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Abstract — There are three nonparametric regression
methods covered in this section. These are Moving
Average Filtering-Based Smoothing, Local Regression
Smoothing, and Kernel Smoothing Methods. The Moving
Average Filtering-Based Smoothing methods discussed
here are Moving Average Filtering and Savitzky-Golay
Filtering. While, the Local Regression Smoothing
techniques involved here are Lowess and Loess. In this
type of smoothing, Robust Smoothing and Upper-and-
Lower Smoothing are also explained deeply, related to
Lowess and Loess. Finally, the Kernel Smoothing Method
involves three methods discussed. These are Nadaraya-
Watson Estimator, Priestley-Chao Estimator, and Local
Linear Kernel Estimator. The advantages of all above
methods are discussed as well as the disadvantages of the
methods.

Keywords nonparametric regression smoothing, moving
average, estimator, curve construction.

. INTRODUCTION

Smoothing Method, completed with its variants veid
also analyzed. The advantages of all above methds
discussed as well as the disadvantages of the d&tho

Il. MovING AVERAGE FILTERING-BASED SMOOTHING

A moving average is defined as an artificially
constructed time series in which the value for eegi
time period is replaced by the mean of that valod a
the values for some number of preceding and
succeeding time periods [6].

Moving average filtering is the former of smoothing
techniques. A moving average filter smooths data by
replacing each data point with the average of the
neighboring data points defined within the spanisTh
process is equivalent to lowpass filtering with the
response of the smoothing given by the difference
equation:

Il

(yi+N)+y(i+N-1)+..+y({i-N))

¥eli) = —
Nowadays, maybe the names “lowess” and “loess 2N+1
which are derived from the term “locally weighted
scatterplot smoothing,” as both methods use localyhereyg(i) is the smoothed value for the ith data point,
weighted linear regression to smooth data, is ofted is the number of neighboring data points on either
discussed. Finally, the methods are differentistethe  Side ofyg(i), and N+1 is the span.
model used in the regression: lowess uses a linear The moving average smoothing method used
polynomial, while loess uses a quadratic polynof@al commonly follows these rules: the span must be odd;
A very popular technique for curve fitting the data point to be smoothed must be at the cefiter
complicated data sets is callEmivess([1], [2]) (locally the span; the span is adjusted for data pointscenatot
weighted smoothing scatter plots, sometimes call@fcommodate the specified number of neighbors on
loesy. In lowess, the data is modeled locally by #ither side; and that the end points are not snedboth
polynomial weighted least squares regression, tH€cause a span cannot be defined.
weights giving more importance to the local datanso The smoothed values and spans for the first fota da
This method of approximating data sets is caltedlly —Points of a generated data set are shown in Fig. 1.
weighted polynomial regressiofihe power is lowess is ~ The newer method based on moving average
that you do not require a fit function to fit thatd (a filtering is Savitzky-Golay filtering. This methazan be
smoothing parameter and degree of the local pammethought of as a generalized moving average. Yoiveler
(usually 1 or 2) is supplied instead). The disadagain the filter coefficients by performing an unweighted
using lowess is that you do not end up with anyaital linear least squares fit using a polynomial of segi
fit function (yes, this was an advantage as wdllyo, degree. For this reason, a Savitzky-Golay filtealso
lowess works best on large, densely sampled dega se called a digital smoothing polynomial filter or eakt
However, in this paper, we will also discuss othegquares smoothing filter. Note that a higher degree
smoothing methods, started with Moving AveragePolynomial makes it possible to achieve a high llefe
Based Smoothing, Local Regression Smoothing, whegghoothing without attenuation of data features.
Lowess and Loess are involved here, and finallynkke The Savitzky-Golay filtering method is often used
with frequency data or with spectroscopic (peakada
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Figure 1. Plot (a) indicates that the first datanpis not smoothed because a span cannot be gotestr Plot (b) indicates that the second datatpoin
is smoothed using a span of three. Plots (c) anuhdicate that a span of five is used to calculaéesmoothed value.

For frequency data, the method is effective at The Savitzky-Golay smoothing method used
preserving the high-frequency components of theadig commonly follows these rules: the span must be tull;
For spectroscopic data, the method is effective gtolynomial degree must be less than the span; trd
preserving higher moments of the peak such asiilee | data points are not required to have uniform sgacin
width. By comparison, the moving average filterdemno Normally, Savitzky-Golay filtering requires uniform
filter out a significant portion of the signal’'s gi- spacing of the predictor data. However, the albarit
frequency content, and it can only preserve theetow provided supports nonuniform spacing. Therefom) y
moments of a peak such as the centroid. Howeveare not required to perform an additional filteristep to
Savitzky-Golay filtering can be less successfntta  create data with uniform spacing.
moving average filter at rejecting noise.

The newer method based on moving average filterin
is Savitzky-Golay filtering. This method can beught |
of as a generalized moving average. You derivefiltes ol
coefficients by performing an unweighted linearstea 200 ” 1

.F‘., i [ il
squares fit using a polynomial of a given degre®.this  off ‘ W'V%'ﬂ"w'h"1ma1 lwm_f,;i%‘{{f# gl P o

reason, a Savitzky-Golay filter is also called gitdi 1 2 3
— 5S-G guadratic

Savitzky-Golay Smoothing

hmIJMI‘WW'nﬁ!'wJ 'I‘ ' F|

(@)

smoothing polynomial filter or a least squares sthiog .
filter. Note that a higher degree polynomial makes

possible to achieve a high level of smoothing witho y “ g"\,\ -

attenuation of data features. o St LA 1
The Savitzky-Golay filtering method is often used : : : i it |

with frequency data or with spectroscopic (peakjada ,, ) .

For frequency data, the method is effective atqmaésg

-+ data
2 — S-G quartic

the high-frequency components of the signal. Fo | ,/ x"‘\\\ N\ i
spectroscopic data, the method is effective atepvasy x| //“’ N [ I‘-‘”".‘I l
higher moments of the peak such as the line wiith. o~ ‘ “WT\/ S pr o
comparison, the moving average filter tends teffitiut a i 2 H 4 5 5 7 E

(©

significant portion of the signal’s high-frequenocgntent,

and it can only preserve the lower _moments Of_d( Pearigure 2. Savitzky-Golay Smoothing (a) the noistadéb) the result of
such as the centroid. However, Savitzky-Golay riiftg  smoothing with a quadratic polynomial, without #agled noise; (c) the
can be less successful than a moving average filter result of smoothing with a quartic polynomial, ittt the added noise
rejecting noise.
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Figure 3. The graph on the left is a seeminglydgiito(a = 0:2); the graph in the middle has been over smocfhed0: 4); the graph on the right is
under smoothedx(= 0:05).

The plot shown in Fig. 2 displays generated Gauassia‘choppy” fit, for which there is too much local vation.
data and several attempts at smoothing using thdeither of these situations is desirable.
Savitzky-Golay method. The data is very noisy amel t So the question becomes, how can we choose the best
peak widths vary from broad to narrow. The spagnjgal  value fora? Since there is interplay between the local
to 5% of the number of data points. polynomial that is chosen and the smoothing paremet

From Fig. 2, it can be shown that plot (a) showes ththe first thing we should say is that typically theal
noisy data. To more easily compare the smoothedtses polynomial is kept as simple as possible, and the
plots (b) and (c) show the data without the addeiden smoothing parameter is then varied. So begin your
Plot (b) shows the result of smoothing with a quadraticanalysis with a linear local polynomial, and themywthe
polynomial. Notice that the method performs poddy  smoothing parameter until your curve approximates t
the narrow peaks. Plot (c) shows the result of shing  data well. Typically, smoothing parameters in thage
with a quartic polynomial. In general, higher degre 0.2—0.5 will work well.

polynomials can more accurately capture the heights We cannot measure the distance of the fit to the da
widths of narrow peaks, but can do poorly at smogth points as a measure of how good our fit is, sire t
wider peaks. would always select a “choppy” fit as the best. kiew
there are random fluctuations in the data, but tiyamy
Ill. LocAL REGRESSIONSMOOTHING PROCEDURE the degree of these fluctuations can be difficDhe way

is to define a function to minimize which incorptas, to
The curve obtained from a loess model is governed bsome degree, the closeness of the fit to the daitatsp
two parametersy andA. The parameten is a smoothing and a penalty function which increases for a smeyotif
parameter. We restrict our attention to valuesoof function.
between zero and one, where high values doyield The local regression smoothing process followsehes
smoother curves. Cleveland [5] addresses the caséeps for each data point [4].
wherea is greater than one. The second paramater 1. Compute theegression weightfor each data point in

determines the degree of the local regression. Ilysiza the span. The weights are given by the tricube
first or second degree polynomial is used,Ase 1 or function shown below.
A=2. o x — ;]33

The spirit of lowess however, is that simple local w; = (l_ ) )

functions are used to approximate globally compdida
data sets. To use cubic polynomials or other more
complex functions for the local approximation, aliigh . ) .

. : o neighbors ofx as defined by the span, ad(k) is the
aIIovv_ed ”|n_ the theory, v_vould 9o agaln_st the *simioieal distance along the abscissa frano the most distant
function” idea underlying lowess. Fig. 3 shows some

. . ' predictor value within the span. The weights have t
lk;);gllgo?;naodr;?glc Lowess fits to data that is naideled characteristics. Firstly, the data point to be sthed

Choosing the degree of the local polynomial has the largest weight and the most influence en th

AR L fit; and secondly, data points outside the sparehav

approximation is easy—most applications choose e zero weight and no influence on the fit

2. If you have.an extremely dense data set, chgdble_ . A weighted linear least squares regression is
local ponnom@I to.be linear may alsp k.Je appragria performed. For lowess, the regression uses a first
Actually °h°°.S'T‘9 either 1 or 2 o bggm IS a godela.. degree polynomial. For loess, the regression uses a
The more difficult task is choosing the smoothing second degree polynomial

parameten. We can see that over or under-smoothing 3. The smoothed value is. given by the weighted

the data can maKe your lowess fit not as good asnay regression at the predictor value of interest.

like. Oversmoothing reveals general trends, butofes

the local variations. Under smoothing results in a

Where x is the predictor value associated with the
response value to be smoothed,are the nearest

If the smooth calculation involves the same nundfer
neighboring data points on either side of the simedbt
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Figure 4. The weight function for the leftmostalabint and for an interior data point.

Lowess Smoothing

a0 80
*« Data . * Data .
X Smoothed value »__Smoothed value
60 . 60 .
LI ..
40 40
. L]
u - - -
- -
20 . 20 . 1
b S S
o] 0
0 2 4 [ 8 0 2 4 6 8
(@ (b)
80 80
+« Data . s Data .
X Smoothed value X Smoothed value
60 . 60 .
. - . L] - »
40 40
. L]
u - - -
20 B * 20 » *
a1 xS
.
0 L 0
0 2 4 6 8 0 2 4 6 8
(c) (d)

Figure 5. Lowess smoothing (a) and (b) use an amtnc weight function, (c) and (d) use a symmetr&ght function.

data point, the weight function is symmetric. Hoeeuf ~ smoothing process, the span never changes. Forpdéxam
the number of neighboring points is not symmetkiow when you smooth the data point with the smallest
the smoothed data point, then the weight functioonat predictor value, the shape of the weight functien i
symmetric. Note that unlike the moving averagetruncated by one half, the leftmost data poinhi span

has the largest weight, and all the neighboringnggoare  weight function use; Otherwise, (c) and (d) for syatric

to the right of the smoothed value. The weight fiomc  weight function use.

for an end point and for an interior point is showrkig. Notice that the span does not change as the
4 for a span of 31 data points. Using the lowesthate smoothing process progresses from data point ta dat
with a span of five, the smoothed values and aateti point. However, depending on the number of nearest
regressions for the first four data points of aeggated neighbors, the regression weight function might bet
data set are shown in Fig. 5(a) and (b) for an asgtric = symmetric about the data point to be smoothed.
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For the loess method, the graphs would look th&. Smooth the data again using the robust weigtits.
same except the smoothed value would be genergtad b final smoothed value is calculated using both teall
second-degree polynomial. regression weight and the robust weight.

4. Repeat the previous two steps for a total o fiv
A. Robust Smoothing Procedure iterations.
If data contains outliers, the smoothed values can The smoothing results of the lowess procedure are
become distorted, and not reflect the behaviohefttulk  compared as shown in Fig. 6 to the results of thrist
of the neighboring data points. To overcome thidowess procedure for a generated data set thahiosra
problem, you can smooth the data using a robustingle outlier. The span for both procedures isdaia

procedure that is not influenced by a small fractaf
outliers.
There is a robust version for both the lowess apdd

points.
From Fig. 6, it can be shown that plot (a) shovat th
the outlier influences the smoothed value for saiver

smoothing methods. These robust methods include arearest neighbors. Plot (b) suggests that the uaisiof

additional calculation of robust weights, which

isthe outlier is greater than six median absolutdadiens.

resistant to outliers. The robust smoothing procedu Therefore, the robust weight is zero for this dagént.

follows these steps [4].
1. Calculate the residuals from the smoothing @doce
described in the previous section.

Plot (c) shows that the smoothed values neighbdfieg
outlier reflect the bulk of the data.

2. Compute theobust weightgor each data point in the B. Upper and Lower Smooths
span. The weights are given by the bisquare functio

shown below.

_ |a-t/6MAD?) || <6MAD
0 7|2 6MAD

w;

wherer; is the residual of theth data point produced
by the regression smoothing procedure, MAD is
the median absolute deviation of the residuals:

MAD = median(r)

The loess smoothing method provides a model of the
middle of the distribution ofy given X. This can be
extended to give us upper and lower smooths [7grerh
the distance between the upper and lower smooths
indicates the spread. The procedure for obtainhmg t
upper and lower smooths follows.

1. Compute the fitted valuey§, using loess or robust
loess.
2. Calculate the residuag =y, = Y,.

The median absolute deviation is a measure of ho®. Find the positive residuals,” and the corresponding

spread out the residuals arer;lfs small compared to
6MAD, then the robust weight is close to 1.rjfis

greater than MAD, the robust weight is 0 and the 4
associated data point is excluded from the smooth’

calculation

Robust Lowess Smoothing
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Figure 6. Robust Lowess smoothing
(a) outlier influences the smoothed value for saveearest neighbors;
(b) residual of the outlier is greater than six raadabsolute deviations;
(c) the smoothed values neighboring the outlidecéthe bulk of the
data.

X and Y, values. Denote these pairs @', V') .

Find the negative residual and the corresponding

X and Y, values. Denote these pairs @, Y, ) .

5. Smooth the(X",£") and add the fitted values from
that smooth toy," . This is the upper smoothing.

6. Smooth the(X ,& ) and add the fitted values from

this smooth toy; . This is the lower smoothing.

In this example, we generate some data to show how
to get the upper and lower loess smooths. Theseatat
obtained by adding noise to a sine wave. The riegult
middle, upper and lower smooths are shown in Fjg. 7
and we see that the smooths do somewhat follomea si
wave. It is also interesting to note that the upaed
lower smooths indicate the symmetry of the noist the
constancy of the spread.

IV. KERNEL SMOOTHING METHODS

This section follows the treatment of kernel
smoothing methods given in Wand and Jones [8]. We
now present a class of smoothing methods based on
kernel estimators that are similar in spirit todsgin that
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they fit the data in a local manner. These areedddical n

polynomial kernel estimatorsWe first define these Z K (X;—x)Y,
estimators in general and then present $pecial cases: ~ i1

the Nadaraya-Watson estimatoand the local linear fuw(x) = =

kernel estimatar Z K (X, ~x)

With local polynomial kernel estimators, we obtain
an estimatg/,at a point X,by fitting a d-th degree
polynomial using weighted least squares. As witliséy Note that this is for the case of a random desighen

we want to weight the points based on theiradis¢ to  the design points are fixed, then tHé, is replaced by
25 T T T T

i=1

X , but otherwise the expression is the same [8]. The

. smooth from the Nadarya-Watson estimator is shawn i
. Figure 8.

Smooth from the Nadarya—Watson Estimator

Figure 7. The data for this example are generaeatiding noise to a

sine wave. The middle curve is the usual loess §madhile the other ot . J
curves are obtained using the upper and lower Ees®ths. *

. _3 . ‘ . ‘ ‘ .
X,. Those points that are closer should have greatt 0 2 4 6 8 10 12 14

weight, \.Nhlle pomts further a_lway have less _vvelng. Figure 8. Smoothing obtained from the Nadarya-Watsiimator with
accomplish this, we use weights that are givenhgy t |2

height of a kernel function that is centeredxgt As with

probability density estimation, the kernel has advedth
or smoothing parameter representedhbyrhis controls
the degree of influence points will have on thealdd. If

h is small, then the curve will be wiggly, because th

estimate will depend heavily on points closestda In

There is an alternative estimator that can be used
the fixed designcase. This is called the Priestley-Chao
kernel estimator [11].

B. Priestley-Chadtstimator

this case, the model is trying to fit to local vesu(i.e., The Priestley-Chao is given below.

our ‘neighborhood’ is small), and we have overirfdt "

Larger values foh means that points further away will rh‘}:c(r) _ lz (om0 I}K(-" *-"J]UV
have similar influence as points that are closejali.e., h£= | h )

the ‘neighborhood’ is large). With a large enoughwe

o ) where thex,,1 =1,...,n, represent a fixed set of ordered
would be fitting the line to the whole data set. % L P

nonrandom numbers.

A. Nadaraya-Watson Estimator . .
C. Local Linear KerneEstimator

Some explicit expressions exist wher= 0 andd = ) . . .
1. Whend is zero, we fit a constant function locally at a _ When we fit a straight line at a poirtthen we are
given point . This estimator was developed sepraye ~ USing 2 local linear estimator. This _correspondsm)
Nadaraya [9] and Watson [10]. The Nadaraya-WatsoR@Se whered = 1, so our estimate is obtained as the

estimator is given below. solutions,@0 and ﬁlthat minimize the following,

Z Ku(X; = x)(Y; =By - BI(X;—IJ]z-

i=1

We give an explicit formula for the estimator below
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> oy = Ly 15200 - BN ) HG o - B, V. ConcLusions

(X — 5 ()

Wyl tns

There are two common types of smoothing methods:
n filtering (averaging) and local regression. Howevbere
5,(x) = 1 ngf—‘er,,(Xf—‘\-)_ are some methods which are arisen later, whichbean
" classified as Kernel Smoothing, For which, now va& c
divide smoothing methods into three. Each smoothing

As before, the fixed design case is obtained b)r;nethod requires apan The span defines a window of

. . . . . neighborin oints to include in the smoothin
replacing the random variabl&; with the fixed point calgulationgfo:3 each data point. This window movegs

X . across the data set as the smoothed response igalue
mgalculated for each predictor value. A large span
can arise near the boundary or extreme edges of t creases the smoothness but decreases the resoditi
sample. This happens because the kernel windoWweat tt e smoothed da_ta set, while a small_span decrehses
boundaries has missing data. In other words, wee ha\§moothness but increases the resolution of the trado
weights from the kernel, but no data to associath w data set. The optimal span value depends on yaarsga

them. Wand and Jones [8] show that the local Iineaz?nd the smoothing method, and usually requires some

estimator behaves well in most cases, even at theE?(penmentatlon to find.
boundaries. If the Nadaraya-Watson estimator id,use
then modified kernels are needed ([8],[12]).

i=1

When using the kernel smoothing methods, proble

The local linear estimator is applied to the same REFERENCES
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Figure 9. Smoothing obtained from the local linestimator.
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