
Proceedings of The 1st International Conference on Information Systems For Business Competitiveness (ICISBC) 2011

 305

An Attribute Selection For Severity Level Determination According To The Support

Vector Machine Classification Result

Ghaluh Indah Permata Sari

Department of Informatic Engineering

Nusantara PGRI University

Kediri, Indonesia

ghaluh_gips@yahoo.com

Daniel Oranova Siahaan

Department of Informatic Engineering

Technology Sepuluh Nopember Institute

Surabaya, Indonesia

daniel@if.its.ac.id

Abstract— Determination of bug severity level is needed in

fixing bug. Actually, in bug-tracking system, there is around 14

attributes used for defining a bug. But, all this time we do not

know which attributes are highly influential for this.

In this research, a new model of severity type classification

using Infogain method for Bugzilla is proposed. As for the

classsification process, we use Support Vector Machine,

because this method is suitable in handling a massive data

records. In this research, 8 bug attributes and 17.746 record of

bug reports are involved.

From the result of the experiment, we recommend five

attributes which can be used effectively in classifying the

severity types with a minimal value of infogain 0,33 which is

component, qa_contact, summary, cc_list and product. The

combination of those 5 attributes resulting in 99,83% accuracy

of severity types classification.

Keywords- Bug Tracking System; Severity Level

Classification; TF-IDF; Infogain; SVM.

I. INTRODUCTION

Bug-tracking system is an application to improve
servicing of customer satisfaction. Bugzilla, one of the bug-
tracking system, is for tracking bug in mozilla’s products. It
had 14 attributes: summary, status, severity, resolution,
assigned_to, product, component, priority, cclist_accesible,
version, op_sys, reporter_accessible, qa_contact [1]. From
those attributes, severity was considered important for bug
report [1] because the completion of fixing bug was based on
the type of bug severity. Moreover, user interpretation of the
type of bug severity was must be precise. However, it was
still determined by perception and estimation. Therefore,
there were reccommendations of the type of bug severity to
make it easier, So it would help developers to fix bugs [3].

Based on the background above, Menzies & Marcus did
research on the classification of the type of bug severity. The
research project called SEVERIS (Severity Issue
Assessment), where the bug-tracking system which was used
was a commercial robotic satellite NASA Independent
Verification and Validation (NASA IV &V) [3]. SEVERIS
has done giving the process of recommendations by making
classification rule using the Rule Learning method.
Experimental data were only taken from the comments

attribute where its type data is String, so it was necessary to
find the weight of term prior before it was classified [3]. The
process of search terms was done by calculating tf * idf, then
it was calculated by Infogain to get the effective terms for
the classification process [3]. SEVERIS took two data sets
from the database Pits, the total number of data is the 3875
bug [3]. The drawback of this method was for a small
number of data sets [3].

In different studies, Lucas D. Panjer stated his research
that the other attributes in addition to comments also affected
the process of determining the age of a bug. He also stated
that the attributes on the bug report was divided into two: the
influential attributes and non-influential attribute on
determining the age of bugs [2].

Based on the background of the two previous studies, our
study is trying to make improvements in the classification
process of the research conducted by Menzies & Marcus,
with considering the other attributes in addition to comments
(in Bugzilla called the Summary attribute) as it was done on
Panjer’s research, with the aim that the method type of bug
severity classification can also be done for open source bug
tracking system like Bugzilla to produce a high degree of
accuracy where Bugzilla attribute has the number of data sets
larger than the SEVERIS data sets. It was more than 17,000
bugs.

Classification method proposed for our study is the
Support Vector Machine (SVM). SVM is often known as a
binary classification, but it can also be used for the
classification that has a lot of class. That SVM method is
known as Multiclass Support Vector Machine (SVM
Multiclass). This method was introduced by Chih - Wei Hsu
& Chih - Jen Lin [4]. Due to the number of classes is more
than two (multiclass), then made an approach to solve these
problems. There are two approaches that are often done for
multiclass SVM: to combine all the data in a problem; to
build a multiclass classifier. Our study will use the second
approach because it does not require the completion of the
complex optimization and high computing, so it make easier
to implement multiclass SVM [4]. Apart from that, SVM
was chosen because of the way the classification is more
accurate than 3 on the other classification methods with a
large feature space [4]. From those advantages, SVM is
considered capable for classification of the type of severity
in the open-source bug tracking system like Bugzilla.

Proceedings of The 1st International Conference on Information Systems For Business Competitiveness (ICISBC) 2011

 306

From the research experiment that was conducted by
Ghaluh, Daniel, and Umi [5]. SVM proved appropriate for
the classification of the type of severity in the open source
bug tracking system like Bugzilla, where the large number of
data sets that are used is 17,746 bugs. Apart from that, SVM
is also suitable for multi-attribute classification. This is
indicated by the results of the classification which reached
99.83%.

II. METHODS

This section describes the process steps in this study. It is

began with preprocessing: tokenizing, filtering, and

stemming. After that, performing weighting process with

tf*idf, and then, ranking with infogain. The last process is

doing classification.

 Classification process is not only used to classify

bugs according its class (severity) but is also used to test

the significant attributes that influence it. The process

steps in this study is shown in Figure 2.

A. Preprocessing

Preprocessing aims to search the terms which can

represent the contents of a document. Thus, the analysis of

connectedness between documents can be done.

Preprocessing in our study consisted of three stages:

tokenizing, filtering, and stemming. Figure 1 shows the flow

chart of preprocessing.

Figure 1. Preprocessing stages.

Tokenizing stage is the stage of cutting the input string

based on each word which arranges the input string.

Filtering stage is the stage to take the essential terms of the

results of tokenizing, at this stage, it used a list of stop

words (removing words that are less important) or word list

(saving the important word) that obtained from the website

www.briandunning.com/cf/936. The last stage text mining

process is stemming, searching the root word of each word

of filtering results [6].

B. Term Frequency*Inverse Document Frequency

(TF*IDF)

At this stage, each document is associated as a vector

with the number elements a lot of as the successful terms

recognized from the extraction stage of the documents

produced in the previous text mining. The vector consists of

terms which will then be calculated based on tf * idf

method. Tf * idf method is a method of weighting which is

the integration between the term frequency (tf) and inverse

document frequency (idf) [7]. The formula shown in

Equation (1).

w(t,d) = tf(t,d)*log2(N/nt) (1)

The symbol w(t,d) is the weight of the term t in document d,

while tf (t,d) is the term frequency in a document (tf), where

N is the total number of documents used for the calculation

of idf. The nt is the number of documents that contain the

value of t. The function of this method is to seek

representation value from each of the terms of a collection

of documents. Then it will set up a matrix of terms with

documents, the type of attribute severity that contains all

summary according to the its severity type.

C. Infogain

Infogain method was first introduced by Thomas J.

McCabe. This method aims to measure the level of

complexity of an attribute by looking for the best terms that

most facilitate the target concept [8]. How it works is to do a

ranking on the data that have been previously weighted. It is

calculated by the formula in Equation (2).

Gain (S, A) = Entropy (S) – Entropy (Sv)

(2)

Where A = attributes, V = possible value for atribut A,

Values (A) = the set of possible values for atribut A, | Sv | =

number of samples of the value of v, | S | = total number of

data samples, Entropy (Sv) = Entropy for samples that have

the value v. Entropy in this case is a parameter used to

measure the level of diversity (heterogeneity) of the data set.

The more heterogeneous the data, the higher the value of

entropy. The Entropy is performed by the formula in

Equation (3).

Entropy (S) = (3)

Where c = number of values in the atibut target (number of

classification classes), whereas pi = number of samples

proportion (opportunities) for class i.

In a previous study conducted by Menzies & Marcus [3],

infogain is used to determine the most informative terms, by

way of re-order the existing term. This is done because the

term is considered as an attribute [3]. So Menzies & Marcus

used infogain to find a term trend towards a type of severity.

Slightly different from our study, where each of severity

type has attributes, and in these attributes contain terms. So

in our study, infogain used not only looking for a tendency

toward an attribute of severity type, but also seek the trend

term toward attribute, before seeking a tendency of attribute

toward severity type.

D. Make a Term Code

The process is conducted during forming matrices for

SVM input. It is to recognize term in classification process

easily. The encoding term will support classification process

due to the formed code is unique. So, it can easily

Tokenizing Filtering Stemming

Proceedings of The 1st International Conference on Information Systems For Business Competitiveness (ICISBC) 2011

 307

distinguish the term of each of its severity. The first step is

making the code form each of terms. The encoding uses 2

simple rules: the sequence number of term; the sequence

number of attribute for term from non-summary attribute

result. The first rule is based on the sequence of sorting

term, while the second is made by the sequence: (1)

Product, (2) Component, (3) Priority, (4) Version, (5)

Op_sys, (6) Qa_contact, (7) Cc_list. The term from

summary attribute result is just uses the sequence number of

each term without uses additional code at its behind. The

second step is matching the term according to the sequence

of original form before the term is separated (the sequence

is accroding to the bugzilla report).

E. Classification

The classification process in this study used SVM

Multiclass One Against All with Gaussian kernel. The input

is matrixes of encoded weighting process. One Against

All method will build k number of binary SVM, where k is

the number of classes [4]. SVM-i is trained with all

samples in the class-i with positive label and all other

samples with negative label if given l training data (xi, yi),...,

(xl, yl), where xi ∈ ℜn
, i = 1,...l and yi ∈ (l,...,k) is the

lass of xi, then the SVM – i will solve the

problem in Equation (4).

 (w
i
)

T
 w

i
 + C ,

(w
i
)

T
Φ(xj) + b

i
≥ 1 - , jika yj = i,

(w
i
)

T
Φ(xj) + b

i
≤ - 1 + , jika yj≠ i,

≥ 0, j = 1, ..., l. (4)

Where the dataxi is mapped into the higher dimensional

space using the function Φ and C as the penalty parameter.

Minimizin g (w
i
)

t
w

i
means maximizing or the

margin beetwen the two groups of data. When the data are

not separated by linear, then there is the penalty of C

 which can reduce the amount of training error. The

idea of SVM is to balance the regulation (w
i
)

t
w

i
and

training error.

After finished minimization problem, then there are k

decision functions shown in Equation (5).

f
1
 (x) = (w

1
) x + b

1
, ..., f

k
 (x) = (w

k
) x + b

k
 (5)

In this study, x data class will be determined based on

the highest decision function value.The functions for

searching minimization solution has been provided in the

function of quadratic programming that will be implemented

with a monqp function in matlab.

Classification process is done in two processes:

training and testing process. In the training process,

hyperplane variable of each classifier will be recorded and

be used as a classifier in the training process. If a class of

training process same with the one of testing process, then

the recognition is correct. Its result is a matrix of weight

term that corresponding to the index value of the biggest

decision function of testing process.

The testing process is intended to prove the counting

infogain result in the important attribute selection. It is

conducted with two testing scenarios that will be described

one by one with the diagram. Each of scenarios is

conducted with varying the number of attributes. The first

scenario is done by varying the number of atrributes in the

testing process, while in the training process still used 8

attributes. The second scenario is done by varying the

number of attributes in the training and testing process. So,

the number of attributes of training and testing process are

same. Each of scenarios is conducted in 3 steps: measuring

accuracy of summary attribute; measuring accuracy of

qa_contact, component, product, cc_list, and summary

attribute; measuring accuracy of version, op_sys, and

priority attribute.

III. EXPERIMENTS

This explain the processes of determination of

Important Attributes. This process is done with two test

scenarios. Each of scenarios is made by performing a

variation on the number of used attributes. Scenario 1 is

done by varying the number of attributes in the testing

process, while in the training process still using 8 attributes.

Scenario 2 is done by varying the number of attributes in the

process of training and testing process. So the number of

attributes of the process of training and testing in scenario 2

is the same. Each of scenarios is performed in 3 steps:

measurement accuracy for only summary attribute;

measurement accuracy for attributes with a high infogain

value (qa_contact, component, product, cc_list and

summary); measurement accuracy for the attribute with a a

low infogain value (version, op_sys, and priority). In

scenario 1 and scenario 2, the numbers of data used for

training are 16,146 bugs, while for the testing are 1,600

bugs. The number of term per severity for training are 666

terms, while for the testing process are 200 terms. Process

of scenario 1 is shown in Figure 3, while the process of

Scenario 2 is shown in Figure 4.

IV. EXPERIMENTAL RESULT

From testing of important attributes with performing

scenario 1 and scenario 2, the conclusion drawn that the

results can be seen in Table 1.

Proceedings of The 1st International Conference on Information Systems For Business Competitiveness (ICISBC) 2011

 308

TABLE I. TESTING RESULT WITH SCENARIO 1 AND SCENARIO 2

Testing Scenario 1 Scenario 2

Step 1 16,97 16,67

Step 2 16,97 98

Step 3 16,97 Bad Mouve

. The testing result of step 1, 2, and 3 in scenario 1 is

equal to 16.97%, this is because the number of input

attributes of the training process and testing process is not

the same. So the matching process of data classifier with

testing input did not have many partners. This caused a lot

of bad mouve conditions, the lack of a proper support vector

in the testing process.

The testing result of scenario 2 looks more varied, this is

because the number of input attributes in the process of

training and testing are the same. So, the matching process

between the test data with the classifier has a lot of couples.

It Seen from Table 1, that the test results in step 1 yields an

accuracy rate of 16.67%. This shows that, if only the

summary attributes are used in the classification process, is

not sufficient to obtain high accuracy for classification of

severity type.

The testing result of step 2 in scenario 2 shows the

accuracy rate of 98%. This result indicates that the five

attributes that have the top 5 value infogain: summary,

component, product, qa_contact, cc_list can very

significantly affect the accuracy of classification result.

The last discussion on the result of step 3 in scenario 2,

where the testing of step 3 did not get the level of accuracy.

This also was occured in the process of training. In the

testing step 3 was dominated by bad mouve condition since

the beginning of the testing process. From the result in

Table 1 can be concluded that the three attributes that have

the three lowest value infogain: version, op_sys, priority did

not significant effect on the classification process.

From the discussion of the results of the scenario method

that has been done, one conclusion can be drawn again that

in our study, in order to improve the accuracy of

classification results on the type of severity bugzilla, the

lowest limit infogain value of an attribute is 0.33. Apart

from that, if there are attributes that have values below 0.33

infogain, can be expressed as an attribute that is not

effective to increase the accuracy of classification results on

the type of severity bugzilla.

In our study, the lower limit infogain value of the

attribute effectively determined after the testing is done, this

is because there is no specific benchmark to determine how

large the lower limit infogain value of an attribute that can

be declared effective to improve the accuracy of

classification results.

V. CONCLUSIONS

The purpose of the series of studies conducted is to

choose a significant attribute for the classification process.

For that, it was performed a series of experiments that have

been implemented and documented in Methods, which

generate a sequence of important attributes according

infogain results and verification results by the classification

according to the order of the results of these infogain. From

those the verification process, it can be concluded as

following below:

1. The number of terms did not have significant effect on

the level of accuracy, but the unique terms can raise

the level of classification accuracy. The more unique

terms as data classification, the higher the level of

accuracy of the classification process. moreover, the

unique terms can help reducing the time required in the

classification process. This leads to more easily find a

classifier which divides each of class because machine

learning only find a single term in each class.

2. The process to determine the terms on the bug report

attributes are in 2 ways: tf * idf and counting chance

occurrence. This is because the data of each attribute is

different. Tf * idf is used for the data type in the

summary attribute. The calculation probabilty of

occurrence is used for the data type on the attributes of

component, product, qa_contact, summary, op_sys,

vesion, priority.
Attributes that can help improve the accuracy for the

classification process of severity type are qa_contact with a
value of 0.97, component with a value of 0.91, summary
with a value of 0.47, and product with a value of 0.33. This
was showed by the results of the classification accuracy of
four attributes by 98%.

REFERENCES

[1] Vlasceanu, Ion Valentin., Christian Bac. 2009. “ Study Concerning

The Bug Tracking Applications ”.

[2] Panjer, Lucas D. 2007. “ Predicting Eclipse Bug Lifetimes ”. IEEE
29th International Conference on Software Engineering Workshops,
0-7695-2830-9/07.

[3] Menzies, Tim., Andrian Marcus. 2008. “Automated Severity
Assessment of Software Defect Reports”. IEEE, 346-355.

[4] Hsu, Chih-Wei., Chih-Jen Lin. 2002. “A Comparison Methods for
Multi-class Support Vector Machines”. IEEE Transactions on Neural
Networks, Vol. 13, No.2, 415-425.

[5] Sari, Ghaluh I. P., Daniel O. S., and Umi L. Y. 2011. “Klasifikasi
Bug Untuk Menentukan Tingkat Severity Menggunakan Support
Vector Machine”. Jurnal Teknik Informatika, Vol. 2.

Proceedings of The 1st International Conference on Information Systems For Business Competitiveness (ICISBC) 2011

 309

[6] Mooney, Raymond J., Loriene Roy. 1999. “Content-Based Book
Recommending Using Learning for Text Categorization”. The
SIGIR-99 Workshop on Recommender Systems : Algorithms and
Evaluation. Berkley.

[7] Yang, Yiming, Jaime G. Carbonell, Rulf D. Brown, Brian T.
Achibald, Xin Liu. 1999. “ Learning Approaches For Detecting and

Tracking News Events ”. IEEE Intelligent Systems, Language
Technologies Institute, Carbeige Mellon University.

[8] McCabe, J. Thomas. 1976. “ A Complexity Measure ”. IEEE
Transactions on Software Engineering, Vol. SE – 2, No. 4.

[9] http://www.bugzilla.mozilla.org

[10] http://tartarus.org/~martin/PorterStemmer

Data

training

from N

attributes

Weighting

data text

(TF*IDF)

Calculation

probabilty

occurence

data numeric

Weight-

matrix

(TF*IDF)

Probabili

ty value

matrix

Sorting term

based on

weight

Weighting

Tokenizing

Filtering

Stemming

Grouping data

(enumeration)

summary Attribute data

Non summary attributes data

preprocessing

Calculating

Infogain

List of

important

attributes

Important attribute

reccommendation

Term

matrix

based on

attribute

Multiclass

classification

(SVM multiclass)

Hyperplane

CLASSIFICATION

Forming SVM

biner for each of

class
Matriks Biner

Kelas-1

Matriks Biner

Kelas-1

Matriks Biner

Kelas-1

Matriks Biner

Kelas-1

Matriks Biner

Kelas-1

Biner matrix

class - 1

Numbering term

attributes except

summary

Installation term based on

the sequence in bug report

Making input matrix for SVM

Multiclass

classification

(SVM multiclass)

Classified data

TESTING

Data

testing

from N

attributes

Weighting

data text

(TF*IDF)

Calculation

probability

occurence

data numeric

Weight-

matrix

(TF*IDF)

Probabili

ty value

matrix

Tokenizing

Filtering

Stemming

Grouping data

(enumeration)

Summary attribute data

Non-summary attributes data

prerocessing
WEIGHTING

CLASSIFICATION

Numbering term

attributes

excepet

summary

Installation

term based on

the sequence

in bug reportM
a

k
in

g
 i
n

p
u

t
m

a
tr

ix
 f
o

r
S

V
M

T
R

A
IN

IN
G

Figure 2. Design of an attribute selection for severity classification.

http://www.bugzilla.mozilla.org/

Proceedings of The 1st International Conference on Information Systems For Business Competitiveness (ICISBC) 2011

 310

comparing testing Xi with traning results (xsup, w,

b, lambda, alpha, nbsv, pos)

Yprediction

(100 * (Yprediction-Ytesting)) / Ytraining

accuration of

classified data

Testing attributes with high

infogain value

Testing attributes with low

infogain value
Testing summary attribute

S
u

m
m

a
ry

P
ro

d
u

ct
C

o
m

p
o

n
e

n
t

V
e

rs
io

n

P
ri
o

ri
ty

O
p

_
sy

s

Q
a

_
co

n
ta

ct

S
u

m
m

a
ry

P
ro

d
u

ct

C
o

m
p

o
n

e
n

t

V
e

rs
io

n

P
ri
o

ri
ty

O
p

_
sy

s

Q
a

_
co

n
ta

ct

S
u

m
m

a
ry

P
ro

d
u

ct

C
o

m
p

o
n

e
n

t

V
e

rs
io

n

P
ri
o

ri
ty

O
p

_
sy

s

Q
a

_
co

n
ta

ct

Scenario 1

Figure 3. Testing process scenario 1.

Scenario 2

comparing testing Xi with traning results (xsup, w,

b, lambda, alpha, nbsv, pos)

Yprediction

(100 * (Yprediction-Ytesting)) / Ytraining

accuration of

classified data

Training

process

Hyperplane :

xsup, w, b , lambda, alpha, nbsv, pos

Testing attributes with high

infogain value

S
u

m
m

a
ry

P
ro

d
u

ct

C
o

m
p

o
n

e
n

t

V
e

rs
io

n

P
ri
o

ri
ty

O
p

_
sy

s

Q
a

_
co

n
ta

ct

Testing attributes with low

infogain value

S
u

m
m

a
ry

P
ro

d
u

ct
C

o
m

p
o

n
e

n
t

V
e

rs
io

n

P
ri
o

ri
ty

O
p

_
sy

s

Q
a

_
co

n
ta

ct

Testing summary attribute

S
u

m
m

a
ry

P
ro

d
u

ct

C
o

m
p

o
n

e
n

t

V
e

rs
io

n

P
ri
o

ri
ty

O
p

_
sy

s

Q
a

_
co

n
ta

ct

Figure 4. Testing process scenario 2.

