelompokan Kabupaten/Kota di Jawa Tengah berdasarkan Indikator Indeks Pembangunan Manusia). Undergraduate thesis, FSM Undip.

[img]
Preview
PDF
579Kb

Abstract

Cluster analysis is a process of separating the objects into groups, so that the objects that belong to the same group are similar to each other and different from the other objects in another group. One method of clustering is Fuzzy C-Means (FCM). FCM is used because each data in a cluster determined by a degree of membership that have value between 0 and 1. This research use two kinds of distance, Manhattan and Euclidean. To determine the proper distance in clustering district / city in Central Java based on indicators of Human Development Index (HDI), we have to calculate the ratio of the standard deviation, where the smaller value indicates a better clustering. While the optimum number of groups obtained from the minimum value of Xie Beni. Variables that used in this research are the indicators of HDI in 2012 for district / city in Central Java, consists of: Life Expectancy Value (years), Literacy Rate (percent), Average Length of School (years), and Purchasing Power Parity (thousands rupiah). The results from this research are the distance that gives a better quality is Euclidean and the optimum cluster given when the number of cluster is five with the smallest value of Xie Beni is 0,50778. Keywords: cluster analysis, Fuzzy C-Means (FCM), HDI, optimum cluster.

Item Type:Thesis (Undergraduate)
Subjects:H Social Sciences > HA Statistics
Divisions:Faculty of Science and Mathematics > Department of Statistics
ID Code:43681
Deposited By:INVALID USER
Deposited On:11 Sep 2014 10:06
Last Modified:11 Sep 2014 10:06

Repository Staff Only: item control page