BAB III

METODOLOGI PENELITIAN

III.1. Diagram Alir

Penelitian ini bersifat analisis deskriptif yaitu menjelaskan tentang persebaran dari klorofil A di wilayah pesisir pantai Kabupaten Pesawaran Lampung dan di lakukan perbandingan dengan data statistik perikanan di daerah tersebut dalam kurun waktu tiga tahun pengamatan. Visualisasi skematik metodelogi penelitian ini dapat di lihat pada gambar berikut :

Gambar 3.1 diagram alir

III.2. Persiapan Penelitian

Persiapan penelitian dilakukan sebagai tahapan awal dalam penelitian. Pada tahap ini perlu dipersiapkan hal-hal seperti penentuan lokasi penelitian, pengumpulan data penelitian dan persiapan alat penelitian.

III.2.1. Data Dan Peralatan Penelitian

Data yang digunakan dalam penelitian ini adalah

- 1. Citra *Modis-Aqua* tahun 2011-2013 Provinsi Lampung (LAPAN)
- 2. Data hasil perikanan tahun 2011 dan 2012 dari Provinsi Lampung.

Peralatan yang digunakan dalam penelitian ini meliputi *software* dan *hardware* dengan spesifikasi sebagai berikut :

- 1. Laptop Compaq Cq41
- 2. Sistem operasi : Windows 7 ultimated
- 3. Processor : Inter(R) Core(TM) i3 Solo processor CPU @ 1,4 Ghz;
- 4. RAM : 2,00 GB;
- 5. Harddisk : 320 GB; dan

Perangkat lunak yang digunakan adalah:

- 1. Seadas 7.0 untuk pengolahan klorofil
- 2. Envi 4.5 untuk mengubah format citra
- 3. Er Mapper 7.0 untuk pengolahan citra;
- Arcgis 9.3 untuk analisa peta dasar dan citra setelah diproses dengan Er Mapper 7.0;
- 5. *Microsoft Office* untuk penyelesaian laporan Tugas Akhir.

III.2.2. Lokasi Penelitian

Penelitian ini dilakukan di Provinsi Lampung yang difokuskan pada pesisir pantainya Kabupaten Pesawaran. Secara geografis berada pada 5°21' - 5°47' Lintang Selatan dan 104°52' – 105°10' Bujur Timur dengan luas wilayah 1.173,77 km2 atau 117.377 Ha dan Secara keseluruhan luas wilayah Kabupaten Pesawaran adalah 1.173,77 km2 atau 117.377 Ha, jumlah penduduk Kabupaten Pesawaran sementara adalah 397.294 jiwa, yang terdiri atas 204.934 laki-laki dan 192.360 perempuan. (BPS Kota Lampung 2011).

Adapun wilayah ini berbatasan dengan sebagai berikut:

- Utara : berbatasan dengan Kecamatan Kalirejo, Kecamatan Bangunrejo, Kecamatan Bumi Ratu Nuban, Kecamatan Trimurjo Kabupaten Lampung Tengah;
- Selatan : berbatasan dengan Teluk Lampung Kecamatan Kelumbayan dan Kecamatan Cukuh Balak Kabupaten Tanggamus;
- Timur : berbatasan dengan Kecamatan Natar Kabupaten Lampung Selatan, Kecamatan Kemiling dan Kecamatan Teluk Betung Barat Kota Bandar Lampung;
- Barat : berbatasan dengan Kecamatan Adiluwih, Sukoharjo, Gadingrejo, dan Pardasuka, Kabupaten Pringsewu.

Dengan posisi geografis yang demikian, maka Kabupaten Pesawaran merupakan daerah penyangga Ibukota Provinsi Lampung. Secara keseluruhan luas wilayah Kabupaten Pesawaran adalah 1.173,77 km2 atau 117.377 Ha dengan Kecamatan Padang Cermin sebagai kecamatan terluas, yaitu 31.763 Ha.

Dari luas keseluruhan Kabupaten Pesawaran tersebut, 13.121 Ha digunakan sebagai lahan sawah, sedangkan sisanya yaitu 104.256 Ha merupakan lahan bukan sawah dan lahan bukan pertanian. Jenis penggunaan lahan sawah yang terbanyak adalah irigasi tehnis dengan dua kali penanaman padi dalam setahun. Sedangkan jenis penggunaan lahan bukan sawah yang terbanyak adalah hutan negara.

III.3. Pelaksanaan Penelitian

Dalam tahap ini, dipaparkan secara jelas mengenai pelaksanaan penelitian yang disesuaikan dengan diagram alir penelitian. Tahapan ini dimaksudkan agar dalam pelaksanaan penelitian ini tidak terdapat hal-hal yang di luar dari alur penelitian sehingga tujuan yang diharapkan dapat tercapai.

III.3.1. Membuka citra Aqua Modis menggunakan software Seadas 7.0

Berikut merupakan prosedur penggunaan software Seadas 7.0

- a. Citra *Aqua-modis* yang di unduh adalah menggunakan format .hdf sehingga *file* tersebut harus dilakukan pengekstrakan sehingga didapat citra dengan format .tiff
- b. buka software Seadas 7.0

Gambar 3.2 Tampilan Menu Seadas 7.0

c. Setelah muncul tampilan menu pilih *File – Open product* lalu pilih citra yang akan di olah sehingga akan muncul menu bar seperti di bawah ini.

🔤 SeaDAS - Op	en Data Produc	t(s)				x
Look in	: 🚺 2012			•]	🤌 📂 🛄 📟	
Recent Items	1 10 11 12					
Desktop	2 2011 2012 2013					
My Doguments	3 4 5					
	6					
Computer	8a 9					
Network	File name:				2	pen
NEWYORK	Files of type:	All Files			▼ Ca	ancel

Gambar 3.3 Tampilan Menu Open product

d. Setelah di buka citra nya, maka akan muncul pilihan *product view*, pilih bands yang akan d proses, pilih chlor_a.

Gambar 3.4 Tampilan Menu product view

e. Setelah di pilih bandnya maka akan di dapat tampilan seperti ini, namun citra ini belum bisa di gunakan di karenakan *GeoCord* nya masih belum di atur.

Gambar 3.5 Tampilan citra original

f. Pilih pada menu *toolbar Coastline and land masks*, kegunaannya untuk memperjelas perbedaan antara daratan dan lautan, pilih *create Masks*.

Scoastline and Land Masks	X
Coastline Source Dataset 1 km ((Super Sampling Factor 1	SSHHS) 👻
Mask Name Coas Color Transparency O Enabled in All Bands V	tLine V
Mask Name Land Color Transparency O Enabled in All Bands	Mask V
Mask Name Wate Color Transparency 0.5 Enabled in All Bands	rMask
Cancel	eate Masks ?

Gambar 3.6 Tampilan coastline and land masks

Gambar 3.7 Tampilan setelah di lakukan proses coastline and land masks

g. Selanjutnya pada menu *toolbar* pilih *Tools – reprojection* untuk mengatur *Geo cord* citra tersebut agar sesuai dengan posisi sebenarnya

Reprojection	×
File Help	
I/O Parameters Reprojection Parameters	
Source Product	
Name:	
[1] a1.12246.0635.seadas.hdf	▼
Target Product	
Name:	
a1.12246.0635.seadas.hdf_reprojected	
Save as: GeoTIFF	
Directory:	
Ø Open in SeaDAS	
Run	Close

Gambar 3.8 Tampilan reprojection

h. Pilih citra yang ingin di *reprojection* pada kolom *name* lalu pilih lokasi dan beri nama citra yang telah di *reprojection* lalu pilih *save as* dalam bentuk *GeoTIFF* lalu pilih *Run*

III.3.2. Penggunaan aplikasi envi 4.5

Untuk dapat mengolah citra pada aplikasi *er mapper*, citra harus di format dalam ukuran *bit* di bawah 16 *bit*, itu di karenakan aplikasi *er mapper* tidak dapat bekerja dalam format citra 16 *bit* ke atas. Berikut merupakan uraian proses dengan menggunakan *Software envi 4.5*

- 1. Membuka Software envi 4.5
- 2. Mengklik File kemudian pilih open eksternal file generic formats tiff/GeoTIFF

Gambar 3.9 tampilan Envi 4.5

3. Selanjutnya pilih citra yang akan kita ubah bit atau formatnya agar bisa di buka pada program *er mapper*, lalu akan muncul menu *available Bands List*, pilih *RGB Color lalu Load Band*, lalu akan muncul tampilan seperti di bawah ini

Gambar 3.10 tampilan Available Bands List

Gambar 3.11 Tampilan citra di *envi 4.5*

 Setelah citra dapat di buka, buka *file* pada menu *toolbar* pilih save file as – PCI lalu muncul tampilan Output to PCI input Filename pilih citra yang akan di proses lalu OK

Output to PCI Input Filename	
Select Input File: a1.12187.0655.seadas.hdf_reprojected.tf	File Information: File: D:\2012\2013\1\a1.12187.0655.seadas.hdf_n Dims: 2789 x 3020 x 27 [BSQ] Size: [Floating Point] 910.003,977 bytes. File: Type : TIFF Sensor Type: Unknown Byte Order : Host (Intel) Projection : Geographic Lat/Lon Projection : GEO: TIFF File Imported into ENVI [Wed Nov 27 13:33:34 2013]
Spatial Subset Full Scene Spectral Subset 27/27 Bands OK Cancel Previous Open +	Select By File

Gambar 3.12 Tampilan Output to PCI Input Filenamw

5. Selanjutnya citra dapat di proses lebih lanjut di aplikasi *er mapper 7.0*.

III.3.3. Cropping Citra

Citra yang telah di ubah format nya menggunakan aplikasi *envi* 4.5, langkah selanjutnya adalah melakukan pemotongan atau *cropping* citra pada daerah yang akan di kaji lebih lanjut. Di dalam penelitian ini proses *cropping* di lakukan menggunakan aplikasi *er mapper* 7.0 sebagai berikut :

 Pilih lokasi yang akan dicrop, dengan menggunakan zoom dengan cara drag mouse di atas citra atau kita juga bisa melakukan dengan cara click View/ Geoposition (apabila sudah diketahui posisi latitude-longitude, eastingnorthing, atau cell x-cell y), clik Extents pada kotak dialog Algorithm Geopisition Extents

👪 Algorithm Geoposition Extents 📃 📼 💌									
Zoom Geolink	Zoom Geolink Extents Center Mouse Info								
- Algorithm exte	nts			Apply					
	Top Left	Bottom Right	Size	Reset					
Latitude:			_	Close					
Longitude:				Close					
Easting:	-0.00E	29.33E	29.33	Help					
Northing:	0.00N	-36.87N	36.87						
Cell X:	-0.00	3054.00	3054.00						
Cell Y:	-0.00	3840.00	3840.00	-					
	,		,						

Gambar 3.13 Tampilan Algorithm Geoposition Extents

2. Ketik posisi yang diinginkan pada *latitude-longitude*, *easting-northing*, *cell x - cell y*, *Click OK*, maka pada tampilan akan diubah sesuai posisi tersebut

Gambar 3.14 Hasil Cropping Citra

3. Setelah itu di pilih *save as* maka akan muncul menu *save as*,pilih pada *file of tipe* format .ers lalu beri nama citra nya dan pilih ok.

aka Save As		
History Special View Volumes Direct	tories ECW URL History	
8\	•	
DELAPAN.ers		
< DVI_CROP.ers		
>		
	-	v
Save as:	,	
CROP.ers		
Files of Type:		
ER Mapper Raster Dataset (.ers)		•
Info		Comments
<u></u> K	Apply	Cancel

Gambar 3.15 Tampilan menu save as

4. Selanjutnya muncul menu *Save As Er Mapper dataset*, pilih pada *data type* format *IEE8ByteReal* agar citra tersebut tidak di perkecil ukuran datanya,lalu ok dan citra yang telah di *cropping* dapat di olah lebih lanjut lagi.

- Output Attributes		Output What -	OK
Output Type:	Multi Layer	Current View	Cancel
Data Type:	IEEE8ByteReal		Options
Null Value:	Unsigned8BitInteger	C Entire Page	Options
Output Size —	Unsigned 16BitInteger Unsigned 32BitInteger		Defaults
Width:	Signed 8 Bit Integer	<u></u>	
Height:	Signed 32Bit Integer 7 Kb		
Pixel Width:	IEEE4ByteReal IEEE8ByteReal		
Pixel Height:	0.00981549		
X Dpi:	96 Display (96x96)	~	
Y Dpi:	96		
Maintain asp	ect ratio Preserve exac	t extents	
Delete output tra	ansforms		
Write world file			

Gambar 3.16 Tampilan menu Save As ER Mapper dataset

III.3.4. NDVI (Normalized Difference Vegetation Index)

NDVI merupakan salah satu metode yang digunakan untuk menganalisis vegetasi yang ada dipermukaan bumi. Metode NDVI menggunakan kombinasi dua saluran yang dapat mendeteksi tingkat kerapatan vegetasi. (Wikipedia,2013) Rumus yang digunakan pada metode ini adalah sebagai berikut :

NDVI=(NIR-VIS)/(NIR+VIS)

NDVI = Band 2 - Band 1

Band 2 + Band 1

Dimana :

NIR = Near Infrared

VIS = Visible Infrared

Berdasarkan rumus diatas, dapat dituangkan dalam *Software Er-Mapper* yang dapat mengolah Citra Modis Aqua sehingga didapatkan kerapatan klorofil yang ada di pesisir pantai pesawaran. Berikut merupakan uraian pelaksanaan metode NDVI.

- 1. Membuka *Software Er-Mapper* kemudian *load data* citra yang akan digunakan dan membuka "*edit alghoritm*".
- 2. Memilih "*edit formula*" Em² sehingga akan muncul kotak dialog seperti berikut.

364 Formula Editor	
Principal Components Ratios Standard Seismic	
Description: MODIS AQUA	Close
Apply changes	File 🔻
((1 - 12) / (i1 + i2)	Edit 🔻
-	Comments
	Ps
C Inputs C Regions C Datasets C Variables	
INPUT1: B2:band 2	
INPUT2: B1:band 1	
(B1:band 1 - B2:band 2) / (B1:band 1 + B2:band 2)	
_	Help

Gambar 3.17 Tampilan Windows Formula Editor

- 3. Kemudian memasukan rumus NDVI yaitu (i1-i2)/(i1+i2) dan mengklik "apply changes"
- 4. Memasukan *INPUT1* dengan band 2 dan *INPUT2* dengan dengan Band 1.
- 5. Membuka "*edit transform limit*" kemudian masukan nilai *actual input limit* menjadi -1 sampai 1.

Gambar 3.18 Tampilan Windows Transform

6. Setelah semua tahapan dilaksanakan, maka didapatlah hasil citra yang telah di NDVI, kemudian melakukan penyimpanan dalam format .alg agar algoritma

yang telah diubah dapat tersimpan dengan baik dan apabila citra dibuka akan dapat dilihat hasil pekerjaannya.

Gambar 3.19 Hasil Proses NDVI

III.3.5. Reklasifikasi Hasil NDVI

Setelah melakukan proses NDVI dengan menggunakan *Er-Mapper* sehingga didapat rentang nilai histogram dari -1 sampai dengan 1. Selanjutnya dilakukan proses reklasifikasi dengan menggunakan *Software Arcgis* 9.3 dengan menggunakan spatial analyst – reclassification, atau dengan menggunakan properties pada layer. Dalam penelitian ini, digunakan lima kelas konsentrasi klorofil, yaitu tidak ada Klorofil, klorofil jarang, klorofil sedang, klorofil rapat, dan klorofil sangat rapat.

Berikut merupakan hasil klasifikasi konsentrasi klorofil di pesisir pantai kabupaten pesawaran

Gambar 3.20 Hasil Reklasifikasi NDVI Tahun 2013

III.3.6. Analisis Perubahan Klorofil Secara Spasial

Analisis perubahan klorofil secara spasial dapat di lakukan setelah proses dan hasil reklasifikasi NDVI telah di lakukan dan telah di tentukan kelas-kelas nya yang ada di pesisir pantai pesawaran.

Berikut uraian pelaksanaan analisis perubahan klorofil secara spasial yang di proses menggunakan *software Arcgis* :

1. Membuka *Software Arcgis* lalu klik *Arc Toolbox – Raster Math* pilih *minus* tetapi sebelumnya data yang ingin di proses harus di buka terlebih dahulu.

Minus			_ 0 <u>_ x</u>
Input raster or constant value 1			*
CLASS_NDVI			- 🖻
Input raster or constant value 2			
CLASS_NDVI			- 🛎
Output raster			
D:\aporan henndry\2\Minus_CLASS_1			🔎 🖌
			-
J			
	OK Cancel	Environments	Show Help >>

Gambar 3.21 Tampilan Minus

2. Setelah muncul tampilan minus,maka kolom *input* di masukan data yang ingin di proses lalu pilih ok, maka hasil yang di *minus* akan muncul.

Gambar 3.22 Tampilan hasil Proses Minus

III.3.7. Mencari Korelasi Menggunakan Metode Pearson

Untuk mencari korelasi antara persebaran klorofil A dengan hasil perikanan yang ada di Provinsi Lampung yaitu perikanan cakalang, udang dan tuna menggunakan aplikasi SPSS 13.0 dengan metode *Pearson*. Berikut langkah-langkahnya :

1. Membuka *software* SPSS 13.0 pilih kolom *variabel view* lalu isi nama kolom yang ingin di korelasikan.

🛗 Untitled - SPSS Data Editor											
File Ed	it View Da	ta Transform	Analyze	Graphs Utiliti	ies Window H	Help					
2	第四句 @ > < F # # # # # # # # # # # # # # # # # #										
	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Γ
1	klorofil	Numeric	8	2		None	None	8	Right	Scale	1
2	cakalang	Numeric	8	2		None	None	8	Right	Scale	1
3]
4											
5											
6											
7											1
8]
9											
10											
11											
12											
13											
14											
15]
16											1

Gambar 3.23 Tampilan Variabel View

2. Selanjutnya pilih *data view*, isi kolom-kolomnya dengan data yang akan di korelasikan.

🛗 Untitled - SPSS Data Editor												
File	Edit	View I	Data	Transform	Analyze	Graphs Uti	lities Windo	w Help				
2	8/4	s 🔍	n c	× 🔚 🗗	M 📲	▲ = •	<u>r</u> 🔊 Ø					
1:	1:											
		klorofil	C	akalang	var	var	var	var	var	var	var	var
	1	3068,0	0	150,00								
	2	2638,0	0	142,00								
	3	2260,0	0	132,00								
	4	3511,0	0	154,00								
	5	3655,0	0	160,00								
	6											
	7											
	8											
	9											
	10											
	11											
	12											
	13											
	14											
	15											
	16											

Gambar 3.24 Tampilan hasil Data View

3. Langkah berikutnya menguji normalitas data yang akan di korelasikan, pilih *analyze – nonparametric tests - 1 sample K-S*, masukan data yang ingin di korelasi, pilih normal pada kolom *test distribution* lalu OK

💷 One-Sample Kol	Imogorov-Smirnov Test	×
	Test Variable List:	OK Paste Reset Cancel Help
Test Distribution — ▼ Normal □ Poisson	Uniform	Exact Options

Gambar 3.25 Tampilan One-sample K-S

4. Hasil uji normalitas dapat dilihat pada report yang berupa tabel, dapat di ketahui apakah data tersebut lolos dari uji normalitas atau tidak.

		klorofil	cakalang	
Ν		5	5	
Normal Parameters(a,b)	Mean	3026,4000	147,6000	
	Std. Deviation	585,21987	10,89954	
Most Extreme Differences	Absolute	,196	,187	
	Positive	,147	,128	
	Negative	-,196	-,187	
Kolmogorov-Smirnov Z		,439	,418	
Asymp. Sig. (2-tailed)		,991	,995	

One-Sample Kolmogorov-Smirnov Test

a Test distribution is Normal. b Calculated from data.

Gambar 3.26 Tampilan Hasil Report Uji Normalitas

5. Setelah data telah lolos uji normalitas, langkah selanjutnya adalah menghitung korelasi data tersebut menggunakan metode *Pearson, pilih analyze – Correlate – Bivariate* masukan data yang ingin di korelasi, pilih Pearson pada kolom *Correlation Coefficients* lalu OK

Bivariate Correlations	×			
Variables:	OK Paste Reset Cancel Help			
Correlation Coefficients Pearson I Kendall's tau-b I Spearman				
Test of Significance				
Two-tailed One-tailed				
✓ Flag significant correlations	Options			

Gambar 3.27 Tampilan Bivariate Correlations

6. Hasil perhitungan korelasi dengan menggunakan metode *Pearson* dapat dilihat pada report yang berupa tabel, dapat di ketahui apakah data tersebut berkorelasi atau tidak.

Correlations				
		klorofil	cakalang	
klorofil	Pearson Correlation	1	,985(**)	
	Sig. (2-tailed)		,002	
	Ν	5	5	
cakalang	Pearson Correlation	,985(**)	1	
	Sig. (2-tailed)	,002		
	Ν	5	5	

** Correlation is significant at the 0.01 level (2-tailed).

Gambar 3.27 Tampilan Hasil Report Uji Korelasi