BABI

PENDAHULUAN

1.1. Latar Belakang

Air merupakan kebutuhan pokok bagi makhluk hidup. Untuk menjamin keberlangsungan kehidupan di bumi, makhluk hidup baik manusia, hewan dan tumbuhan mutlak membutuhkan air sebagai kebutuhan primernya. Asdak dan Salim (2006) menyatakan bahwa tidak ada kehidupan makhluk yang tidak terkait langsung atau tidak langsung dengan sumberdaya air. Tanpa air, mikroorganisme yang mendekomposisi bahan organik tidak akan pernah ada, demikian pula tidak akan pernah ada siklus materi dan energi, dengan demikian tanpa air tidak akan pernah ada kompleksitas ekosistem. Sehingga dapat dipastikan bahwa jika tidak ada air, maka kehidupan diatas permukaan bumi ini akan terancam kepunahan.

Air yang tersedia di dunia ini jumlahnya tetap, air dalam senyawa H_2O memiliki wujud yang bermacam-macam. Yaitu air dalam bentuk cair, air dalam bentuk gas, maupun air dalam bentuk padat (es). Perkiraan wujud dan jumlah di dunia disajikan dalam tabel 1 berikut:

Tabel 1. Perkiraan Jumlah Air di Dunia

No	Air dalam Fase Siklus Hidrologi	Km ³	Persen
1.	Air di Daratan:		
	a. Danau air tawar	122,4	0,009
	b. Danau air asin dan laut daratan	108,8	0,008
	c. Sungai	1,36	0,0001
	d. Kelembaban tanah dan air vadose	68	0,005
	e. Air tanah sampai kedalaman 4000 m	8.296	0,61
	f. Es dan glaciers	29.104	2,14
2.	Air di Atmosfir	13,6	0,001
3.	Air di Lautan	1.322.285	97,2
Total	Air di Dunia	1.360.000	100

Sumber: US Geological Survey, 1967

Dominasi air di dunia berwujud cair yang berada di lautan, sedangkan jumlah dan prosentase dapat berubah secara dinamis seiring berjalannya waktu dengan adanya siklus pergerakan air yang disebut siklus hidrologi.

Siklus hidrologi merupakan proses alam yang terjadi secara alami akibat adanya proses-proses alam yang menyertainya. Dengan adanya faktor energi panas matahari, dan faktor-faktor iklim lainnya menyebabkan terjadinya proses

evapotranspirasi ke atmosfer. Hasil evapotranspirasi yang berupa uap air akan terbawa oleh angin melintasi daratan, dan apabila keadaan atmosfer memungkinkan, sebagian dari uap air tersebut akan terkondensasi dan turun sebagai air hujan. Sebelum mencapai permukaan tanah, air hujan akan tertahan oleh vegetasi (intersepsi), sementara air hujan yang mampu mencapai permukaan tanah sebagian akan teresapkan ke dalam tanah (infiltrasi) hingga mencapai tingkat kapasitas lapang, dan sisanya akan melimpas melalui permukaan tanah (limpasan permukaan) menuju ke alur-alur sungai untuk kembali ke laut (Asdak, 2010). Kurang-lebih 396.000 km³ air teruapkan atau terevapotranspirasi ke atmosfer tiap tahun, 84% berasal dari samudera, 16% dari darat (danau, sungai, tanah, tanaman). Ketika mencapai titik kondensasi, maka akan terjadi presipitasi yang diperkirakan 75% langsung jatuh ke samudera; 10% jatuh ke tanah kemudian mengalir kembali ke samudera; serta 15% meresap ke dalam tanah dan dimanfaatkan tanaman. Sehingga siklus hidrologi memberikan peluang peningkatan kuantitas ketersediaan air di darat yang kemudian dimanfaatkan bagi makhluk hidup di darat.

Respon hujan menjadi aliran tergantung oleh karakteristik Daerah Aliran Sungai (DAS). DAS merupakan lahan total dan permukaan air yang dibatasi oleh pembatas topografi berupa punggung bukit maupun igir, serta memberikan sumbangan terhadap debit sungai pada suatu irisan melintang tertentu. Faktor-faktor iklim, tanah (topografi, geologi, geomorfologi) dan tata guna lahan yang membentuk subsistem dan bertindak sebagai operator dalam mengubah urutan waktu terjadinya hujan secara alami menjadi urutan waktu limpasan yang dihasilkan. Keragaman dalam keluaran yang berupa aliran permukaan, tergantung pada hubungan timbal balik di antara subsistem-subsistem tersebut (Seyhan 1990), sehingga kondisi karakteristik DAS sangat menentukan kondisi aliran permukaan. Hasil penelusuran siklus hidrologi pada beberapa DAS disajikan pada tabel 2. Dari data tersebut, disimpulkan bahwa dengan adanya siklus hidrologi, maka akan ada peluang penambahan kuantitas ketersediaan air di darat (DAS). Meskipun prosentasenya relatif kecil, namun penambahan air tersebut mampu memberikan manfaat bagi makhluk hidup.

Tabel 2. Daur hidrologis beberapa DAS bagian Hulu di Pulau Jawa

No.	Varanan an hiduala ai	Ciliwung	Citanduy	Serayu	Brantas
NO.	Komponen hidrologi	(hulu)	(hulu)	(hulu)	(hulu)
1.	Hujan (mm/th)	3.700	3.500	3.350	3.200
2.	Infiltrasi (%)	9,13	11,04	10,65	11,14
3.	Evapotranspirasi (%)	12,09	14,32	12,53	11,08
4.	Limpasan (%)	72,31	67,43	70,09	68,54
5.	Lain-lain (%)	6,47	7,21	6,73	9,24

Sumber: Penelitian Jurusan geografi FMIPA-UI (1994, 1997 dan 1999).

Dewasa ini ketersediaan air menjadi permasalahan. Dewan Air Dunia (WWC) menyebutkan bahwa 20 tahun mendatang jumlah penduduk dunia akan meningkat dengan pertambahan penduduk sebesar 1,2 miliar jiwa, sedangkan persediaan air diprediksikan justru akan menurun hingga sepertiga dari sekarang. Artinya, dengan jumlah penduduk dunia yang semakin bertambah, mungkin hanya akan dapat menikmati 30% suplai air dari yang dapat mereka nikmati sekarang (________,2008). Keterangan tersebut dilengkapi dengan penelitian Waryono (2003), yang mengungkapkan bahwa hampir semua sungai di Jawa (diantaranya Sungai Ciujung, Ciliwung, Cimanuk, Citanduy, Serayu, Progo, Bengawan Solo, dan Brantas) kering pada musim kemarau. Namun sebaliknya pada musim penghujan terjadi kelebihan air yang mengalir, bahkan banjir melebihi kemampuan sungai dalam menampung aliran, khususnya di muara-muara sungai.

Berbagai kejadian bencana alam seperti banjir dan longsor yang banyak terjadi saat ini diakibatkan oleh kerusakan lingkungan terutama kerusakan hulu suatu DAS. Salah satu penyebab dari masalah tersebut ialah tidak optimalnya penggunaan lahan dan tutupan hutan terutama di kawasan hulu suatu DAS (Rusdiana dan Ghufrona, 2011). Sedangkan menurut Sunarti (2008), kerusakan di bagian hulu tidak hanya mempunyai efek yang bersifat *on site* tetapi juga menyebabkan efek yang bersifat *off site* atau kerusakan di bagian hilir. Efek dari kerusakan lingkungan dapat berdampak terhadap menurunnya ekonomi penduduk dari suatu lokasi, bahkan dapat berdampak meningkatnya kemiskinan. Oleh sebab itu upaya penataan dan optimasi fungsi lahan pada bagian hulu DAS sangat penting untuk dikaji dan dicarikan upaya terbaik sebagai kawasan resapan air.

Penelusuran terhadap peran fungsi kawasan resapan menjadi sangat strategis untuk diungkap dan ditelaah lebih jauh dalam kaitannya dengan pengelolaan sumberdaya air secara terpadu dan berkelanjutan. Sehingga perlu adanya upaya konservasi air dengan melakukan upaya pengaturan tata air. Salah satu upaya konservasi air adalah dengan mengoptimalkan infiltrasi air hujan ke dalam tanah. Menurut Sri Harto (1993), proses infiltrasi adalah bagian yang sangat penting dalam siklus hidrologi khususnya dalam proses pengalihragaman hujan menjadi aliran di sungai. Dengan adanya infiltrasi yang terjadi secara optimal, maka limpasan permukaan akan terkendali, selain itu tanaman juga akan memperoleh cadangan air yang diikat oleh akarnya, serta menyuplai kebutuhan evapotranspirasi. Seyhan, (1990) juga menyebutkan bahwa dengan adanya proses infiltrasi, maka dapat mengurangi terjadinya banjir dan mengurangi terjadinya erosi tanah. Selain itu kegunaan dari infiltrasi adalah memenuhi kebutuhan vegetasi akan air termasuk transpirasi, menyediakan air untuk evaporasi, mengisi kembali reservoir tanah dan menyediakan aliran sungai pada saat musim kemarau. Menurut Horton (1940), Infiltrasi sangat dipengaruhi oleh berbagai variabel, diantaranya meliputi; jenis tanah, lereng, vegetasi, kadar air tanah, dan intensitas curah hujan, sementara Hadisusanto (2011) menyebutkan bahwa infiltrasi dipengaruhi oleh karakteristik hujan, karakteristik tanah, kondisi penutupan tanah, kadar air dalam tanah, aktivitas manusia dan musim.

Mengingat begitu pentingnya proses infiltrasi serta faktor-faktor yang mendukung infiltrasi, maka kiranya perlu dilakukan analisis yang lebih spesifik mengenai kemampuan infiltrasi suatu lahan, dengan melakukan pengujian pada beberapa jenis pemanfaatan lahan serta bagaimana cara peningkatan kemampuan infiltrasi lahan sekaligus peningkatan pemanfaatan lahan yang sesuai bagi masyarakat disekitarnya. Sehingga dari kondisi tersebut perlu kiranya dilakukan penelitian untuk menganalisis hubungan karakteristik fisik tanah, kondisi penutupan tanah dan kondisi tegakan pohon terhadap kapasitas infiltrasi pada berbagai jenis pemanfaatan lahan, sehingga hasilnya nanti dapat digunakan sebagai arahan pemanfaatan lahan yang optimal.

1.2. Perumusan masalah

Infiltrasi sangat bergantung atas hujan, sifat fisik dan hidraulik kolom tanah, kondisi permukaan tanah dan pemanfaatan lahannya. Diketahui secara umum bahwa pemanfaatan lahan dengan berbagai variasinya, sangat berpengaruh terhadap infiltrasi. Besar kecilnya efek pemanfaatan lahan terhadap infiltrasi sangat ditentukan oleh pemanfaatan lahan itu sendiri. Suatu macam pemanfaatan lahan berperan memperbesar infiltrasi, tetapi beberapa pemanfaatan lahan lain mungkin menghambatnya (Rohmat dkk., 2008). Laju infiltrasi sangat berhubungan dengan karakteristik fisik tanah meliputi tekstur, bahan organik, total ruang pori dan kadar air. Karakteristik fisik tanah tersebut dapat berkorelasi positif maupun negatif terhadap laju infiltrasi (Nurmegawati, 2011). Sehingga dimungkinkan bahwa setiap pemanfaatan lahan memiliki kapasitas infiltrasi yang berbeda-beda, maka penelitian ini mengajukan beberapa pertanyaan penelitian:

- a. Bagaimana kapasitas infiltrasi pada berbagai jenis pemanfaatan lahan?
- b. Bagaimanakah hubungan karakteristik fisik tanah, kondisi penutupan tanah, dan kondisi tegakan pohon terhadap infiltrasi?

1.3. Tujuan Penelitian

Dalam sebuah penelitian, tujuan menjadi hal yang sangat penting, karena dari tujuan tersebut dapat ditentukan arah pencapaian penelitian. Penelitian ini memiliki tujuan untuk menjawab pertanyaan penelitian diatas diantaranya yaitu:

- a. Mengetahui kapasitas infiltrasi pada berbagai jenis pemanfaatan lahan.
- b. Mengetahui hubungan karakteristik fisik tanah, kondisi penutupan tanah, dan kondisi tegakan pohon terhadap infiltrasi.

1.4. Sasaran Penelitian

Sasaran yang ingin dicapai dalam penelitian ini yaitu:

- a. Merumuskan model infiltrasi menggunakan variabel yang berpengaruh kuat terhadap infiltrasi di lokasi penelitian
- b. Mengetahui upaya yang dapat dilakukan berdasarkan variabel yang berpengaruh di lokasi penelitian.

c. Menentukan arahan pemanfaatan lahan serta mekanisme konservasi air yang mampu mendukung optimasi infiltrasi.

1.5. Manfaat Penelitian

Penelitian ini diharapkan dapat memberikan informasi tentang kondisi kapasitas infiltrasi pada masing-masing jenis pemanfaatan lahan di Sub DAS Kreo, yang akan memberikan manfaat khususnya bagi bidang keilmuan dan manfaat praktis.

- a. Manfaat bagi bidang keilmuan yang diharapkan dalam penelitian ini yaitu dapat diperoleh metode pengukuran proses infiltrasi dan seberapa besar pengaruh lahan terhadap kapasitas infiltrasi.
- b. Manfaat praktis yang diharapkan dalam penelitian ini yaitu dapat digunakan sebagai masukan arahan pemanfaatan lahan dalam upaya optimasi infiltrasi serta sebagai bahan pertimbangan dalam perencanaan penataan ruang.

1.6. Penelitian Terdahulu

Proses infiltrasi merupakan proses yang cukup komplek, karena melibatkan berbagai macam variabel yang masing-masing memiliki peran dan fungsi utama maupun pendukung dalam proses infiltrasi tersebut. Sehingga dalam mengkaji infiltrasi diperlukan metode yang tepat serta kajian referensi hasil yang pernah diperoleh dari penelitian-penelitian sebelumnya, agar dalam penelitian ini diperoleh tujuan, metode dan hasil yang lebih baik. Penelitian-penelitian yang berkaitan dengan analisis infiltrasi sudah sangat banyak dilakukan pada lahan dengan kondisi yang bermacam-macam, dengan tujuan yang bermacam-macam juga. Sehingga dalam penelitian ini perlu membandingkan dengan penelitian —penelitian terdahulu baik metode, tujuan maupun gambaran hasil yang telah diperoleh dalam penelitian terdahulu dengan hasil yang ingin diperoleh dalam penelitian ini. Berikut merupakan penelitian-penelitian terdahulu yang melakukan kajian-kajian infiltrasi terhadap karakteristik tanah pada beberapa jenis pemanfaatan lahan yang tersaji dalam tabel 3.

Tabel 3. Perbandingan penelitian terdahulu dengan penelitian ini

No	Peneliti	Tujuan	Metode	Hasil
1.	Bhineka	- Mendapatkan	- Menerapkan	- Kadar air awal
	(1990)	suatu model	model infiltrasi	mempengaruhi laju
	Judul:	persamaan	Horton (1940).	infiltrasi awal. Semakin
	Karakteristik	infiltrasi.	- Melakukan	besar kandungan air
	infiltrasi di	- Mengetahui pola	analisis	tanah, laju infiltrasi
	Sub DAS	laju infiltrasi dan	karakteristik fisik	akan cepat mencapai
	Cibogo, DAS	kapasitasnya di	tanah berupa	konstan.
	Ciliwung Hulu	setiap lokasi	berat isi, tekstur	- Tanah lempung berpasir
		yang mempunyai	dan kadar air	(tekstur kasar) cenderung
		perbedaan	awal.	memiliki kapasitas
		vegetasi dan		infiltrasi yang lebih
		tekstur		tinggi daripada tanah liat
		dibawahnya.		berdebu dan liat (tekstur
		- Mengetahui		halus)
		besarnya		- Lahan hutan memiliki
		kumulatif		kapasitas infiltrasi yang
		infiltrasi DAS		lebih tinggi dibandingkan
		yang merupakan		perkebunan teh, kebun
		fungsi dari hujan,		campur dan persawahan.
		vegetasi, tekstur		- Nilai kumulatif
		tanah dan		infiltrasi sangat
		kemiringan		dipengaruhi oleh sifat
		lereng.		fisik tanah (dan sistem
				penggunaan lahan.
2.	Yusmandhany	- Mengkaji	- Analisis	- Keberadaan hutan dan
	(2004)	potensial tanah	laboratorium	lahan pertanian
	Judul:	menahan hujan	fisik tanah.	berpengaruh baik
	Kemampuan	(infiltrasi/absorbs	- Dalam	terhadap kemampuan
	potensial tanah	i + genangan di	melakukan	potensial tanah menahan
	menahan air	permukaan tanah	penilaian	air hujan dan aliran
	hujan dan	+ intersepsi tajuk	potensial tanah	permukaan sebelum air
	aliran	pohon)	menahan air	mengalir ke daerah hilir
	permukaan	- Dalam	hujan dengan	atau ke sungai
L	berdasarkan	perhitungan	menerapkan	

	tipe	absorbsi/infiltra	model Agus et al	
	penggunaan	si menggunakan	(2002)	
	lahan di	variabel		
	daerah bogor	porositas dan		
	bagian tengah	kedalaman akar		
		tanaman (zona		
		perakaran).		
3.	Sudarman	- Pengukuran	Melakukan analisis	- Sifat fisik tanah yang
	(2007)	Infiltrasi pada	tanah meliputi berat	paling mempengaruhi
	Judul:	lahan sawah	isi, porositas,	laju infiltrasi adalah
	Laju infiltrasi		permeabilitas,	permeabilitas.
	pada lahan		tekstur dan pF	- Nilai porositas dan
	sawah di		(sebagai data	tekstur di lapangan tidak
	Mikro DAS		pendukung untuk	memberikan nilai yang
	Cibojong,		menentukan lapisan	signifikan seperti
	Sukabumi		kedap, kondisi air	besarnya perubahan
			pada saat	nilai infiltrasi, namun
			pengukuran dan	pengaruhnya lebih
			pengaruhnya pada	disebabkan oleh sistem
			proses infiltrasi).	perakaran tanaman yang
				membuka ruang pori dan
				membelah struktur tanah.
4.	Utaya (2008)	mempelajari	- Perubahan	- Perubahan penggunaan
	Judul:	pengaruh	penggunaan	lahan di kota dapat
	Pengaruh	perubahan	lahan dianalisis	merubah sifat biofisik
	perubahan	penggunaan lahan	secara deskriptif	tanah terutama biomassa
	penggunaan	terhadap sifat	yang dilakukan	akar, BOT, dan jumlah
	lahan terhadap	biofisik tanah dan	dengan	cacing.
	sifat biofisik	kapasitas	komparasi data	- Besarnya kapasitas
	tanah dan	infiltrasi, dengan	penggunaan	infiltrasi dipengaruhi
	kapasitas	sub-tujuan: (1)	lahan Kota	oleh sifat biofisik tanah
	infiltrasi di	mengkaji	Malang tahun	terutama biomassa akar,
	kota malang	perbedaan sifat	1984 dan tahun	BOT, dan jumlah cacing.
		biofisik tanah pada	2004. Analisis	Korelasi negatif
		berbagai	secara spasial	porositas dengan
		jenis penggunaan	menggunakan	infiltrasi disebabkan
		lahan, (2) mengkaji	program Arc-	tanah di daerah

		hubungan sifat	View GIS.	penelitian bertekstur
		biofisik tanah	Analisis biofisik	lempung berliat yang
		dengan	tanah dilakukan	didominasi pori mikro
		infiltrasi, dan (3)	di laboratorium	yang juga mendukung
		mengkaji pengaruh	tanah.	proses infiltrasi.
		perubahan	- Pengukuran	- Perubahan penggunaan
		penggunaan lahan	infiltrasi	lahan dapat merubah
		terhadap infiltrasi	menggunakan	sifat biofisik tanah, dan
			metode Horton	sifat biofisik tanah dapat
			(1940)	mempengaruhi
			- Analisis statistik	kemampuan tanah dalam
			menggunakan	meresapkan air.
			one way Anova	
			dan analisis	
			korelasi	
5.	Wirosoedarmo	- Mengetahui laju	- Analisis infiltrasi	- Adanya perbedaan laju
	, dkk (2009)	infiltrasi pada	menggunakan	infiltrasi pada beberapa
	Judul :	beberapa	rumus Horton	penggunaan lahan.
	Evaluasi Laju	penggunaan	(1940).	- Korelasi berat isi tanah
	Infiltrasi pada	lahan di Sub	- Melakukan	berbanding terbalik,
	beberapa	DAS Coban	analisis	sedangkan variabel
	penggunaan	Rondo.	karakteristik fisik	porositas, kadar air awal
	lahan	- Mengetahui	tanah pada	dan bahan organik
	menggunakan	hubungan laju	beberapa	berbanding lurus.
	metode	infiltrasi konstan	penggunaan	- Metode infiltrasi
	infiltrasi	dengan faktor-	lahan, dengan	Horton bisa digunakan
	Horton di Sub	faktor yang	memilih	untuk menduga
	DAS Coban	mempengaruhi	kemiringan	infiltrasi yang ada di
	Rondo	pada beberapa	lereng dan jenis	Sub DAS Coban Rondo.
	Kecamatan	penggunaan	tanah yang	
	Pujon	lahan.	sama.	
	Kabupaten	- Mengetahui	2004A4400V	
	Malang	apakah metode		
	iviaiaiig	infiltrasi Horton		
		bisa digunakan		
		untuk menduga		

		laju infiltrasi di		
		lapangan.		
6.	Bamutaze, et	- Menguji	- Faktor yang	- Laju infiltrasi steady
	al (2010)	variabilitas	mempengaruhi	state umumnya
	Judul:	spasial infiltrasi.	variabilitas	meningkat
	Infiltration	- Mengetahui	spasial infiltrasi	dengan kemiringan lahan
	characteristics	hubungan	tanah	dan tanaman sejenis.
	of volcanic	infiltrasi pada	dianalisis	- Kinerja dari empat
	sloping soils	setiap	dengan	terapan
	on Mt. Elgon,	bentanglahan	menggunakan	model resapan air yang
	Eastern	- Mengetahui	teknik korelasi	umumnya baik dengan
	Uganda	pengaruh	dan regresi	nilai rata-rata R ² berkisar
		komposisi tanah		0,79-0,87.
		dengan tingkat		- Secara keseluruhan,
		infiltrasi pada		Model infiltrasi Philip
		lereng		dan Kostiakov
				memberikan hasil yang
				lebih baik daripada
				Horton dan model
				Green-Ampt dalam
				menentukan kapasitas
				infiltrasi.
7.	Nurmi, et al	- Mengkaji	- Menerapkan	- Umur tanaman kakao
	(2012)	pengaruh	model infiltrasi	yang semakin tua
	Judul:	kemiringan	Horton (1940).	memiliki pengaruh
	Infiltrasi dan	lereng, umur		volume infiltrasi yang
	Aliran	tanaman kakao,		semakin besar.
	Permukaan	dan tindakan		- Kemiringan lereng
	sebagai	konservasi		yang semakin landai
	Respon	terhadap infiltrasi		meningkatkan peluang
	Perlakuan	air ke dalam		infiltrasi (peningkatan
	Konservasi	tanah.		volume infiltrasi).
	Vegetatif pada			- Tanaman gulma di
	Pertanaman			sekitar tanaman kakao
	Kakao			membantu peningkatan
				volume infiltrasi air.

				- Perlakuan umur tanaman
				kakao tiap kemiringan
				dan perlakuan tindakan
				konservasi yang
				diterapkan hanya
				meningkatkan volume
				infiltrasi, namun belum
				menunjukkan pengaruh
				yang nyata terhadap
				kapasitas infiltrasi
				konstan (belum sampai
				pada perkolasi).
8.	Neris, et al	- Mengkaji	- Melakukan uji	- Kapasitas infiltrasi
	(2012)	pengaruh	infiltrasi dengan	tertinggi pada hutan
	Judul:	modifikasi	double ring	heterogen sebesar 79,6
	Vegetation	penggunaan	infiltrometer	cm/jam, kemudian hutan
	and land-use	lahan termasuk	- Melakukan	pinus 18,8 cm/jam, dan
	effects on soil	vegetasi penutup	analisis tanah;	lahan pertanian 6,7
	properties and	tanah terhadap	bahan organik,	cm/jam.
	water	kapasitas	tekstur, struktur,	- Perubahan penggunaan
	infiltration of	infiltrasi pada	bulk density,	lahan ternyata
	Andisols in	tanah Andosol.	kadar air awal	mempengaruhi agregat
	Tenerife		dan	tanah, kestabilan
	(Canary		permeabilitas.	struktur, berkurangnya
	Islands, Spain)			bahan organik dan bulk
	, 1			density.
9.	Hairiah, et al	- Mengukur	Analisis ketebalan	- Perbedaan kelerengan
	()	ketebalan	seresah, populasi	tidak berpengaruh nyata
	Judul: Alih	seresah, populasi	cacing dan	terhadap ketebalan
	guna lahan	cacing dan	makroporositas	seresah di permukaan
	hutan menjadi	makroporositas	tanah. Pada (a)	tanah
	lahan	tanah dalam	hutan alami	- Kandungan bahan
	agroforestri	hubungannya	sebagai kontrol, (b)	organik pada lahan hutan
	berbasis kopi: ketebalan	dengan alih guna	kopi campuran,	lebih besar dibandingkan
		lahan hutan	dengan naungan	pada lahan agroforestri.
	seresah,	menjadi	pohon dadap	- Biomassa cacing

	populasi	agroforestri	(Erythrina	tertinggi berada di hutan,
	cacing tanah	berbasis kopi.	sububrams), kayu	namun kerapatan cacing
	dan		hujan (Gliricidia	tertinggi pada kopi
	makroporosita		sepium), pohon	campuran.
	s tanah		buah-buahan dan	- Jumlah pori makro
			pohon penghasil	tanah hutan sekitar 12
			kayu (c) kopi	% menyebar hingga
			dengan pohon	lapisan tanah bawah;
			naungan dadap	sedang pada lahan kopi
			atau kayu hujan,	hanya 3 - 3.6%.
			(d) kopi	- Hasil pengukuran
			monokultur	infiltrasi menggunakan
				rain simulator
				menunjukkan bahwa
				tanah hutan, kopi
				campuran, naungan dan
				monokultur mampu
				menyerap air dengan
				puncak intensitas hujan
				masing-masing 4.5, 3.0,
				2.5 dan 2.0 mm/menit.
				- Menanam pohon yang
				menghasilkan seresah
				berkualitas rendah dan
				berperakaran dalam
				secara tumpangsari
				dapat
				direkomendasikan
				untuk mengurangi
				limpasan permukaan
				dan tingkat erosi pada
				lahan berlereng.
				- Seresah yang tinggal
				lama di permukaan
				tanah dapat
				melindungi permukaan
L	I .		I	1

				tanah dari pukulan air
				hujan.
10	Rencana	- Mengkaji	- Menerapkan	<u>Hipotesis</u> :
	Penelitian Arif	kemampuan	model infiltrasi	Karakteristik fisik tanah,
	Sudarmanto	infiltrasi lahan	Horton (1940).	kondisi penutup tanah dan
	(2013)	pada beberapa	- Menganalisis	kondisi tegakan pohon
		jenis	karakteristik	masing-masing memiliki
		pemanfaatan	tanah di	hubungan dan akan
		lahan	laboratorium	memberikan pengaruh
		- Mengkaji	tanah.	terhadap infiltrasi.
		hubungan	- Menganalisis uji	
		karakteristik	beda, korelasi	
		tanah, kondisi	dan regresi	
		penutup tanah,	menggunakan	
		dan tegakan	SPSS.	
		pohon terhadap		
		infiltrasi		

1.7. Ruang Lingkup dan Batasan Penelitian

Penelitian ini difokuskan pada kajian perbedaan kapasitas infiltrasi di berbagai jenis pemanfaatan lahan. Dengan menganalisis variabel-variabel karakteristik tanah yang meliputi tekstur, bahan C-organik, porositas, permeabilitas, dan kadar air awal, serta kondisi penutupan tanah dan kondisi tegakan pohon.

Penelitian ini memiliki keterbatasan pada hal-hal sebagai berikut:

- 1. Penelitian ini hanya dilakukan pada 10 jenis pemanfaatan lahan dengan mengambil masing-masing 1 responden yang masih memiliki ciri kondisi alami, sementara pemanfaatan lahan pada jenis yang serupa dianggap memiliki kondisi yang sama.
- Penelitian ini hanya mengkaji perbedaan dari variabel kondisi tegakan pohon, kondisi penutupan tanah, dan karakteristik fisik tanah; tekstur, bahan C-organik, porositas, permeabilitas, dan kadar air awal.
- Penelitian ini menguji variabel apa saja yang memiliki hubungan yang kuat terhadap kapasitas infiltrasi, serta bagaimana pengaruh variabel-variabel tersebut terhadap kapasitas infiltrasi.

- 4. Dalam melakukan uji infiltrasi, penelitian ini menggunakan single ring infiltrometer.
- 5. Pengambilan contoh tanah pada masing-masing jenis pemanfaatan lahan hanya pada permukaan tanah saja hingga kedalaman 5 cm