Section 1:
The Components of Matter

Elements, Compounds and Mixtures: An Atomic Overview

- **Elements**: Substances which cannot be decomposed into simpler substances by chemical means. Each element is unique because the properties of its atoms are unique
 - Composed of one type of atom
 - Classified as metal, nonmetal, or metalloid
 - Simplest type of matter that retains characteristic properties
 - May occur as individual atoms or as molecules
 - Atomic mass is average of isotopic masses weighted by abundance
 - Examples: hydrogen, oxygen, silicon, etc.

- **Molecules**: an independent structural unit consisting of two or more atoms chemically bound together \(\text{O}_2, \text{H}_2 \), etc.

- **Compounds**: a type of matter can be decomposed into two or more different elements that are chemically bound together \(\text{NH}_3, \text{H}_2\text{O} \)
 - Two or more elements combined in fixed parts by mass
 - Properties differ from those of component elements
 - Molecular mass is sum of atomic masses
• **Mixtures:**
 - a group of two or more substances (elements and/or compounds) that are physically mixed together, not chemically bound.
 - The components retain their individual properties and can be present in any proportions.
The Atomic Theory of Matter

- The word "atom" is derived from the Greek word "atomos", meaning **indivisible**.
- The philosopher **Democritus** (460-370 B.C.) believed that matter was composed of fundamentally indivisible particles, called "atomos".
- **Dalton's (1766-1844) postulates on atomic theory** of 1808:
 - All matter or each element is composed of extremely small particles called atoms, tiny indivisible particles that cannot be created or destroyed.
 - Atoms of an element can not be converted atoms of another elements. Atoms are neither created nor destroyed in chemical reactions, the atoms of the original substances recombine to form different substances.
 - All atoms of an element are identical in mass and other properties and are different from atoms of any other element.
 - Compounds are formed when atoms of more than one element combine chemically with a specific ratio.

Atoms are the smallest particle of an element which retains the chemical properties of that element

Dalton's Postulates Explain Mass Laws

- **Mass Conservation**:
 - Atoms cannot be created or destroyed (Postulate 1) or converted into other type of atoms (Postulate 2).
 - Since each type of atoms has a fixed mass (Postulate 3), a chemical reaction, in which atoms are just combined differently with each other, cannot possibly result in a mass change.
- **Mass is constant during a reaction because atoms form new combinations**;
 - each compound has a fixed mass fraction of each of its elements because it is composed of a fixed number of each type of atom
 - Different compounds of the same elements exhibit multiple proportions because they each consist of whole atoms.
Atomic Models Discoveries: J.J. Thomson, R. Millikan and Ernest Rutherford

- **J.J. Thompson (1897):** measured the charge to mass ratio for a stream of electrons (using a cathode ray tube apparatus) at 1.76E8 coulombs/gram.
 - Thompson determined the **charge to mass ratio for the electron**, but **was not able to determine the mass of the electron**.
 - Thompson estimated that the cathode ray particle weighed less than 1/1000 as much as hydrogen (the lightest atom).
 - However, if the charge of a single electron could be determined, then the mass of a single electron could be determined.
 - **Thompson’s Atom Model:** The atom consists of a sphere of positive charge within which was buried negatively charged electrons.

- **R. Millikan (1909):** was able to successfully measure the charge on a single electron (the "Millikan oil drop experiment")
 - This value was determined to be -1.602E-19 coulombs.
 - Thus, the mass of a single electron was determined to be:

\[
\text{Mass of Electron} = \frac{\text{mass}}{\text{charge}} = \frac{-5.686\times10^{-12} \text{kg}}{-1.602\times10^{-19} \text{C}} = 9.109\times10^{-28} \text{kg} = 9.109\times10^{-31} \text{g}
\]

Experiment of Thompson

![Experiment of Thompson](image)

Figure 2.5 Experiments to determine the properties of cathode rays.

A cathode ray forms when high voltage is applied to a partially evacuated tube. The ray passes through a hole in the anode and hits the coated end of the tube to produce a glow.

<table>
<thead>
<tr>
<th>Observation</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ray bends in magnetic field</td>
<td>Consists of charged particles</td>
</tr>
<tr>
<td>2. Ray bends toward positive plate in electric field</td>
<td>Consists of negative particles</td>
</tr>
<tr>
<td>3. Ray is identical for any cathode</td>
<td>Particles found in all matter</td>
</tr>
</tbody>
</table>
J.J. Thompson's Experiment

![Diagram of J.J. Thompson's Experiment]

- Deflected by magnetic field
- Deflected by electric field

Experiments of Millikan

![Diagram of Experiments of Millikan]

1. Fine mist of oil sprayed into apparatus
2. X-rays knock electrons from surrounding air, which stick to droplets
3. Electrically charged plates influence droplets' motion
4. Observer times droplets' motion and controls electric field
E. Rutherford's & Chadwick's Atom Model ==> Atomic Nucleus

- **Ernest Rutherford (1910):** studied alpha rays, beta rays and gamma rays, emitted by certain radioactive substances.
 - an atom is mostly space occupied by electrons, but in the center of that space is a tiny region, which he called the “Nucleus”
 - The nucleus contains all the positive charge and essentially all the mass of the atom
 - Most of the total volume of the atom is empty space within which the negatively charged electrons move around the nucleus
 - Hypothesis: Atoms consist of electrons embedded in diffuse, positively charged matter, so the speeding α particles should pass through the gold foil with, at most, minor deflections
 - Experiment: α particles emit a flash of light when they pass through the gold atoms and hit a phosphor-coated screen
 - Results: Occasional minor deflections and very infrequent major deflections are seen. This means very high mass and positive charge are concentrated in a small region within the atom, the nucleus.
- Rutherford (1919) discovers protons - positively charged particles in the nucleus

Experiment of Rutherford

- **Hypothesis:** Expected result based on “plum pudding” model
 - Cross section of gold foil composed of “plum pudding” atoms
- **Experiment:**
 - Radioactive sample emits beam of α particles
 - Beam of α particles strikes gold foil
- **Actual Result:**
 - Positively charged α particles strike phosphor-coated screen
 - Occasional minor deflections of α particles are seen
 - Very high mass and positive charge are concentrated in a small region within the atom, the nucleus
 - Positively charged α particles strike phosphor-coated screen
 - Cross section of gold foil composed of atoms with a tiny, massive, positively charged nucleus
E. Rutherford's Experiment

Radioactive source

lead slit

(+)

β-rays

γ-rays

α-rays

electrically charged plates

Electron

Region of positive charge

J.J. Thomson “plum pudding” atomic model

Outer region of negative charge

Central positive charge

Rutherford atomic model
Chadwick (1932): discovers neutron - neutral charge particles in the nucleus

An atom has: a central nucleus, which contains positively charged protons (p⁺) and uncharged neutrons (n⁰) and is surrounded by negatively charged electrons (e⁻).

Magnitude of charge possessed by a proton is equal to that of an electron (e⁻)

Look at Table 2.2 for properties of proton, neutron, and electron (charge, mass, and location in atom).

An atom is neutral because the number of protons in the nucleus equals the number of electrons surrounding the nucleus.
Modern Atom Concept

Atomic Number, Mass Number, and Atomic Symbols

- All atoms of a particular element have the same atomic number, and each element has a different atomic number from that of any other element.

- **Mass number**: total number of protons and neutrons in the nucleus of an atom

- Number of neutrons = mass number – atomic number or \(N = A - Z \)

- All atoms of an element are identical in atomic number but not in mass number.

- **Isotopes** of an element are atoms that have different numbers of neutrons and therefore different mass numbers.

- All isotopes of an element have nearly identical chemical behavior, even though they have different masses.
Modern Reassessment of Atomic Theory

- All matter is composed of atoms. Atoms are divisible and composed of smaller, subatomic particles (electron, protons, and neutrons), but the atom is still the smallest body that retains the unique identity of an element.
- Atoms of one element cannot be converted into atoms of another element in a chemical reaction.
- All atoms of an element have the same number of protons and electrons, which determines the chemical behavior of the elements.
- Compounds are formed by the chemical combination of two or more elements in specific ratios.

Elements: A First Look at The Periodic Table (Mendeleev)
SUMMARY

- **Matter ("benda"):** anything that has mass and volume; exists in three physical states: solid, liquid, gas
- **Mixtures:** Two or more elements of compounds in variable proportions; Components retain their properties
 - Heterogeneous Mixtures: Visible parts; differing regional composition.
 - Homogeneous Mixtures: No visible parts; same composition throughout
- **Elements:**
 - Composed of one type of atom
 - Classified as metal, non metal, and metalloid
 - Simplest type of matter that retains characteristic properties
 - May occur as individual atoms or as molecules
 - Atomic mass is average of isotopic masses weighted by abundance
- **Compounds:**
 - Two or more elements combined in fixed parts by mass
 - Properties differs from those of component elements
 - Molecular mass is sum of atomic masses

- **Atoms:**
 - Protons (p\(^+\)) and neutrons (n\(^0\)) in tiny, massive, positive nucleus; number of p\(^+\) = atomic number (Z)
 - Electrons (e\(^-\)) occupy surrounding volume; number of p\(^+\) = number of e\(^-\)