Preparation and Characterization of Nanofiltration Membrane for Water Treatment

Tutuk , Djoko Kusworo and Eka , Cahya Muliawati and Ardian , Dwi Yudhistira (2012) Preparation and Characterization of Nanofiltration Membrane for Water Treatment. In: International Conference on Chemical and Material Engineering 2012. ISBN : 978-602-097-281-7, September 12 – 13, 2012, , Grand Candi Hotel, Semarang Indonesia.

[img]
Preview
PDF - Published Version
1335Kb

Abstract

Membrane technology has been developed significantly because it could be applicated on several fields. Therefore, in this study we report the manufactures of cellulose acetate nanofiltration membranes. The membranes were fabricated from dope solution consisting of cellulose acetate, poly ethylene glykol (PEG), distilled water, and acetone using a simple dry/wet phase inversion process. Production condition used included evaporation times of 10, 15, and 25 seconds, PEG addition of 2.5%; 3.5%; and 5%, with and without non-solvent addition of 1% distilled water in order to fabricate a high performance nanofiltration membrane. The mambranes performance that are based on percentage of rejection of barackish water and multivalent ion Ca2+, flux and mechanical strength of membrane. Generally, the percentage rejection and mechanical strength were found to increase and the flux were decrease with increasing of eveporation times. In the other side, the percentage of rejection, flux and mechanical were found to increase with increasing PEG addition. The percentage of rejection and mechanical strength were found the best in membranes with addition non-solvent of 1% distilled water, but the fluxes were the least. An optimimum membranes performance were found at compotition of dope solution composition consisting of 23% CA, 5% PEG, 25 seconds evaporation times and 1% distilled water.

Item Type:Conference or Workshop Item (Paper)
Uncontrolled Keywords:asymmetric membrane, brackish water, cellulose acetate, evaporation time, PEG
Subjects:T Technology > TP Chemical technology
Divisions:UNDIP Conference/Seminar > International Conference on Chemical and Material Engineering 2012
Faculty of Engineering > Department of Chemical Engineering
Faculty of Engineering > Department of Chemical Engineering
ID Code:36979
Deposited By:INVALID USER
Deposited On:16 Nov 2012 23:42
Last Modified:16 Nov 2012 23:42

Repository Staff Only: item control page