PENGARUH PEMBERIAN JUS BIJI PEAYA (*CARICA PAPAYA LINN*) TERHADAP KADAR TRIGLISERIDA TIKUS *SPRAGUE DAWLEY* DISLIPIDEMIA

Artikel Penelitian
disusun sebagai salah satu syarat untuk menyelesaikan studi pada Program Studi Ilmu Gizi Fakultas Kedokteran Universitas Diponegoro

disusun oleh
NURI LYDIA RAHMA
G2C009034

PROGRAM STUDI ILMU GIZI FAKULTAS KEDOKTERAN
UNIVERSITAS DIPONEGORO
SEMARANG
2013
HALAMAN PENGESAHAN

Artikel penelitian dengan judul “Pengaruh Pemberian Jus Biji Pepaya (Carica Papaya Linn) terhadap Kadar Trigliserida Tikus Sprague Dawley Dislipidemia“ telah dipertahankan di hadapan penguji dan telah direvisi.

Mahasiswa yang mengajukan :
Nama : Nuri Lydia Rahma
NIM : G2C009034
Fakultas : Kedokteran
Program Studi : Ilmu Gizi
Universitas : Diponegoro Semarang
Judul Proposal : Pengaruh Pemberian Jus Biji Pepaya (Carica Papaya Linn) terhadap Kadar Trigliserida Tikus Sprague Dawley Dislipidemia

Semarang, 21 Juni 2013
Pembimbing,

Ahmad Syauqy, S.Gz, MPH
NIK. 201100028
<table>
<thead>
<tr>
<th>DAFTAR ISI</th>
</tr>
</thead>
<tbody>
<tr>
<td>HALAMAN JUDUL ... i</td>
</tr>
<tr>
<td>HALAMAN PENGESAHAN ... ii</td>
</tr>
<tr>
<td>DAFTAR ISI ... iii</td>
</tr>
<tr>
<td>DAFTAR TABEL ... iv</td>
</tr>
<tr>
<td>ABSTRAK ... v</td>
</tr>
<tr>
<td>PENDAHULUAN ... 1</td>
</tr>
<tr>
<td>METODE PENELITIAN .. 3</td>
</tr>
<tr>
<td>HASIL PENELITIAN ... 5</td>
</tr>
<tr>
<td>PEMBAHASAN ... 8</td>
</tr>
<tr>
<td>KETERBATASAN PENELITIAN ... 12</td>
</tr>
<tr>
<td>SIMPULAN ... 12</td>
</tr>
<tr>
<td>SARAN ... 12</td>
</tr>
<tr>
<td>DAFTAR PUSTAKA ... 12</td>
</tr>
</tbody>
</table>
DAFTAR TABEL

Tabel 1. Kandungan zat fitokimia dalam 100 gram biji pepaya ..6

Tabel 2. Hasil Analisis Rerata Berat Badan Sampel ..6

Tabel 3. Hasil Analisis Perbedaan Kadar Trigliserida Pre-Test ...7

Tabel 4. Hasil Analisis Kadar Trigliserida ...8
The Effect of Papaya Seeds Juice (*Carica Papaya* Linn.) on Triglyceride Level in Dislipidemic Sprague Dawley Rats

Nuri Lydia Rahma*, Ahmad Syauqy**

ABSTRACT

Background: Cardiovascular disease is the leading causes of death in the world. One of the cardiovascular risk factors is dislipidemia, signed by highness triglyceride level in the blood. An appropriate management of triglyceride level can reduce risks of cardiovascular disease. Papaya seeds contain phytochemical elements such as flavonoid, saponin, and tannin which can lower the triglyceride level. This study aims to get the information on the effect of papaya seeds juice on triglyceride level in dislipidemic *Sprague Dawley* rats.

Methods: This study is a *true experimental* with *pre-post test randomized control group design* towards 24 *Sprague Dawley* dislipidemic rats which were randomized into 4 groups. There were negative control group that was only given standard diet, positive control group that were given standard and high fat diet, and two treatment groups that were given high fat diet also papaya seeds juice at dosages 400 mg and 800 mg for 30 days. Data were analysed by *Paired t-test* and *Annova*.

Result: Alteration of triglyceride level in negative control, positive control, and treatment groups that were given papaya seeds juice at dosages 400 mg and 800 mg respectively 0,2 (p=0,985); -17,7 (p=0,539); -13,3 (p=0,214) dan 5,0 (p=0,506). Based on ANOVA test there was no difference between all groups (p=0,685).

Conclusion: The administration of papaya seeds juice at dosages 400 mg/rat/day and 800 mg/rat/day for 30 days didn’t decrease triglyceride level in dislipidemic *Sprague Dawley* rats.

Kata kunci : papaya seeds juice, flavonoid, saponin, tannin, triglyceride

* Student of Program in Nutrition Science of Medical Faculty Diponegoro University Semarang

** Lecture of Program in Nutrition Science of Medical Faculty Diponegoro University Semarang
ABSTRAK
Metode: Penelitian ini merupakan penelitian true experimental dengan pre-post test randomized control group design yang menggunakan 24 ekor tikus Sprague Dawly dislipidemia. Pengelompokan dibagi secara acak menjadi 4 kelompok yaitu kelompok kontrol negatif yang hanya diberikan pakan standar, kontrol positif yang diberikan pakan standar dan tinggi lemak, dan dua kelompok perlakuan yang diberikan pakan standar, tinggi lemak dan jus biji pepaya dengan dosis 400 mg dan 800 mg selama 30 hari. Data dianalisis dengan uji Paired t-test dan Anova.
Hasil: Perubahan kadar trigliserida kelompok kontrol negatif, kontrol positif dan perlakuan 400 mg dan 800 mg secara berurutan adalah 0,2 (p=0,985); -17,7 (p=0,539); -13,3 (p=0,214) dan 5,0 (p=0,506). Berdasarkan uji Anova tidak terdapat perbedaan perubahan kadar trigliserida antar kelompok (p=0,685).
Simpulan: Pemberian jus biji pepaya dengan dosis 400 mg dan 800 mg per hari selama 30 hari tidak dapat menurunkan kadar trigliserida pada tikus Sprague Dawly dislipidemia.

Kata kunci : Jus biji pepaya, flavonoid, saponin, tanin, trigliserida

* Mahasiswa Program Studi Ilmu Gizi Fakultas Kedokteran Universitas Diponegoro Semarang
** Dosen Program Studi Ilmu Gizi Fakultas Kedokteran Universitas Diponegoro Semarang
PENDAHULUAN

Penyakit kardiovaskuler merupakan penyebab utama kematian di dunia. Berdasarkan data WHO tahun 2008, 17,3 juta orang meninggal akibat penyakit ini dan diperkirakan akan meningkat menjadi 23,6 juta di tahun 2030. Satu per tiga kematian (sekitar 800,000) yang terjadi di Amerika tiap tahunnya disebabkan oleh penyakit kardiovaskuler.2,3 Tidak hanya di negara maju seperti Amerika, penyakit ini juga banyak terjadi di negara berkembang.4 Data WHO menyebutkan sekitar 80% kematian akibat penyakit ini terjadi di negara berkembang. Salah satunya negara Indonesia, berdasarkan hasil riset kesehatan dasar (Riskesdas) jumlah kematian penduduk akibat penyakit kardiovaskuler yaitu 31,9 % di tahun 2007.

Untuk mengatasi tingginya angka kejadian penyakit kardiovaskuler, langkah efektif yaitu dengan mengurangi faktor risikonya.5 Dislipidemia merupakan salah satu faktor risiko terjadinya penyakit kardiovaskuler dimana kadar trigliserida, kolesterol total dan kolesterol LDL meningkat serta kolesterol HDL menurun. Suatu penelitian menyebutkan bahwa pengobatan dislipidemia dapat mengurangi risiko penyakit kardiovaskuler sebesar 30% selama 5 tahun.6

Terapi yang digunakan untuk mengembalikan profil lipid darah ke batas normal antara lain dengan terapi diet, aktivitas fisik, obat-obatan dan suplementasi.4,7 Penggunaan zat fitokimia sebagai suplemen memiliki efek proteksi terhadap dislipidemia dan merupakan salah satu alternatif pengurangan angka kejadian penyakit kardiovaskuler.9 Penelitian terdahulu menyebutkan bahwa kandungan zat fitokimia dalam bawang putih (allicin) dan fenugreek (isoprenoids) dapat menurunkan serum trigliserida dan kolesterol LDL tanpa mempengaruhi kolesterol HDL, selain itu kandungan flavonoid pada teh hijau dan teh hitam (catechins dan galate esters) juga dapat menurunkan kolesterol darah.8 Suplementasi flavonoid jenis antosianin dengan dosis 80 mg terbukti dapat menurunkan serum trigliserida, kolesterol LDL, kolesterol total serta meningkatkan kolesterol HDL pada pasien dislipidemia.9 Flavonoid jenis quercetin yang terkandung dalam buah pepaya diketahui dapat meningkatkan aktivitas lipoprotein lipase sehingga mempengaruhi kadar trigliserida serum tikus.

Biji pepaya merupakan bahan alami yang mengandung zat fitokimia berupa flavonoid, saponin, tanin, dan antosianin yang bersifat sebagai hipolipidemia. Beberapa penelitian berhasil membuktikan bahwa biji pepaya efektif menurunkan profil lipid darah. Salah satu penelitian yang dilakukan di Yogyakarta menyebutkan pemberian jus biji pepaya pada tikus Sprague Dawly jantan dapat menurunkan kadar LDL plasma secara signifikan dengan dosis efektif 400mg/kgBB/hari selama 14 hari. Penelitian lain di Afrika menunjukkan bahwa ekstrak biji pepaya cair yang diberikan selama 30 hari secara oral sebanyak 100-400 mg/kgBB/hari dapat menurunkan kadar trigliserida, kolesterol total, kolesterol LDL dankolesterol VLDL, serta meningkatkan kadar kolesterol HDL secara signifikan pada tikus Wistar jantan. Penggunaan zat fitokimia sebagai suplemen dapat menimbulkan efek toksik. Berdasarkan penelitian, dosis aman pemberian ekstrak biji pepaya agar tidak mengakibatkan kematian pada tikus yaitu kurang dari 2000 mg/kgBB/hari.

Dawly jantan dislipidemia dengan dosis 400 mg/ekor/hari dan 800 mg/ekor/hari selama 30 hari.

METODE PENELITIAN

Penelitian true experimental dengan pre-post test randomized control group design ini dilakukan di Laboratorium Fisiologi Hewan Jurusan Biologi Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Semarang (UNNES) dengan perlakuan pemberian jus biji pepaya (Carica papaya L) pada sampel tikus. Hasil yang dianalisis dalam penelitian ini ialah kadar trigliserida.

Sampel tikus yang digunakan yaitu tikus Sprague Dawley jantan berusia 8 minggu dengan berat badan 150-180 gram yang diperoleh dari Laboratorium Farmasi Universitas Gajah Mada, Yogyakarta. Penentuan jumlah sampel minimal berdasarkan rumus Federer ialah 6 ekor tiap kelompok. Pada awal penelitian menggunakan 7 ekor tikus tiap kelompok untuk mengantisipasi apabila terdapat tikus yang mati saat perlakuan. Selama penelitian, terdapat 4 ekor tikus yang drop out (1 ekor tikus masing-masing kelompok) sehingga jumlah sampel yang digunakan selama penelitian sebanyak 6 ekor tiap kelompok sesuai dengan jumlah sampel minimal. Penelitian ini menggunakan 4 kelompok perlakuan sehingga jumlah sampel yang digunakan sebanyak 24 ekor.

Kelompok dalam penelitian ini yaitu kelompok kontrol negatif (K-), kontrol positif (K+), perlakuan jus biji pepaya 400 mg/ekor/hari (P1) dan perlakuan jus biji pepaya 800 mg/ekor/hari (P2). Kelompok kontrol negatif hanya diberikan pakan standar. Kelompok kontrol positif diberikan pakan standar dan pakan tinggi kolesterol, sedangkan kelompok perlakuan jus biji pepaya diberikan sama seperti kelompok kontrol positif ditambah dengan jus biji pepaya dosis 400 mg/ekor dan 800 mg/ekor. Seluruh subjek diberikan pakan standar BR-2 sebanyak 20 gram per hari serta minum air ad libitum. Selama penelitian dilakukan penimbangan berat badan dan sisa pakan serta pembersihan kandang.

Sebelum intervensi, dilakukan perlakuan untuk membuat kondisi dislipidemia pada hewan coba kelompok kontrol positif dan kelompok perlakuan...
jus biji pepaya dengan pemberian pakan tinggi kolesterol dari kuning telur puyuh selama 30 hari. Pemilihan kuning telur puyuh sebagai pakan tinggi kolesterol dikarenakan kadar kolesterol yang terdapat pada kuning telur puyuh lebih tinggi dibanding telur lainnya yaitu sebanyak 2.139,17 mg/100 gram bahan makanan, selain itu kandungan lemaknya sebanyak 27,73 gram/100 gram.

Kuning telur puyuh diblender dahulu kemudian diberikan sebanyak 2 ml/ekor/hari dengan cara sonde. Pembuatan jus biji pepaya dosis 400 mg/ekor/hari dilakukan dengan cara menghaluskan biji pepaya menggunakan blender, kemudian ditimbang sebanyak 400 mg. Setelah itu ditambahkan dengan air hingga mencapai volume 1 ml lalu disaring. Untuk jus biji pepaya dosis 800 mg/ekor/hari didapat dari dua kali pemberian dosis 400 mg/ekor/hari. Pemberian jus biji pepaya dengan cara sonde.

Pengambilan darah dilakukan sebanyak dua kali yaitu ketika sebelum perlakuan jus biji pepaya untuk melihat kadar trigliserida tiap kelompok sebelum intervensi dan setelah 30 hari masa intervensi untuk melihat pengaruh pemberian jus biji pepaya terhadap kadar trigliserida pada hewan coba. Sampel darah diambil melalui pleksus retroorbitalis sebanyak 2 ml dan dimasukkan ke dalam tabung bersih, kemudian darah di-sentrifuge untuk mendapatkan serumnya.

Kadar trigliserida dalam serum diukur dengan metode fotometri. Data yang diperoleh diolah dengan program komputer. Data diuji normalitasnya menggunakan uji Shapiro-Wilk. Perbedaan kadar trigliserida sebelum dan setelah pemberian jus biji pepaya menggunakan uji Paired t-test. Perbedaan perubahan kadar trigliserida antar keempat kelompok perlakuan dianalisis menggunakan uji Anova.
HASIL PENELITIAN

Jumlah sampel pada penelitian ini sebanyak 28 ekor kemudian dibagi menjadi 4 kelompok yaitu kelompok kontrol negatif (K(-)) yang selama penelitian hanya diberikan pakan standar, kelompok kontrol positif (K(+)) yang selama penelitian diberikan pakan standar dan pakan tinggi kolesterol, kelompok perlakuan pertama (P1) yang diberikan pakan standar dan pakan tinggi kolesterol selama penelitian dan ditambah dengan pemberian jus biji pepaya dengan dosis 400 mg/ekor/hari saat intervensi, serta kelompok perlakuan kedua (P2) yang diberikan pakan standar dan pakan tinggi kolesterol selama penelitian dan ditambah pemberian jus biji pepaya dengan dosis 800 mg/ekor/hari saat intervensi.
Kandungan zat jus biji pepaya

Kandungan zat fitokimia dalam 100 gram biji pepaya dan jus biji pepaya ditampilkan pada tabel 1.

<table>
<thead>
<tr>
<th>Tabel 1. Kandungan zat fitokimiadalam 100 gram biji pepaya</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biji pepaya (mg/100g bahan)</td>
</tr>
<tr>
<td>Flavonoid</td>
</tr>
<tr>
<td>Saponin</td>
</tr>
<tr>
<td>Tanin</td>
</tr>
<tr>
<td>Antosianin</td>
</tr>
</tbody>
</table>

Karakteristik Sampel

Dua puluh empat ekor tikus Sprague Dawley jantan dipelihara dalam kandang individu. Pemeliharaan dan pembersihan kandang dilakukan setiap hari oleh peneliti.

Penimbangan berat badan dilakukan 3-5 kali dalam seminggu sedangkan penimbangan sisa pakan dilakukan setiap hari selama penelitian. Hasil analisis rerata berat badan ditunjukkan pada tabel berikut.

<table>
<thead>
<tr>
<th>Tabel 2. Hasil Analisis Rerata Berat Badan Sampel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelompok</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>K-</td>
</tr>
<tr>
<td>K+</td>
</tr>
<tr>
<td>P1</td>
</tr>
<tr>
<td>P2</td>
</tr>
</tbody>
</table>

³Uji Anova
⁴Uji Paired t-test*berbeda bermakna
Berdasarkan hasil uji *Paired t-test* pada tabel 2, terdapat perbedaan berat badan pada awal dan akhir penelitian.

Hasil analisis perubahan berat badan sampel yang diuji dengan uji *Anova* menunjukkan bahwa tidak terdapat perbedaan antar kelompok perlakuan

(p=0,717). Secara deskriptif perubahan berat badan terendah yaitu pada kelompok K(-) sebesar 54.86 gram dan perubahan berat badan tertinggi yaitu pada kelompok P2 sebesar 66 gram.

Gambaran rerata asupan pakan tikus selama intervensi ditunjukkan pada gambar berikut.

![Gambar 2. Diagram asupan pakan selama intervensi](image)

Dari Gambar 2 dapat dilihat bahwa asupan pakan tertinggi selama intervensi ialah kelompok P2 sedangkan asupan pakan terendah ialah kelompok K(-).

Kadar Trigliserida Setelah Pemberian Pakan Tinggi Kolesterol

Tabel 3 menampilkan hasil analisis perbedaan kadar trigliserida kelompok yang tidak mendapat pakan tinggi kolesterol K(-) dengan kelompok yang mendapat pakan tinggi kolesterol (K(+), P1, P2) yang diuji menggunakan *Independent t-test*.

<table>
<thead>
<tr>
<th>Kelompok</th>
<th>n</th>
<th>Setelah Pemberian Pakan Tinggi Kolesterol</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6</td>
<td>54,2±21,46</td>
<td>0,185°</td>
</tr>
<tr>
<td>B</td>
<td>18</td>
<td>76,2±37,00</td>
<td></td>
</tr>
</tbody>
</table>

*Uji *Independent t-test*

Keterangan:

A: Kelompok yang tidak mendapat pakan tinggi kolesterol(K(-))

B: Kelompok yang mendapat pakan tinggi kolesterol(K(+), P1, P2)
Kadar Trigliserida Sebelum dan Setelah Pemberian Jus Biji Pepaya

Tabel 4 menampilkan hasil analisis kadar trigliserida sebelum dan setelah pemberian jus biji pepaya yang diuji menggunakan *Paired t-test* serta menampilkan hasil analisis perbedaan perubahan (Δ) kadar trigliserida antar kelompok yang diuji menggunakan uji *Anova*.

<table>
<thead>
<tr>
<th>Kelompok</th>
<th>n</th>
<th>Sebelum Perlakuan Rerata±SD (mg/dl)</th>
<th>Setelah Perlakuan Rerata±SD (mg/dl)</th>
<th>Δ Rerata±SD (mg/dl)</th>
<th>% Δ</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-</td>
<td>6</td>
<td>54,2±1,46</td>
<td>54,3±13,94</td>
<td>0,2±20,35*</td>
<td>0,3</td>
<td>0,985*</td>
</tr>
<tr>
<td>K+</td>
<td>6</td>
<td>102,8±49,88</td>
<td>85,2±52,06</td>
<td>-17,7±65,63*</td>
<td>-17,2</td>
<td>0,539*</td>
</tr>
<tr>
<td>P1</td>
<td>6</td>
<td>70,7±24,80</td>
<td>57,3±11,88</td>
<td>-13,3±22,95*</td>
<td>-18,8</td>
<td>0,214*</td>
</tr>
<tr>
<td>P2</td>
<td>6</td>
<td>55,0±11,15</td>
<td>60,0±9,59</td>
<td>5,0±17,08*</td>
<td>9</td>
<td>0,506*</td>
</tr>
</tbody>
</table>

a Uji *Anova*
b Uji *Paired t-test*

Tabel 4 menunjukkan bahwa tidak terdapat perbedaan kadar trigliserida sebelum dan setelah pemberian jus biji pepaya. Kadar trigliserida pada kelompok P2 seharusnya mengalami penurunan namun pada penelitian ini mengalami peningkatan. Begitu juga kadar trigliserida pada kelompok K(+) yang seharusnya mengalami peningkatan namun pada penelitian ini mengalami penurunan.

Hasil analisis perubahan kadar trigliserida menunjukkan bahwa tidak terdapat perbedaan antar kelompok perlakuan (*p*=0,685). Secara deskriptif penurunan kadar trigliserida tertinggi terdapat pada kelompok K(+) yaitu sebesar 17,7 mg/dl, sedangkan peningkatan kadar trigliserida tertinggi terdapat pada kelompok P2 yaitu sebesar 5 mg/dl.

PEMBAHASAN

Kandungan Zat Jus Biji Pepaya

Kandungan zat fitokimia pada biji pepaya diuji di Laboratorium Kimia Universitas Muhammadiyah Malang, Jawa Timur menggunakan sampel biji pepaya dan jus biji pepaya. Dari hasil yang ditampilkan pada tabel 1, terlihat bahwa kandungan fitokimia yang ada pada biji pepaya yaitu flavonoid, saponin dan tanin sedangkan flavonoid jenis antosianin tidak terkandung didalam biji pepaya. Hal ini berbeda dengan penelitian terdahulu yang menyebutkan bahwa...
antosianin terkandung dalam biji pepaya.16 Perbedaan ini kemungkinan disebabkan oleh perbedaan jenis varietas pepaya yang digunakan pada penelitian terdahulu.

Kandungan fitokimia yang terdapat pada 100 gram biji pepaya yaitu flavonoid sebanyak 947,7 mg; saponin 88,39 mg dan tanin 189,35 mg. Untuk kandungan 100 gram jus biji pepaya yaitu flavonoid sebesar 646,1 mg; 69,3 mg saponin dan 140,9 mg tanin. Terlihat bahwa kandungan zat fitokimia pada biji pepaya lebih tinggi dibandingkan dengan jus biji pepaya. Hal ini disebabkan oleh adanya proses penyaringan pada kelompok jus sehingga sebagian senyawanya terbuang dalam bentuk ampas.

Penelitian terdahulu menyebutkan bahwa biji pepaya mengandung flavonoid, saponin, tanin dan alkaloid.16 Flavonoid dan tanin dapat meningkatkan aktivitas lipoprotein lipase sehingga dapat menurunkan kadar trigliserida dalam plasma.10,11,14 Saponin dapat menurunkan sintesis trigliserida dan absorbsi lemak serta meningkatkan oksidasi asam lemak.12,13 Alkaloid memiliki efek hipolipidemik namun dalam penggunaannya dapat menyebabkan efek toksik.8,16,26

Pakan Tinggi Kolesterol

Pada penelitian ini pengkondisian tikus menjadi dislipidemia menggunakan pakan tinggikolesterol yaitu kuning telur puyuh. Pemilihan kuning telur puyuh sebagai pakan tinggi kolesterol dikarenakan kadar kolesterol yang terdapat pada kuning telur puyuh lebih tinggi dibanding telur lainnya yaitu sebanyak 2.139,17 mg/100 gram bahan makanan, selain itu kuning telur puyuh memiliki kandungan lemak sebanyak 27,73 gram/100 gram.18,19 Pemberian telur puyuh selama 4 minggu dapat mengakibatkan kondisi dislipidemia dengan meningkatkan kadar kolesterol total, kolesterol LDL, kolesterol VLDL serta menurunkan kolesterol HDL pada tikus Wistar jantan.18 Untuk mengetahui apakah pemberian pakan tinggi kolesterol dapat mempengaruhi kadar trigliserida sampel yaitu dengan membandingkan kadar trigliserida kelompok yang tidak diberi pakan tinggi kolesterol (K(-)) dengan kelompok yang diberi pakan tinggi kolesterol (K(+), P1, P2).
Tabel 3 menunjukkan bahwa tidak terdapat perbedaan kadar trigliserida antara kelompok yang tidak diberi pakan tinggi kolesterol dengan kelompok yang diberi pakan tinggi kolesterol ($p>0.05$).

Kolesterol yang berasal dari makanan akan disimpan dalam tubuh sebagai kolesterol bukan sebagai trigliserida, sedangkan trigliserida dalam tubuh berasal dari lemak dan karbohidrat makanan.23,25 Penelitian yang dilakukan oleh Intan menyebutkan bahwa pemberian pakan tinggi lemak yang dibuat dengan cara mencampurkan pakan standar dengan 10\% lemak babi (kandungan lemak 1,3 gram/hari) selama 14 hari dapat meningkatkan kadar trigliserida sampel.29 Jumlah pemberian lemak pada penelitian ini sebesar 0,56 gram/hari selama 30 hari, jumlah ini dibawah jumlah yang diberikan pada penelitian sebelumnya. Hal ini menunjukkan bahwa diperlukan asupan lemak yang lebih tinggi untuk dapat meningkatkan kadar trigliserida sampel.

Kadar Trigliserida Sebelum dan Setelah Pemberian Jus Biji Pepaya

Hasil dari penelitian ini menunjukkan bahwa tidak terdapat perbedaan kadar trigliserida sebelum dan setelah pemberian jus biji pepaya pada semua kelompok perlakuan. Secara deskriptif kelompok P1 mengalami penurunan sebesar 18,8\% sedangkan kelompok P2 yang seharusnya mengalami penurunan namun pada penelitian ini mengalami peningkatan sebesar 9\%. Hasil analisis perubahan kadar trigliserida menunjukkan tidak terdapat perbedaan antar kelompok K(-), K(+), P1 dan P2. Hal ini menunjukkan bahwa pemberian jus biji pepaya tidak dapat menurunkan kadar trigliserida tikus \textit{Sprague Dawley} dislipidemia.

Pada kelompok K(+) diberikan pakan standar dan pakan tinggi kolesterol. Kadar trigliserida pada kelompok K(+) mengalami penurunan sebesar 17,2\%. Berdasarkan analisis kadar trigliserida setelah pemberian pakan tinggi kolesterol pada Tabel 3 menunjukkan bahwa pakan tinggi kolesterol tidak dapat meningkatkan kadar trigliserida sampel. Oleh karena itu kadar trigliserida pada kelompok K(+) dapat mengalami penurunan meskipun diberi pakan tinggi kolesterol selama intervensi. Perubahan berat badan dan asupan pakan selama intervensi pada kelompok K(+) lebih rendah dibandingkan dengan kelompok
perlakuan jus biji pepaya sehingga kadar trigliserida pada kelompok K(+) dapat mengalami penurunan tanpa pemberian jus biji pepaya. Asupan pakan yang rendah menyebabkan peningkatan oksidasi asam lemak untuk bahan bakar metabolik sehingga sisa asam lemak untuk sintesis trigliserida menurun. Penurunan sintesis trigliserida menyebabkan kadar trigliserida dalam darah menurun.

Pada kelompok P1 diberikan pakan standar dan pakan tinggi kolesterol selama penelitian ditambahkan pemberian jus biji pepaya 400 mg/ekor ketika masa intervensi 30 hari. Kadar trigliserida pada kelompok P1 mengalami penurunan sebesar 18,8%. Penyebab penurunan ini diduga karena kandungan flavonoid, tanin dan saponin yang terdapat dalam jus biji pepaya. Flavonoid dan tanin meningkatkan aktivitas lipoprotein lipase sehingga kadar trigliserida dalam plasma menurun.

Saponin menurunkan sintesis trigliserida dan absorbasi lemak serta meningkatkan oksidasi asam lemak.

Pada kelompok P2 diberikan pakan standar dan pakan tinggi kolesterol selama penelitian ditambahkan pemberian jus biji pepaya 800 mg/ekor ketika masa intervensi 30 hari. Kadar trigliserida pada kelompok P2 seharusnya mengalami penurunan namun pada penelitian ini mengalami peningkatan sebesar 9%. Peningkatan kadar trigliserida pada kelompok P2 dimungkinkan akibat konsumsi jus biji pepaya pada dosis tinggi bukannya memberi efek penurunan kadar trigliserida yang lebih besar. Justru menyebabkan efek hepatotoksik pada sampel. Penelitian yang dilakukan oleh Ibekwe menyebutkan bahwa pemberian alkaloid dengan dosis 100 mg/kgBB pada tikus dapat menurunkan kadar kolesterol total dan kolesterol LDL namun kadar trigliserida tidak mengalami penurunan melainkan mengalami peningkatan, selain itu terjadi gangguan fungsi hati akibat pemberian intervensi alkaloid. Interaksi antara toksikan dari tanaman dengan struktur reseptor tertentu yang ada di sel hati menyebabkan terjadinya kerusakan pada membran sel. Enzim lipoprotein lipase yang bekerja menghidrolisis trigliserida untuk melepaskan asam lemak terletak pada membran sel. Kerusakan membran sel menyebabkan inaktivasi enzim lipoprotein lipase sehingga kadar trigliserida dalam plasma tinggi karena trigliserida tidak dihidrolisis. Selain kerusakan pada membran sel, hepatotoksik dapat terjadi

KETERBATASAN PENELITIAN

Keterbatasan penelitian ini ialah tidak dilakukan uji kandungan alkaloid pada jus biji pepaya serta tidak dilakukan uji toksistasjus biji pepaya berbagai dosis.

SIMPULAN

Pemberian jus biji pepaya dengan dosis 400 mg/ekor/hari dan 800 mg/ekor/hari selama 30 hari tidak dapat menurunkan kadar trigliserida tikus Sprague Dawley dislipidemia.

SARAN

Pada penelitian selanjutnya perlu dilakukan uji toksitasjus biji pepaya berbagai dosis untuk menentukan dosis aman pemberian jus biji pepaya agar tidak menimbulkan efek hepatotoksik pada sampel.

UCAPAN TERIMA KASIH

Puji syukur kepada Allah SWT, terima kasih kepada Bapak Ahmad Syauqy S.Gz, MPH selaku pembimbing dan para reviewer yang telah membimbing penelitian ini hingga dapat terlaksana sampai akhir. Selain itu terima kasih kepada orang tua dan teman-teman atas dukungan yang telah diberikan selama penelitian ini berlangsung.
DAFTAR PUSTAKA

LAMPIRAN

Hasil Uji Laboratorium

<table>
<thead>
<tr>
<th>Kelompok</th>
<th>Kadar Trigliserida</th>
<th>Delta TG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-Test</td>
<td>Post-Test</td>
</tr>
<tr>
<td>K-1</td>
<td>36</td>
<td>72</td>
</tr>
<tr>
<td>K-2</td>
<td>51</td>
<td>44</td>
</tr>
<tr>
<td>K-3</td>
<td>27</td>
<td>38</td>
</tr>
<tr>
<td>K-4</td>
<td>54</td>
<td>48</td>
</tr>
<tr>
<td>K-5</td>
<td>83</td>
<td>70</td>
</tr>
<tr>
<td>K-6</td>
<td>74</td>
<td>54</td>
</tr>
<tr>
<td>K+1</td>
<td>143</td>
<td>96</td>
</tr>
<tr>
<td>K+2</td>
<td>53</td>
<td>38</td>
</tr>
<tr>
<td>K+3</td>
<td>57</td>
<td>29</td>
</tr>
<tr>
<td>K+4</td>
<td>63</td>
<td>167</td>
</tr>
<tr>
<td>K+5</td>
<td>143</td>
<td>116</td>
</tr>
<tr>
<td>K+6</td>
<td>158</td>
<td>65</td>
</tr>
<tr>
<td>Pa1</td>
<td>78</td>
<td>61</td>
</tr>
<tr>
<td>Pa2</td>
<td>73</td>
<td>72</td>
</tr>
<tr>
<td>Pa3</td>
<td>112</td>
<td>64</td>
</tr>
<tr>
<td>Pa4</td>
<td>41</td>
<td>61</td>
</tr>
<tr>
<td>Pa5</td>
<td>70</td>
<td>45</td>
</tr>
<tr>
<td>Pa6</td>
<td>50</td>
<td>41</td>
</tr>
<tr>
<td>Pb1</td>
<td>48</td>
<td>54</td>
</tr>
<tr>
<td>Pb2</td>
<td>68</td>
<td>47</td>
</tr>
<tr>
<td>Pb3</td>
<td>55</td>
<td>58</td>
</tr>
<tr>
<td>Pb4</td>
<td>59</td>
<td>59</td>
</tr>
<tr>
<td>Pb5</td>
<td>63</td>
<td>73</td>
</tr>
<tr>
<td>Pb6</td>
<td>37</td>
<td>69</td>
</tr>
</tbody>
</table>
REKAPITULASI BERAT BADAN DAN ASUPAN PAKAN

<table>
<thead>
<tr>
<th>Kelompok</th>
<th>Berat Badan (gram)</th>
<th>Asupan Makan (gram)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BB sebelum</td>
<td>BB saat</td>
</tr>
<tr>
<td>K-1</td>
<td>201.5</td>
<td>272.4</td>
</tr>
<tr>
<td>K-2</td>
<td>225.08</td>
<td>291.17</td>
</tr>
<tr>
<td>K-3</td>
<td>164.77</td>
<td>204.2</td>
</tr>
<tr>
<td>K-4</td>
<td>221.45</td>
<td>257.35</td>
</tr>
<tr>
<td>K-5</td>
<td>223.66</td>
<td>278.83</td>
</tr>
<tr>
<td>K-6</td>
<td>211.31</td>
<td>272.99</td>
</tr>
<tr>
<td>K+1</td>
<td>216.36</td>
<td>273.8</td>
</tr>
<tr>
<td>K+2</td>
<td>188.91</td>
<td>298.48</td>
</tr>
<tr>
<td>K+3</td>
<td>217.53</td>
<td>270.42</td>
</tr>
<tr>
<td>K+4</td>
<td>193.3</td>
<td>254.18</td>
</tr>
<tr>
<td>K+5</td>
<td>199.8</td>
<td>253.67</td>
</tr>
<tr>
<td>K+6</td>
<td>206.26</td>
<td>232.32</td>
</tr>
<tr>
<td>Pa1</td>
<td>214.58</td>
<td>274.25</td>
</tr>
<tr>
<td>Pa2</td>
<td>193.65</td>
<td>262.38</td>
</tr>
<tr>
<td>Pa3</td>
<td>216.08</td>
<td>281.11</td>
</tr>
<tr>
<td>Pa4</td>
<td>211.24</td>
<td>275.56</td>
</tr>
<tr>
<td>Pa5</td>
<td>264.18</td>
<td>312.62</td>
</tr>
<tr>
<td>Pa6</td>
<td>219.26</td>
<td>292.2</td>
</tr>
<tr>
<td>Pb1</td>
<td>213.21</td>
<td>294.06</td>
</tr>
<tr>
<td>Pb2</td>
<td>225.07</td>
<td>288.84</td>
</tr>
<tr>
<td>Pb3</td>
<td>217.67</td>
<td>278.6</td>
</tr>
<tr>
<td>Pb4</td>
<td>196.56</td>
<td>241.23</td>
</tr>
<tr>
<td>Pb5</td>
<td>207.07</td>
<td>272.48</td>
</tr>
<tr>
<td>Pb6</td>
<td>212.04</td>
<td>292.45</td>
</tr>
</tbody>
</table>
HASIL UJI STATISTIK

1. Berat Badan Sebelum dan Saat Pemberian Jus Biji Pepaya

Tests of Normality

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>Kolmogorov-Smirnov(^a)</th>
<th>Shapiro-Wilk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rata2_BB_0 Sebelum</td>
<td>Statistic</td>
<td>df</td>
</tr>
<tr>
<td>0</td>
<td>.228</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>.191</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>.343</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>.171</td>
<td>6</td>
</tr>
<tr>
<td>Rata2_BB_0 Saat</td>
<td>.289</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>.166</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>.210</td>
<td>6</td>
</tr>
</tbody>
</table>

\(a\). Lilliefors Significance Correction

* This is a lower bound of the true significance.

Paired t-test

<table>
<thead>
<tr>
<th>Pair</th>
<th>Paired Differences</th>
<th>95% Confidence Interval of the Difference</th>
<th>t</th>
<th>df</th>
<th>Sig. (2-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>Std. Deviation</td>
<td>Std. Error Mean</td>
<td>Lower</td>
<td>Upper</td>
<td></td>
</tr>
<tr>
<td>Pair 1</td>
<td>BB_K_Neg_Pre - BB_K_Neg_Post</td>
<td>-54.86117</td>
<td>14.33788</td>
<td>5.85342</td>
<td>-69.90785</td>
</tr>
<tr>
<td>Pair 2</td>
<td>BB_K_Pos_Pre - BB_K_Pos_Post</td>
<td>-60.11749</td>
<td>27.21856</td>
<td>11.11193</td>
<td>-88.68161</td>
</tr>
<tr>
<td>Pair 3</td>
<td>BB_Pa_Pre - BB_Pa_Post</td>
<td>-63.18777</td>
<td>8.48543</td>
<td>3.46416</td>
<td>-72.09268</td>
</tr>
<tr>
<td>Pair 4</td>
<td>BB_Pb_Pre - BB_Pb_Post</td>
<td>-66.00490</td>
<td>13.52414</td>
<td>5.52121</td>
<td>-80.19761</td>
</tr>
</tbody>
</table>
2. Perbedaan Perubahan Berat Badan Sebelum dan Saat Pemberian Jus Biji Pepaya antar Keempat Kelompok

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>Kolmogorov-Smirnov<sup>a</sup></th>
<th>Shapiro-Wilk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statistic</td>
<td>df</td>
</tr>
<tr>
<td>Delta_BB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>.192</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>.322</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>.220</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>.190</td>
<td>6</td>
</tr>
</tbody>
</table>

^a. Lilliefors Significance Correction

* This is a lower bound of the true significance.

Test of Homogeneity of Variances

<table>
<thead>
<tr>
<th>Delta_BB</th>
<th>Levene Statistic</th>
<th>df1</th>
<th>df2</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.857</td>
<td>3</td>
<td>20</td>
<td>.479</td>
</tr>
</tbody>
</table>

ANOVA

<table>
<thead>
<tr>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Groups</td>
<td>409.752</td>
<td>3</td>
<td>136.584</td>
<td>.455</td>
</tr>
<tr>
<td>Within Groups</td>
<td>6006.647</td>
<td>20</td>
<td>300.332</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>6416.400</td>
<td>23</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Asupan Pakan Selama Pemberian Jus Biji Pepaya

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>Kolmogorov-Smirnov<sup>a</sup></th>
<th>Shapiro-Wilk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statistic</td>
<td>df</td>
</tr>
<tr>
<td>Rata2_Asupan_</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>.167</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>.167</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>.237</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>.392</td>
<td>6</td>
</tr>
</tbody>
</table>

^a. Lilliefors Significance Correction

* This is a lower bound of the true significance.
Uji Perbedaan Asupan Selama Pemberian Jus Biji Pepaya Antar Kelompok

ANOVA

<table>
<thead>
<tr>
<th>ASUPAN_SAAT</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Groups</td>
<td>25.044</td>
<td>3</td>
<td>8.348</td>
<td>17.267</td>
<td>.000</td>
</tr>
<tr>
<td>Within Groups</td>
<td>9.670</td>
<td>20</td>
<td>.483</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>34.714</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Post Hoc Tests

Multiple Comparisons

<table>
<thead>
<tr>
<th>ASUPAN_SAAT</th>
<th>LSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Difference</td>
<td>Std. Error</td>
</tr>
<tr>
<td>(I) (J) KELOM</td>
<td>(I-J) KELOM</td>
</tr>
<tr>
<td>0 1</td>
<td>.84615</td>
</tr>
<tr>
<td>2 2</td>
<td>-2.21795</td>
</tr>
<tr>
<td>3 3</td>
<td>-2.51282</td>
</tr>
<tr>
<td>1 0</td>
<td>.84615</td>
</tr>
<tr>
<td>2 2</td>
<td>-1.37179</td>
</tr>
<tr>
<td>3 3</td>
<td>-1.6667</td>
</tr>
<tr>
<td>2 0</td>
<td>2.21795</td>
</tr>
<tr>
<td>1 1</td>
<td>1.37179</td>
</tr>
<tr>
<td>3 3</td>
<td>-.2948</td>
</tr>
<tr>
<td>3 0</td>
<td>2.51282</td>
</tr>
<tr>
<td>1 1</td>
<td>1.6667</td>
</tr>
<tr>
<td>2 2</td>
<td>-.2948</td>
</tr>
</tbody>
</table>

* The mean difference is significant at the 0.05 level.
4. Uji beda kadar trigliserida setelah pemberian pakan tinggi kolesterol antara kelompok yang tidak mendapat pakan tinggi kolesterol K(−) dengan kelompok yang mendapat pakan tinggi kolesterol (K(+), P1, P2).

Tests of Normality

<table>
<thead>
<tr>
<th>Kelompok</th>
<th>Kolmogorov-Smirnov<sup>a</sup></th>
<th>Shapiro-Wilk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statistic</td>
<td>df</td>
</tr>
<tr>
<td>TG_Pre</td>
<td>0</td>
<td>.170</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>.258</td>
</tr>
<tr>
<td>TG_PRE_LG10</td>
<td>0</td>
<td>.177</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>.175</td>
</tr>
</tbody>
</table>

^a Lilliefors Significance Correction

*. This is a lower bound of the true significance.

Keterangan:

- Kelompok 0 : tidak mendapat pakan tinggi kolesterol (K(−))
- Kelompok 1 : mendapat pakan tinggi kolesterol (K(+), P1, P2)

T-Test

Group Statistics

<table>
<thead>
<tr>
<th>Kelompok</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>TG_Pre</td>
<td>0</td>
<td>6</td>
<td>54.17</td>
<td>21.461</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>18</td>
<td>76.17</td>
<td>37.001</td>
</tr>
</tbody>
</table>

Independent Samples Test

<table>
<thead>
<tr>
<th>Kelompok</th>
<th>Levene's Test for Equality of Variances</th>
<th>t-test for Equality of Means</th>
<th>95% Confidence Interval of the Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>Sig.</td>
<td>t</td>
</tr>
<tr>
<td>TG_Pre</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.439</td>
<td>.243</td>
</tr>
<tr>
<td></td>
<td>Equal variances assumed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Equal variances not assumed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5. Kadar Trigliserida Sebelum dan Setelah Pemberian Jus Biji Pepaya

Tests of Normality

<table>
<thead>
<tr>
<th>KELOM POK</th>
<th>Kolmogorov-Smirnov a</th>
<th>Shapiro-Wilk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statistic df Sig.</td>
<td>Statistic df Sig.</td>
</tr>
<tr>
<td>TG_Pre</td>
<td>.170 6 .200 .957 6 .794</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>.290 6 .126 .783 6 .041</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>.217 6 .200 .940 6 .662</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>.167 6 .200 .965 6 .855</td>
<td></td>
</tr>
<tr>
<td>TG_Post</td>
<td>.203 6 .200 .907 6 .420</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>.151 6 .200 .948 6 .727</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>.288 6 .131 .905 6 .405</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>.208 6 .200 .960 6 .821</td>
<td></td>
</tr>
</tbody>
</table>

a. Lilliefors Significance Correction

Tests of Normality

<table>
<thead>
<tr>
<th>Kolmogorov-Smirnov a</th>
<th>Shapiro-Wilk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistic df Sig.</td>
<td>Statistic df Sig.</td>
</tr>
<tr>
<td>Trans_TG_Pre_1</td>
<td>.306 6 .083 .796 6 .054</td>
</tr>
</tbody>
</table>

Paired t-test

Paired Samples Test

<table>
<thead>
<tr>
<th>Paired Differences</th>
<th>95% Confidence Interval of the Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>Std. Deviation</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Pair 1</td>
<td>TG_K_Negatif_Pre - TG_K_Negatif_Post</td>
</tr>
<tr>
<td>Pair 2</td>
<td>TG_K_Positif_Pre - TG_K_Positif_Post</td>
</tr>
<tr>
<td>Pair 3</td>
<td>TG_P1_Pre - TG_P1_Post</td>
</tr>
<tr>
<td>Pair 4</td>
<td>TG_P2_Pre - TG_P2_Post</td>
</tr>
</tbody>
</table>
6. Perbedaan Perubahan Kadar Trigliserida Sebelum dan Setelah Pemberian Jus Biji Pepaya antar Keempat Kelompok

<table>
<thead>
<tr>
<th>KELOM POK</th>
<th>Kolmogorov-Smirnov<sup>a</sup></th>
<th>Shapiro-Wilk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta_TG</td>
<td>Statistic</td>
<td>df</td>
</tr>
<tr>
<td>Delta_TG</td>
<td>0</td>
<td>.286</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>.317</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>.139</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>.218</td>
</tr>
</tbody>
</table>

^a Lilliefors Significance Correction

* This is a lower bound of the true significance.

Test of Homogeneity of Variances

<table>
<thead>
<tr>
<th>Delta_TG</th>
<th>Levene Statistic</th>
<th>df1</th>
<th>df2</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.671</td>
<td>3</td>
<td>20</td>
<td>.205</td>
</tr>
</tbody>
</table>

ANOVA

<table>
<thead>
<tr>
<th>Delta_TG</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Groups</td>
<td>2088.458</td>
<td>3</td>
<td>696.153</td>
<td>.503</td>
<td>.685</td>
</tr>
<tr>
<td>Within Groups</td>
<td>27703.500</td>
<td>20</td>
<td>1385.175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>29791.958</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>