PROGNOSIS KERUSAKAN BANTALAN GELINDING DENGAN MENGGUNAKAN METODE SUPPORT VECTOR REGRESSION (SVR)

Hevi , Herlina Ullu (2013) PROGNOSIS KERUSAKAN BANTALAN GELINDING DENGAN MENGGUNAKAN METODE SUPPORT VECTOR REGRESSION (SVR). PhD thesis, Diponegoro University.

[img]Microsoft Word
2047Kb

Official URL: http://www.msi.undip.ac.id

Abstract

Pada penelitian ini telah dilakukan prognosis kerusakan bantalan gelinding dengan menggunakan metode Support Vector Regression (SVR). Penelitian ini dilakukan dengan menggunakan objek bantalan gelinding karena bantalan gelinding merupakan komponen yang mampu membuat sebuah mesin terus berputar atau bekerja. Dengan melakukan prognosis terhadap kerusakan bantalan gelinding dapat mengoptimalkan biaya perawatan mesin karena bisa mengetahui sisa umur fungsi bantalan gelinding sebelum bantalan gelinding tersebut rusak. Data masukan berasal dari hasil ektraksi beberapa fitur statistik dari data trend sinyal getaran bantalan gelinding. Data fitur yang dihasilkan digunakan dalam proses pembelajaran dan proses pengujian dengan metode SVR, setelah itu akan menghasilkan prognosis kerusakan bantalan gelinding yang mendekati nilai ideal dari Root Mean Square Error (RMSE) dan Coefisien Corelation (R). Hasil dari penelitian ini adalah fitur RMS merupakan fitur yang bagus dipakai untuk melakukan prognosis. Nilai RMSE dan R untuk kedua fitur tersebut mendekati nilai ideal yaitu nilai nilai RMSE untuk fitur RMS adalah 0.0129 sedangkan nilai R untuk fitur RMS adalah 0.9709.

Item Type:Thesis (PhD)
Subjects:Q Science > QA Mathematics > QA76 Computer software
Divisions:School of Postgraduate (mixed) > Master Program in Information System
ID Code:39523
Deposited By:Mr Musa MSI
Deposited On:15 Jul 2013 09:34
Last Modified:14 Mar 2016 21:37

Repository Staff Only: item control page