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Abstract – There are three nonparametric regression 
methods covered in this section. These are Moving 
Average Filtering-Based Smoothing, Local Regression 
Smoothing, and Kernel Smoothing Methods.  The Moving 
Average Filtering-Based Smoothing methods discussed 
here are Moving Average Filtering and Savitzky-Golay 
Filtering. While, the Local Regression Smoothing 
techniques involved here are Lowess and Loess. In this 
type of smoothing, Robust Smoothing and Upper-and-
Lower Smoothing are also explained deeply, related to 
Lowess and Loess. Finally,  the Kernel Smoothing Method 
involves three methods discussed. These are Nadaraya-
Watson Estimator, Priestley-Chao Estimator, and Local 
Linear Kernel Estimator. The advantages of all above 
methods are discussed as well as the disadvantages of the 
methods. 
 
Keywords: nonparametric regression, smoothing, moving 
average, estimator, curve construction.  

 
I. INTRODUCTION 

 
Nowadays, maybe the names “lowess” and “loess” 

which are derived from the term “locally weighted 
scatterplot smoothing,” as both methods use locally 
weighted linear regression to smooth data, is often 
discussed. Finally, the methods are differentiated by the 
model used in the regression: lowess uses a linear 
polynomial, while loess uses a quadratic polynomial [3]. 

A very popular technique for curve fitting 
complicated data sets is called lowess ([1], [2]) (locally 
weighted smoothing scatter plots, sometimes called 
loess). In lowess, the data is modeled locally by a 
polynomial weighted least squares regression, the 
weights giving more importance to the local data points. 
This method of approximating data sets is called locally 
weighted polynomial regression. The power is lowess is 
that you do not require a fit function to fit the data (a 
smoothing parameter and degree of the local parameter 
(usually 1 or 2) is supplied instead). The disadvantage in 
using lowess is that you do not end up with an analytic 
fit function (yes, this was an advantage as well). Also, 
lowess works best on large, densely sampled data sets.  

However, in this paper, we will also discuss other 
smoothing methods, started with Moving Average-
Based Smoothing, Local Regression Smoothing, where 
Lowess and Loess are involved here, and finally, Kernel 

 
 

Smoothing Method, completed with its variants will be 
also analyzed. The advantages of all above methods are 
discussed as well as the disadvantages of the methods. 

  
 
II.  MOVING AVERAGE FILTERING-BASED SMOOTHING 

 
A moving average is defined as an artificially 

constructed time series in which the value for a given 
time period is replaced by the mean of that value and 
the values for some number of preceding and 
succeeding time periods [6]. 

Moving average filtering is the former of smoothing 
techniques. A moving average filter smooths data by 
replacing each data point with the average of the 
neighboring data points defined within the span. This 
process is equivalent to lowpass filtering with the 
response of the smoothing given by the difference 
equation: 

 
 
where ys(i) is the smoothed value for the ith data point, 
N is the number of neighboring data points on either 
side of ys(i), and 2N+1 is the span. 

The moving average smoothing method used 
commonly follows these rules: the span must be odd; 
the data point to be smoothed must be at the center of 
the span; the span is adjusted for data points that cannot 
accommodate the specified number of neighbors on 
either side; and that the end points are not smoothed 
because a span cannot be defined. 

The smoothed values and spans for the first four data 
points of a generated data set are shown in Fig. 1. 

The newer method based on moving average 
filtering is Savitzky-Golay filtering. This method can be 
thought of as a generalized moving average. You derive 
the filter coefficients by performing an unweighted 
linear least squares fit using a polynomial of a given 
degree. For this reason, a Savitzky-Golay filter is also 
called a digital smoothing polynomial filter or a least 
squares smoothing filter. Note that a higher degree 
polynomial makes it possible to achieve a high level of 
smoothing without attenuation of data features. 

The Savitzky-Golay filtering method is often used 
with frequency data or with spectroscopic (peak) data.  
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Figure 1. Plot (a) indicates that the first data point is not smoothed because a span cannot be constructed. Plot (b) indicates that the second data point 
is smoothed using a span of three. Plots (c) and (d) indicate that a span of five is used to calculate the smoothed value. 

 
For frequency data, the method is effective at 

preserving the high-frequency components of the signal. 
For spectroscopic data, the method is effective at 
preserving higher moments of the peak such as the line 
width. By comparison, the moving average filter tends to 
filter out a significant portion of the signal’s high-
frequency content, and it can only preserve the lower 
moments of a peak such as the centroid. However,  
Savitzky-Golay  filtering can be less successful than a 
moving average filter at rejecting noise. 

The newer method based on moving average filtering 
is Savitzky-Golay filtering. This method can be thought 
of as a generalized moving average. You derive the filter 
coefficients by performing an unweighted linear least 
squares fit using a polynomial of a given degree. For this 
reason, a Savitzky-Golay filter is also called a digital 
smoothing polynomial filter or a least squares smoothing 
filter. Note that a higher degree polynomial makes it 
possible to achieve a high level of smoothing without 
attenuation of data features. 

The Savitzky-Golay filtering method is often used 
with frequency data or with spectroscopic (peak) data. 
For frequency data, the method is effective at preserving 
the high-frequency components of the signal. For 
spectroscopic data, the method is effective at preserving 
higher moments of the peak such as the line width. By 
comparison, the moving average filter tends to filter out a 
significant portion of the signal’s high-frequency content, 
and it can only preserve the lower moments of a peak 
such as the centroid. However, Savitzky-Golay filtering 
can be less successful than a moving average filter at 
rejecting noise. 

The Savitzky-Golay smoothing method used 
commonly follows these rules: the span must be odd; the 
polynomial degree must be less than the span; and  the 
data points are not required to have uniform spacing. 

Normally, Savitzky-Golay filtering requires uniform 
spacing of the predictor data. However, the algorithm 
provided  supports nonuniform spacing. Therefore, you 
are not required to perform an additional filtering step to 
create data with uniform spacing.  

 

 
 
Figure 2. Savitzky-Golay Smoothing (a) the noisy data; (b) the result of 
smoothing with a quadratic polynomial, without the added noise; (c) the 
result of smoothing with a quartic polynomial, without the added noise 
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Figure 3.  The graph on the left is a seemingly good fit (α = 0:2); the graph in the middle has been over smoothed (α = 0:4); the graph on the right is 
under smoothed (α = 0:05). 

 
 

The plot shown in Fig. 2 displays generated Gaussian 
data and several attempts at smoothing using the 
Savitzky-Golay method. The data is very noisy and the 
peak widths vary from broad to narrow. The span is equal 
to 5% of the number of data points. 

From Fig. 2, it can be shown that plot (a) shows the 
noisy data. To more easily compare the smoothed results, 
plots (b) and (c) show the data without the added noise. 
Plot (b) shows the result of smoothing with a quadratic 
polynomial. Notice that the method performs poorly for 
the narrow peaks. Plot (c) shows the result of smoothing 
with a quartic polynomial. In general, higher degree 
polynomials can more accurately capture the heights and 
widths of narrow peaks, but can do poorly at smoothing 
wider peaks. 
 

III.  LOCAL REGRESSION SMOOTHING PROCEDURE 
 

The curve obtained from a loess model is governed by 
two parameters, α and λ. The parameter α is a smoothing 
parameter. We restrict our attention to values of α 
between zero and one, where high values for α yield 
smoother curves. Cleveland [5] addresses the case 
where α is greater than one. The second parameter λ 
determines the degree of the local regression. Usually, a 
first or second degree polynomial is used, so λ = 1 or 
λ = 2. 

The spirit of lowess however, is that simple local 
functions are used to approximate globally complicated 
data sets. To use cubic polynomials or other more 
complex functions for the local approximation, although 
allowed in the theory, would go against the “simple local 
function” idea underlying lowess. Fig. 3 shows some 
locally quadratic Lowess fits to data that is not modeled 
by a polynomial. 

Choosing the degree of the local polynomial 
approximation is easy–most applications choose it to be 
2. If you have an extremely dense data set, choosing the 
local polynomial to be linear may also be appropriate. 
Actually choosing either 1 or 2 to begin is a good idea. 
The more difficult task is choosing the smoothing 
parameter α. We can see that over or under-smoothing 
the data can make your lowess fit not as good as you may 
like. Oversmoothing reveals general trends, but obscures 
the local variations. Under smoothing results in a 

“choppy” fit, for which there is too much local variation. 
Neither of these situations is desirable.  

So the question becomes, how can we choose the best 
value for α? Since there is interplay between the local 
polynomial that is chosen and the smoothing parameter, 
the first thing we should say is that typically the local 
polynomial is kept as simple as possible, and the 
smoothing parameter is then varied. So begin your 
analysis with a linear local polynomial, and then vary the 
smoothing parameter until your curve approximates the 
data well. Typically, smoothing parameters in the range 
0.2–0.5 will work well.  

We cannot measure the distance of the fit to the data 
points as a measure of how good our fit is, since that 
would always select a “choppy” fit as the best. We know 
there are random fluctuations in the data, but quantifying 
the degree of these fluctuations can be difficult. One way 
is to define a function to minimize which incorporates, to 
some degree, the closeness of the fit to the data points 
and a penalty function which increases for a smoother fit 
function. 

The local regression smoothing process follows these 
steps for each data point [4]. 
1.   Compute the regression weights for each data point in 

the span. The weights are given by the tricube 
function shown below.  

 
Where x is the predictor value associated with the 
response value to be smoothed, xi are the nearest 
neighbors of x as defined by the span, and d(x) is the 
distance along the abscissa from x to the most distant 
predictor value within the span. The weights have two 
characteristics. Firstly, the data point to be smoothed 
has the largest weight and the most influence on the 
fit; and secondly, data points outside the span have 
zero weight and no influence on the fit. 

2.  A weighted linear least squares regression is 
performed. For lowess, the regression uses a first 
degree polynomial. For loess, the regression uses a 
second degree polynomial. 

3.  The smoothed value is given by the weighted 
regression at the predictor value of interest. 

 
If the smooth calculation involves the same number of 

neighboring data points on either side of the smoothed 
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Figure 4.  The weight function for the leftmost data point and for an interior data point.  
 

 
 

Figure 5.  Lowess smoothing (a) and (b) use an asymmetric weight function, (c) and (d) use a symmetric weight function. 
 

data point, the weight function is symmetric. However, if 
the number of neighboring points is not symmetric about 
the smoothed data point, then the weight function is not 
symmetric. Note that unlike the moving average 

smoothing process, the span never changes. For example, 
when you smooth the data point with the smallest 
predictor value, the shape of the weight function is 
truncated by one half, the leftmost data point in the  span 

has the largest weight, and all the neighboring points are 
to the right of the smoothed value. The weight function 
for an end point and for an interior point is shown in Fig. 
4 for a span of 31 data points. Using the lowess method 
with a span of five, the smoothed values and associated 
regressions for the first four data points of a generated 
data set are shown in Fig. 5(a) and (b) for an asymmetric 

weight function use; Otherwise, (c) and (d) for symmetric 
weight function use. 

Notice that the span does not change as the 
smoothing process progresses from data point to data 
point. However, depending on the number of nearest 
neighbors, the regression weight function might not be 
symmetric about the data point to be smoothed. 
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For the loess method, the graphs would look the 
same except the smoothed value would be generated by a 
second-degree polynomial. 
 
 A. Robust Smoothing Procedure 
 

If data contains outliers, the smoothed values can 
become distorted, and not reflect the behavior of the bulk 
of the neighboring data points. To overcome this 
problem, you can smooth the data using a robust 
procedure that is not influenced by a small fraction of 
outliers. 

There is a robust version for both the lowess and loess 
smoothing methods. These robust methods include an 
additional calculation of robust weights, which is 
resistant to outliers. The robust smoothing procedure 
follows these steps [4]. 
1.  Calculate the residuals from the smoothing procedure 

described in the previous section. 
2. Compute the robust weights for each data point in the 

span. The weights are given by the bisquare function 
shown below. 

 
 

where r i is the residual of the i-th data point produced 
by the regression smoothing procedure, and MAD is 
the median absolute deviation of the residuals: 

 
MAD = median( |r|) 

 
The median absolute deviation is a measure of how 
spread out the residuals are. If r i is small compared to 
6MAD, then the robust weight is close to 1. If r i is 
greater than 6MAD, the robust weight is 0 and the 
associated data point is excluded from the smooth 
calculation 

 

 
Figure 6. Robust Lowess smoothing 

 (a) outlier influences the smoothed value for several nearest neighbors;  
(b) residual of the outlier is greater than six median absolute deviations;  
(c) the smoothed values neighboring the outlier reflect the bulk of the 

data. 

3.  Smooth the data again using the robust weights. The 
final smoothed value is calculated using both the local 
regression weight and the robust weight. 

4. Repeat the previous two steps for a total of five 
iterations. 

 
The smoothing results of the lowess procedure are 

compared as shown in Fig. 6 to the results of the robust 
lowess procedure for a generated data set that contains a 
single outlier. The span for both procedures is 11 data 
points. 

From Fig. 6, it can be shown that plot (a) shows that 
the outlier influences the smoothed value for several 
nearest neighbors. Plot (b) suggests that the residual of 
the outlier is greater than six median absolute deviations. 
Therefore, the robust weight is zero for this data point. 
Plot (c) shows that the smoothed values neighboring the 
outlier reflect the bulk of the data. 
 
B. Upper and Lower Smooths 

 
The loess smoothing method provides a model of the 

middle of the distribution of Y given X. This can be 
extended to give us upper and lower smooths [7], where 
the distance between the upper and lower smooths 
indicates the spread. The procedure for obtaining the 
upper and lower smooths follows. 

1. Compute the fitted  values iy
)

  using   loess  or   robust 

    loess. 

2. Calculate the residuals .iii yy
)) −=ε  

3. Find the positive residuals +iε) and the corresponding 

ix and iy
)

values. Denote these pairs as ),( ++
ii yx
)

. 

4. Find the negative residuals −iε) and the corresponding 

ix and iy
)

values. Denote these pairs as ),( −−
ii yx
)

. 

5. Smooth the ),( ++
iix ε) and add the fitted values from 

that smooth to +
iy
)

. This is the upper smoothing. 

6. Smooth the ),( −−
iix ε) and add the fitted values from 

this smooth to −
iy
)

. This is the lower smoothing. 

 
In this example, we generate some data to show how 

to get the upper and lower loess smooths. These data are 
obtained by adding noise to a sine wave. The resulting 
middle, upper and lower smooths are shown in Fig. 7, 
and we see that the smooths do somewhat follow a sine 
wave. It is also interesting to note that the upper and 
lower smooths indicate the symmetry of the noise and the 
constancy of the spread. 

 
IV.  KERNEL SMOOTHING METHODS 

 
This section follows the treatment of kernel 

smoothing methods given in Wand and Jones [8]. We 
now present a class of smoothing methods based on 
kernel estimators that are similar in spirit to loess, in that 
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they fit the data in a local manner. These are called local 
polynomial kernel estimators. We first define these 
estimators in general and then present two special cases: 
the Nadaraya-Watson estimator and the local linear 
kernel estimator. 

With local polynomial kernel estimators, we obtain 

an estimate 0y
)

at a point 0x by fitting a d-th degree 

polynomial using weighted least squares. As with loess, 
we want to weight the points based  on  their  distance  to  

 
 

Figure 7. The data for this example are generated by adding noise to a 
sine wave. The middle curve is the usual loess smooth, while the other 
curves are obtained using the upper and lower loess smooths. 

 

0x . Those points that are closer should have greater 

weight, while points further away have less weight. To 
accomplish this, we use weights that are given by the 

height of a kernel function that is centered at 0x . As with 

probability density estimation, the kernel has a bandwidth 
or smoothing parameter represented by h. This controls 
the degree of influence points will have on the local fit. If 
h is small, then the curve will be wiggly, because the 

estimate will depend heavily on points closest to 0x . In 

this case, the model is trying to fit to local values (i.e., 
our ‘neighborhood’ is small), and we have over fitting. 
Larger values for h means that points further away will 

have similar influence as points that are close to 0x  (i.e., 

the ‘neighborhood’ is large). With a large enough h, we 
would be fitting the line to the whole data set.  
 
A. Nadaraya-Watson Estimator 
 

Some explicit expressions exist when d = 0 and d = 
1. When d is zero, we fit a constant function locally at a 
given point . This estimator was developed separately by 
Nadaraya [9] and Watson [10]. The Nadaraya-Watson 
estimator is given below. 

 
 

Note that this is for the case of a random design. When 

the design points are fixed, then the iX  is replaced by 

ix , but otherwise the expression is the same [8]. The 

smooth from the Nadarya-Watson estimator is shown in 
Figure 8. 
 

 
 
Figure 8. Smoothing obtained from the Nadarya-Watson estimator with 
h = 1. 
 

There is an alternative estimator that can be used in 
the fixed design case. This is called the Priestley-Chao 
kernel estimator [11].  

 
B. Priestley-Chao Estimator 
 

The Priestley-Chao is given below. 

 
where the nixi ,...,1, = , represent a fixed set of ordered 

nonrandom numbers. 
 
C. Local Linear Kernel Estimator 
 

When we fit a straight line at a point x, then we are 
using a local linear estimator. This corresponds to the 
case where d = 1, so our estimate is obtained as the 

solutions 0β
)

and 1β
)

that minimize the following, 

 
 
We give an explicit formula for the estimator below. 
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where  

 
 

As before, the fixed design case is obtained by 

replacing the random variable iX with the fixed point 

ix . 

When using the kernel smoothing methods, problems 
can arise near the boundary or extreme edges of the 
sample. This happens because the kernel window at the 
boundaries has missing data. In other words, we have 
weights from the kernel, but no data to associate with 
them. Wand and Jones [8] show that the local linear 
estimator behaves well in most cases, even at the 
boundaries. If the Nadaraya-Watson estimator is used, 
then modified kernels are needed ([8],[12]). 

The local linear estimator is applied to the same 
generated sine wave data. The entire procedure is 
implemented and the resulting smooth is shown in Figure 
9. Note that the curve seems to behave well at the 
boundary. 

 

 
 

Figure 9. Smoothing obtained from the local linear estimator. 
 

 
V. CONCLUSIONS 

 
There are two common types of smoothing methods: 

filtering (averaging) and local regression. However, there 
are some methods which are arisen later, which can be 
classified as Kernel Smoothing, For which, now we can 
divide smoothing methods into three. Each smoothing 
method requires a span. The span defines a window of 
neighboring points to include in the smoothing 
calculation for each data point. This window moves 
across the data set as the smoothed response value is 
calculated for each predictor value. A large span 
increases the smoothness but decreases the resolution of 
the smoothed data set, while a small span decreases the 
smoothness but increases the resolution of the smoothed 
data set. The optimal span value depends on your data set 
and the smoothing method, and usually requires some 
experimentation to find. 

 
 

REFERENCES 
 
[1] W.S. Cleveland, Robust Locally Weighted Regression and 

Smoothing Scatterplots, Journal of the American Statistical 
Association, Vol. 74, pp. 829-836, 1979. 

[2] http://www.itl.nist.gov/div898/handbook/pmd/section1/ 
pmd144.htm.. 

[3] The MathWorks, Curve Fitting Toolbox Users’ Guide, version 1, 
Nattick, MA, 2002. 

[4] W.L. Martinez and A.R. Martinez, Computational Statistics 
Handbook  with Matlab, Chapman & Hall/CRC, Boca Raton, 
Florida, 2002. 

[5] Cleveland, W. S.. Visualizing Data, Hobart Press, New York, 
1993 

[6] W.W. Daniel and J.C. Terrell, Business Statistics, 5th edition, 
Houghton Mifflin Company, Boston, 1989. 

[7] W.S. Cleveland and Robert McGill, “The many faces of a 
scatterplot,” Journal of the American Statistical Association, 79: 
pp. 807-822, 1984. 

[8] M.P. Wand and M. C. Jones, Kernel Smoothing, Chapman and 
Hall, London, 1995 

[9] E.A. Nadaraya, “On estimating regression,” Theory of Probability 
and its Applications, 10: pp. 186-190, 1964. 

[10] G.S. Watson, “Smooth regression analysis,” Sankhya Series A, 26: 
pp. 101-116, 1964. 

[11] J.S. Simonoff, Smoothing Methods in Statistics, Springer-Verlag, 
New York, 1996 

[12] D.W. Scott,  Multivariate Density Estimation: Theory, Practice, 
and Visualization, John Wiley & Sons, New York, 1992.

  
 

 

 

 

 

 

 

JURNAL SISTEM KOMPUTER - Vol.1 No.1 Tahun 2011, ISSN: 2087-4685 JSK - 47




	Materi Utama
	Comparation on Several Smoothing Methods in Nonparametric Regression
	Rizal Isnanto



