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Abstract— Determination of bug severity level is needed in 

fixing bug. Actually, in bug-tracking system, there is around 14 

attributes used for defining a bug. But, all this time we do not 

know which attributes are highly influential for this. 

In this research, a new model of severity type classification 

using Infogain method for Bugzilla is proposed. As for the 

classsification process, we use Support Vector Machine, 

because this method is suitable in handling a massive data 

records. In this research, 8 bug attributes and 17.746 record of 

bug reports are involved. 

From the result of the experiment, we recommend five 

attributes which can be used effectively in classifying the 

severity types with a minimal value of infogain 0,33 which is 

component, qa_contact, summary, cc_list and product. The 

combination of those 5 attributes resulting in 99,83% accuracy 

of severity types classification. 

Keywords- Bug Tracking System; Severity Level 

Classification; TF-IDF;  Infogain; SVM. 

 

I.  INTRODUCTION  

Bug-tracking system is an application to improve 
servicing of customer satisfaction. Bugzilla, one of the bug-
tracking system, is for tracking bug in mozilla’s products. It 
had 14 attributes: summary, status, severity, resolution, 
assigned_to, product, component, priority, cclist_accesible, 
version, op_sys, reporter_accessible, qa_contact [1]. From 
those attributes, severity was considered important for bug 
report [1] because the completion of fixing bug was based on 
the type of bug severity. Moreover, user interpretation of the 
type of bug severity was must be precise. However, it was 
still determined by perception and estimation. Therefore, 
there were reccommendations of the type of bug severity to 
make it easier, So it would help developers to fix bugs [3]. 

Based on the background above, Menzies & Marcus did 
research on the classification of the type of bug severity. The 
research project called SEVERIS (Severity Issue 
Assessment), where the bug-tracking system which was used 
was a commercial robotic satellite NASA Independent 
Verification and Validation (NASA IV &V) [3]. SEVERIS 
has done giving the process of recommendations by making 
classification rule using the Rule Learning method. 
Experimental data were only taken from the comments 

attribute where its type data is String, so it was necessary to 
find the weight of term prior before it was classified [3]. The 
process of search terms was done by calculating tf * idf, then 
it was calculated by Infogain to get the effective terms for 
the classification process [3]. SEVERIS took two data sets 
from the database Pits, the total number of data is the 3875 
bug [3]. The drawback of this method was for a small 
number of data sets [3]. 

In different studies, Lucas D. Panjer stated his research 
that the other attributes in addition to comments also affected 
the process of determining the age of a bug. He also stated 
that the attributes on the bug report was divided into two: the 
influential attributes and non-influential attribute on 
determining the age of bugs [2]. 

Based on the background of the two previous studies, our 
study is trying to make improvements in the classification 
process of the research conducted by Menzies & Marcus, 
with considering the other attributes in addition to comments 
(in Bugzilla called the Summary attribute) as it was done on 
Panjer’s research, with the aim that the method type of bug 
severity classification can also be done for open source bug 
tracking system like Bugzilla to produce a high degree of 
accuracy where Bugzilla attribute has the number of data sets 
larger than the SEVERIS data sets. It was more than 17,000 
bugs. 

Classification method proposed for our study is the 
Support Vector Machine (SVM). SVM is often known as a 
binary classification, but it can also be used for the 
classification that has a lot of class. That SVM method is 
known as Multiclass Support Vector Machine (SVM 
Multiclass). This method was introduced by Chih - Wei Hsu 
& Chih - Jen Lin [4]. Due to the number of classes is more 
than two (multiclass), then made an approach to solve these 
problems. There are two approaches that are often done for 
multiclass SVM: to combine all the data in a problem; to 
build a multiclass classifier. Our study will use the second 
approach because it does not require the completion of the 
complex optimization and high computing, so it make easier 
to implement multiclass SVM [4]. Apart from that, SVM 
was chosen because of the way the classification is more 
accurate than 3 on the other classification methods with a 
large feature space [4]. From those advantages, SVM is 
considered capable for classification of the type of severity 
in the open-source bug tracking system like Bugzilla. 
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From the research experiment that was conducted by 
Ghaluh, Daniel, and Umi [5]. SVM proved appropriate for 
the classification of the type of severity in the open source 
bug tracking system like Bugzilla, where the large number of 
data sets that are used is 17,746 bugs. Apart from that, SVM 
is also suitable for multi-attribute classification. This is 
indicated by the results of the classification which reached 
99.83%. 

II. METHODS 

This section describes the process steps in this study. It is 

began with preprocessing: tokenizing, filtering, and 

stemming. After that, performing weighting process with 

tf*idf, and then, ranking with infogain. The last process is 

doing classification.  

 Classification process is not only used to classify 

bugs according its class (severity) but is also used to test 

the significant attributes that influence it. The process 

steps in this study is shown in Figure 2. 

 

A. Preprocessing 

Preprocessing aims to search the terms which can 

represent the contents of a document. Thus, the analysis of 

connectedness between documents can be done. 

Preprocessing in our study consisted of three stages: 

tokenizing, filtering, and stemming. Figure 1 shows the flow 

chart of preprocessing. 

 

 

 

 

 

Figure 1.  Preprocessing stages. 

Tokenizing stage is the stage of cutting the input string 

based on each word which arranges the input string. 

Filtering stage is the stage to take the essential terms of the 

results of tokenizing, at this stage, it used a list of stop 

words (removing words that are less important) or word list 

(saving the important word) that obtained from the website 

www.briandunning.com/cf/936. The last stage text mining 

process is stemming, searching the root word of each word 

of filtering results [6]. 

B. Term Frequency*Inverse Document Frequency 

(TF*IDF) 

At this stage, each document is associated as a vector 

with the number elements a lot of as the successful terms 

recognized from the extraction stage of the documents 

produced in the previous text mining. The vector consists of 

terms which will then be calculated based on tf * idf 

method. Tf * idf method is a method of weighting which is 

the integration between the term frequency (tf) and inverse 

document frequency (idf) [7]. The formula shown in 

Equation (1). 

 

w(t,d) = tf(t,d)*log2(N/nt)   (1) 

 

The symbol w(t,d) is the weight of the term t in document d, 

while tf (t,d) is the term frequency in a document (tf), where 

N is the total number of documents used for the calculation 

of idf. The nt is the number of documents that contain the 

value of t. The function of this method is to seek 

representation value from each of the terms of a collection 

of documents. Then it will set up a matrix of terms with 

documents, the type of attribute severity that contains all 

summary according to the its severity type. 

C. Infogain 

Infogain method was first introduced by Thomas J. 

McCabe. This method aims to measure the level of 

complexity of an attribute by looking for the best terms that 

most facilitate the target concept [8]. How it works is to do a 

ranking on the data that have been previously weighted. It is  

calculated by the formula in Equation (2). 

 

Gain (S, A) = Entropy (S) –  Entropy (Sv) 

(2) 

 

Where A = attributes, V = possible value for atribut A, 

Values (A) = the set of possible values for atribut A, | Sv | = 

number of samples of the value of v, | S | = total number of 

data samples, Entropy (Sv) = Entropy for samples that have 

the value v. Entropy in this case is a parameter used to 

measure the level of diversity (heterogeneity) of the data set. 

The more heterogeneous the data, the higher the value of 

entropy. The Entropy is performed by the formula in 

Equation (3). 

 

Entropy (S) =          (3) 

 

Where c = number of values in the atibut target (number of 

classification classes), whereas pi = number of samples 

proportion (opportunities) for class i. 

In a previous study conducted by Menzies & Marcus [3], 

infogain is used to determine the most informative terms, by 

way of re-order the existing term. This is done because the 

term is considered as an attribute [3]. So Menzies & Marcus 

used infogain to find a term trend towards a type of severity. 

Slightly different from our study, where each of severity 

type has attributes, and in these attributes contain terms. So 

in our study, infogain used not only looking for a tendency 

toward an attribute of severity type, but also seek the trend 

term toward attribute, before seeking a tendency of attribute 

toward severity type. 

D. Make a Term Code 

The process is conducted during forming matrices for 

SVM input. It is to recognize term in classification process 

easily. The encoding term will support classification process 

due to the formed code is unique. So, it can easily 

Tokenizing Filtering Stemming 
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distinguish the term of each of its severity. The first step is 

making the code form each of terms. The encoding uses 2 

simple rules: the sequence number of term; the sequence 

number of attribute for term from non-summary attribute 

result. The first rule is based on the sequence of sorting 

term, while the second is made by the sequence: (1) 

Product, (2) Component, (3) Priority, (4) Version, (5) 

Op_sys, (6) Qa_contact, (7) Cc_list. The term from 

summary attribute result is just uses the sequence number of 

each term without uses additional code at its behind. The 

second step is matching the term according to the sequence 

of original form before the term is separated (the sequence 

is accroding to the bugzilla report). 

E. Classification 

The classification process in this study used SVM 

Multiclass One Against All with Gaussian kernel. The input 

is matrixes of encoded weighting process. One Against 

All method will build k number of binary SVM, where k is 

the number of classes [4]. SVM-i is trained with all 

samples in the class-i with positive label and all other 

samples with negative label if given l training data (xi, yi),..., 

(xl, yl), where xi ∈ ℜn
, i = 1,...l and yi ∈ (l,...,k) is the 

lass of xi, then the SVM – i will solve the 

problem in Equation (4). 

 

 (w
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(w
i
)
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Φ(xj) + b

i
≥ 1 - , jika yj = i, 

(w
i
)
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i
≤ - 1 + , jika yj≠ i, 

≥ 0, j = 1, ..., l.          (4) 

Where the dataxi is mapped into the higher dimensional 

space using the function Φ and C as the penalty parameter. 

Minimizin g (w
i
)

t
w

i 
means maximizing or the 

margin beetwen the two groups of data. When the data are 

not separated by linear, then there is the penalty of C 

 which can reduce the amount of training error. The 

idea of SVM is to balance the regulation  (w
i
)

t
w

i 
and 

training error. 

After finished minimization problem, then there are k 

decision functions shown in Equation (5). 

 

f 
1
 (x) = (w

1
) x + b

1
, ..., f

k
 (x) = (w

k
) x + b

k
     (5) 

 

In this study, x data class will be determined based on 

the highest decision function value.The functions for 

searching minimization solution has been provided in the 

function of quadratic programming that will be implemented 

with a monqp function in matlab.  

Classification process is done in two processes: 

training and testing process. In the training process, 

hyperplane variable of each classifier will be recorded and 

be used as a classifier in the training process. If a class of 

training process same with the one of testing process, then 

the recognition is correct. Its result  is a matrix of weight 

term that corresponding to the index value of the biggest 

decision function of testing process.  

The testing process is intended to prove the counting 

infogain result in the important attribute selection. It is 

conducted with two testing scenarios that will be described 

one by one with the diagram.  Each of scenarios is 

conducted with varying the number of attributes. The first 

scenario is done by varying the number of atrributes in the 

testing process, while in the training process still used 8 

attributes. The second scenario is done by varying the 

number of attributes in the training and testing process. So, 

the number of attributes of training and testing process are 

same. Each of scenarios is conducted in 3 steps: measuring 

accuracy of summary attribute; measuring accuracy of 

qa_contact, component, product, cc_list, and summary 

attribute; measuring accuracy of version, op_sys, and 

priority attribute. 

 

III. EXPERIMENTS 

 

This explain the processes of determination of 

Important Attributes. This process is done with two test 

scenarios. Each of scenarios is made by performing a 

variation on the number of used attributes. Scenario 1 is 

done by varying the number of attributes in the testing 

process, while in the training process still using 8 attributes. 

Scenario 2 is done by varying the number of attributes in the 

process of training and testing process. So the number of 

attributes of the process of training and testing in scenario 2 

is the same. Each of scenarios is performed in 3 steps: 

measurement accuracy for only summary attribute; 

measurement accuracy for attributes with a high infogain 

value (qa_contact, component, product, cc_list and 

summary); measurement accuracy for the attribute with a a 

low infogain value (version, op_sys, and priority). In 

scenario 1 and scenario 2, the numbers of data used for 

training are 16,146 bugs, while for the testing are 1,600 

bugs. The number of term per severity for training are 666 

terms, while for the testing process are 200 terms. Process 

of scenario 1 is shown in Figure 3, while the process of 

Scenario 2 is shown in Figure 4. 
 

 

 

IV. EXPERIMENTAL RESULT 

 

From testing of important attributes with performing 

scenario 1 and scenario 2, the conclusion drawn that the 

results can be seen in Table 1. 
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TABLE I.  TESTING RESULT WITH SCENARIO 1 AND SCENARIO 2 

Testing Scenario 1 Scenario 2 

Step 1 16,97 16,67 

Step 2 16,97 98 

Step 3 16,97 Bad Mouve 

 

. The testing result of step 1, 2, and 3 in scenario 1 is 

equal to 16.97%, this is because the number of input 

attributes of the training process and testing process is not 

the same. So the matching process of data classifier with 

testing input did not have many partners. This caused a lot 

of bad mouve conditions, the lack of a proper support vector 

in the testing process. 

The testing result of scenario 2 looks more varied, this is 

because the number of input attributes in the process of 

training and testing are the same. So, the matching process 

between the test data with the classifier has a lot of couples. 

It Seen from Table 1, that the test results in step 1 yields an 

accuracy rate of 16.67%. This shows that, if only the 

summary attributes are used in the classification process, is 

not sufficient to obtain high accuracy for classification of 

severity type. 

The testing result of step 2 in scenario 2 shows the 

accuracy rate of 98%. This result indicates that the five 

attributes that have the top 5 value infogain: summary, 

component, product, qa_contact, cc_list can very 

significantly affect the accuracy of classification result. 

The last discussion on the result of step 3 in scenario 2, 

where the testing of step 3 did not get the level of accuracy. 

This also was occured in the process of training. In the 

testing step 3 was dominated by bad mouve condition since 

the beginning of the testing process. From the result in 

Table 1 can be concluded that the three attributes that have 

the three lowest value infogain: version, op_sys, priority did 

not significant effect on the classification process. 

From the discussion of the results of the scenario method 

that has been done, one conclusion can be drawn again that 

in our study, in order to improve the accuracy of 

classification results on the type of severity bugzilla, the 

lowest limit infogain value of an attribute is 0.33. Apart 

from that, if there are attributes that have values below 0.33 

infogain, can be expressed as an attribute that is not 

effective to increase the accuracy of classification results on 

the type of severity bugzilla. 

 

 

 

 

 

 

 

 

In our study, the lower limit infogain value of the 

attribute effectively determined after the testing is done, this 

is because there is no specific benchmark to determine how 

large the lower limit infogain value of an attribute that can 

be declared effective to improve the accuracy of 

classification results. 
 

V. CONCLUSIONS 

The purpose of the series of studies conducted is to 

choose a significant attribute for the classification process. 

For that, it was performed a series of experiments that have 

been implemented and documented in Methods, which 

generate a sequence of important attributes according 

infogain results and verification results by the classification 

according to the order of the results of these infogain. From 

those the verification process, it can be concluded as 

following below: 

1. The number of terms did not have significant effect on 

the level of accuracy, but the unique terms can raise 

the level of classification accuracy. The more unique 

terms as data classification, the higher the level of 

accuracy of the classification process. moreover, the 

unique terms can help reducing the time required in the 

classification process. This leads to more easily find a 

classifier which divides each of class because machine 

learning only find a single term in each class. 

2. The process to determine the terms on the bug report 

attributes are in 2 ways: tf * idf and counting chance 

occurrence. This is because the data of each attribute is 

different. Tf * idf is used for the data type in the 

summary attribute. The calculation probabilty of 

occurrence is used for the data type on the attributes of 

component, product, qa_contact, summary, op_sys, 

vesion, priority. 
Attributes that can help improve the accuracy for the 

classification process of severity type are qa_contact with a 
value of 0.97, component with a value of 0.91, summary 
with a value of 0.47, and product with a value of 0.33. This 
was showed by the results of the classification accuracy of 
four attributes by 98%. 
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Figure 2.  Design of an attribute selection for severity classification. 
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Figure 3.  Testing process scenario 1. 
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Figure 4.  Testing process scenario 2.  


