
Proceedings of The 1st International Conference on Information Systems For Business Competitiveness (ICISBC) 2011

 106

A Framework For Rapid Development Of OLTP Information Systems:

Transformation Of SQL Statements To Three-Tier Web Applications

Teduh Dirgahayu
Department of Informatics

Indonesian Islamic University

Yogyakarta, Indonesia

Email : teduh.dirgahayu@uii.ac.id

Abstract—In this paper, we present a framework for rapid

development of online transaction processing (OLTP)

information systems. The framework assumes that a Web

application will be developed on top of an available database. It

includes a transformation that receives as an input a SQL

statement and results in as an output a three-tier Web

application. The transformation allows developers to generate

an implementation specification, i.e. the source code of the

presentation and logic tier of a Web application, from a SQL

statement. It consists of a development method and three

transformations. The transformation is to produce (i) a query

form page, (ii) a query result page, and (iii) a Web services

method that implement the SQL statement. To result in ready-

to-deploy source code, developers must supply the

transformations with additional information.

Keywords: model-driven engineering; transformation;

SQL statements; web applications; three-tier architecture

I. INTRODUCTION

Online transaction processing (OLTP) information
systems collects various transaction data from the business
processes of an enterprise. Nowadays most OLTP systems use
relational databases as their main storages. SQL (structured
query language) is used to manipulate the data in the
databases.

Basically, the operations that an OLTP system does
are (i) create a new transaction record; (ii) read one or more
records, either for presenting the existing records or for
supporting the creation of a new record, e.g. a value for the
new record must be taken from a set of existing values
(lookup table); (iii) update an existing record; and (iv) delete
one or more records from the database. These operations
correspond respectively to basic SQL statements, i.e., insert,
select, update, and delete.

As web technologies are getting mature, more OLTP
systems are developed as Web applications and deployed on
the Internet. A Web application allows an enterprise to reach
more customers. This is also driven by the fact that customers
are ready and expect to be able to make transactions on the
Internet. On October 2011, Site Analytics

(http://siteanalytics.compete.com) reported that Amazon and
eBay have 468,825 and 535,243 unique visitors in a month
(US data only), respectively.

A Web application can use either two-tier or three-tier
architecture [1], as depicted in Fig. 1. The two-tier
architecture is also called client-server architecture. In a
client-server Web application, a user interacts with a web
client that is responsible for providing (graphical) user
interface and for implementing the business logic of the
application. This web client interacts with database server(s).
This architecture is simple and, therefore, best for applications
with small number of users and a single database [2]; but its
performance will suffer from heavy traffic from a large
number of users.

In three-tier architecture, a Web application consists of
a presentation, logic, and data tiers. The presentation tier is
made up of a Web client that provides user interface only. The
logic tier provides the business logic of the application and
resides on an application server. It can be implemented, e.g.
using Web Services, EJB, or .NET. The data tier stores the
application’s data on database server(s).

Although its structure and development process is
more complex, a three-tier Web application offers the
following advantages [1][2][3].

 Performance. The separation between the presentation,
logic and data functionality allows better load balancing
between their corresponding servers.

FIGURE 1. TWO ARCHITECTURE TYPES OF WEB APPLICATIONS

mailto:teduh.dirgahayu@uii.ac.id

Proceedings of The 1st International Conference on Information Systems For Business Competitiveness (ICISBC) 2011

 107

 Flexibility. Any change or modification of the
functionality implementation in one tier does not affect
the implementations in the other tiers.

 Security. More security policies can be enforced within
the servers.

It should be noted that, in either architectures, some
business logic can be implemented on database server as
functions or stored procedures.

The objective of this paper is to propose a framework
for transforming SQL statements to three-tier Web
applications. The purpose of this framework is to allow rapid
development of OLTP information systems as Web
applications. Since this framework involves minimal manual
effort from developers, the development cost can be reduced.
This framework also offers code consistency and less error on
the generated source code of a Web application. In turn, this
potentially lowers the maintenance cost. In this paper, we
focus on the transformation of SELECT statements.

This paper is further structured as follows. Section II
discusses current development (state-of-the-art) on the
automatic generation of Web applications. Section III presents
an overview of our transformation framework. Section IV
presents in more detail our transformation. Section V
discusses the results produced by our transformation. Finally,
section VI concludes this paper and identifies future work.

II. MODEL-DRIVEN ENGINEERING OF WEB

APPLICATIONS

Model-driven engineering (MDE) [4][5][6][7] has
been widely applied in the development of Web applications
[8] [10][14][15][16][18][19][20]. MDE is a development
methodology that focuses on the separation of concerns
between functionality and implementation specification (on a
specific technology platform). In MDE, an implementation
specification is obtained from the application of a
transformation on a functionality specification. When a tool
support for such transformation is available, MDE can reduce
development cost, improve implementation quality, and speed
up the development process.

A model-driven development methodology of three-
tier Web applications is proposed in [8]. This methodology
allows a developer to specify a Web application in three
models, i.e., a data model in ERD (Entity-Relationship
Diagram); a hypertext model for navigating between pages in
a visual notation called WebML [9]; and a presentation model
defining how the information should be delivered to the users.
A combination of presentation and navigation models
represents a workflow or business process supported by the
Web application. Fig. 2 illustrates the application of this
methodology.

This methodology provides a transformation that
automatically generate executable code in JEE or .NET. The
behavior of a Web application, including SQL statements, is
taken into account during code generation. The generated
code requires an application server with a specific runtime
layer to execute. In [10], this methodology is used to develop
context-aware web applications.

FIGURE 2. A MODEL-DRIVEN DEVELOPMENT METHODOLOGY IN

[8]

Another methodology for development of three-tier
Web application called webSA allows a developer to specify a
Web application in four models, i.e., content, navigation
structure, business process, and presentation [11]. This
methodology integrates functional and architectural models of
a Web application. The functional model can be specified in
WebML [9], OO-H [12], or UWE [13]. This methodology
provides a transformation to generate the application’s
architecture in JEE (that includes HTML, JSP and Web
Services) or .NET.

Reference [11] illustrates the development of a Web
application using webSA, in which UWE is used to specify
the functional model. In [14], OO-H is used to specify the
user interface and navigation structure of a Web application.

A model-driven development methodology called
AutoWeb specifies a Web application in three models, i.e.,
structure, navigation and presentation [15]. This methodology
provides two transformations (called page generator and
prototype generator) of the models to a database schema and
a two-tier Web application.

A development framework called visualWADE [16]
specifies a two-tier Web application in three models, i.e.,
structure (information content), navigation, and presentation.
All models are defined in UML. The framework is able to
generate an implementation in PHP.

Several researches on model-driven engineering focus
on the development of service compositions. The researches
investigate the development of a Web services development
framework or transformation from a workflow or business
process model, e.g., in UML activity diagram or ISDL
(Interaction System Design Language [17]), to executable
code in BPEL (Business Process Execution Language)
[18][19][20]. A service composition can be used as the logic
tier of a Web application.

Using the methodologies or frameworks described
above, a Web application is specified in several models; each
of which represents different aspect of the application, e.g.,
content (data or information structure), hypertext (navigation
structure), business process (control flow), and presentation.
Different modeling languages or notation is required for
different models because a modeling language is sufficiently
expressive for its intended use only.

The methodologies introduce or use non-standard
modeling languages, e.g., WebML, OO-H, ISDL, and
extensions of UML. To be able to use the methodology,
developers must be fluent in those languages. This
requirement may hinder the acceptance of the methodology.

Proceedings of The 1st International Conference on Information Systems For Business Competitiveness (ICISBC) 2011

 108

The use of standard languages is a determining factor for
developers to accept and use a methodology.

OLTP information systems are used by most of the
methodologies for illustration. Such information system is
typically based on a relational database that makes use of
SQL statements for data manipulation. However, from the
descriptions of the methodologies, it is not clear when and
where SQL statements should be embedded in the models. In
the development of service compositions, SQL statements do
not play a significant role and, thus, may be abstracted in a
service composition model.

A transformation from functionality to implementation
specification, including executable code, may benefit from the
decomposition of the transformation into sub-transformations
[11][19]. Such decomposition allows a large and possibly
complex transformation to be developed as a number of
smaller and simpler transformations. It also allows reuse of
the sub-transformations.

III. TRANSFORMATION FRAMEWORK

This section presents an overview of our
transformation framework. Our framework targets a Web
application whose presentation tier is in PHP programming
language; logic tier is implemented as a Web service in PHP
and NuSOAP [21] toolkit; and data tier uses MySQL
database. The framework assumes that the database is
available. No specific runtime support is required to execute
the resulted Web application.

Fig. 3 shows an overview of our transformation
framework. It consists of five main activities. First, a
developer creates a SQL SELECT statement for querying a
target database. This query specifies which data should be
retrieved from which database tables under some condition.
Second, the developer tests the SQL statement by execute it
on the target database. The developer evaluates whether the
query results in the expected data. Third, when the developer
confirms that the data are as expected, the developer
transforms the SQL statement to the source code of a three-
tier Web application. Otherwise, the developer must correct
the SQL statement until it results in the expected data. Fourth,
the developer deploys the source code resulted from the
transformation on the target servers. Fifth, the Web
application is now ready and can be executed.

In order to transform a SQL statement to the source
code of a Web application, the framework includes a set of
transformations as depicted in Fig. 4. Transformation T1a and
T1b receive a SQL statement and produce the source code of
a query form page and a query result page, respectively.
These pages constitute the presentation tier of a Web
application. Transformation T2 receives a SQL statement and
produces the source code of a Web services method. This
source code constitutes the logic tier of a Web application.

To produce correct and complete source code, the
transformations must be supplied with information about the
target database on which the SQL statement should run. Other
information such as target file names, namespace, and
application server’s URL, must also be supplied to the
transformations.

FIGURE 3. FRAMEWORK FOR RAPID DEVELOPMENT OF THREE-

TIER WEB APPLICATIONS

Fig. 5 depicts how the source code resulted from the
transformation should be deployed. The query form and the
query result pages are to be deployed on a Web server. The
business logic is to be deployed on an application server or a
Web services container. Typically a Web services container
can automatically generate the description of the services that
are deployed on them (in Web Services Description
Language, WSDL). Our framework thus does not include a
transformation that is to produce service description.

After deployment on the target servers, the Web
application can now be executed. The execution flow is
depicted in Fig. 6. The execution order is indicated by the
numbers in the figure. (1) A user fills in values on the text
fields on a query form page. (2) The user submits these values
to a query result page. (3) This query result page invokes a
Web services method (business logic) by passing these values
as parameters. (4) The business logic uses these values to
query the database. (5) The database sends back the resulted
data to the business logic. (6) The query result from the
database is sent back to the query result page as the Web
services method’s return values. (7) The query result page
formats the values and presents them to the user.

FIGURE 4. TRANSFORMATION OF SQL STATEMENT

Proceedings of The 1st International Conference on Information Systems For Business Competitiveness (ICISBC) 2011

 109

FIGURE 5. DEPLOYMENT OF TRANSFORMATION RESULTS

IV. TRANSFORMATION METHOD

The full syntax of a SELECT statement in MySQL is
depicted in Fig. 7. For each transformation, we identify which
parts of a SELECT statement are needed to produce the
output. A template is used to ease the code generation.

A select_expr indicates the columns of the
specified tables from which data will be retrieved. The
columns can be given alias names. These alias names can be
used to refer to the column in GROUP BY, ORDER BY, or
HAVING clauses. A select_expr can be an asterisk (*) to
indicate all columns. Our transformations have not yet
considered the use of alias names or asterisk.

In order to make clearer the description of our
transformations, we use an example query in Fig. 8. We use a
colon symbol preceding a variable name, e.g., :category, to
indicate that the user must supply a value for that variable
during execution.

A. Transformation T1a

Given a query, transformation T1a produces a query
form page. This page is used by a user to supply values
needed by the query to execute.

FIGURE 6. EXECUTION FLOW

SELECT

 [ALL | DISTINCT | DISTINCTROW]

 [HIGH_PRIORITY]

 [STRAIGHT_JOIN]

 [SQL_SMALL_RESULT][SQL_BIG_RESULT]

 [SQL_BUFFER_RESULT]

 [SQL_CACHE | SQL_NO_CACHE]

 [SQL_CALC_FOUND_ROWS]

 select_expr [, select_expr ...]

 [FROM table_references

 [WHERE where_condition]

 [GROUP BY {col_name | expr | position}

 [ASC | DESC], ... [WITH ROLLUP]]

 [HAVING where_condition]

 [ORDER BY {col_name | expr | position}

 [ASC | DESC], ...]

 [LIMIT {[offset,] row_count | row_count

 OFFSET offset}]

 [PROCEDURE procedure_name(argument_list)]

 [INTO OUTFILE 'file_name' export_options

 | INTO DUMPFILE 'file_name'

 | INTO var_name [, var_name]]

 [FOR UPDATE | LOCK IN SHARE MODE]]

FIGURE 7. SELECT SYNTAX IN MYSQL [22]

SELECT

 course.category, course.name, user.name

FROM course, user

WHERE course.category = :category

 AND course.name LIKE :coursename

 AND SUBSTR(course.id, 1,9) = user.id

ORDER BY course. name ASC

FIGURE 8. AN EXAMPLE QUERY

Transformation T1a identifies variables specified in
where_condition and generates a two-column HTML table
as depicted in Fig. 9 (table borders are made visible for
clarity). For each row, the first column contains a variable
name; and the second column contains a text field on which
the user must supply a value. In the last row, this
transformation adds a Search button.

The data filled in on the query form page will be sent
to the Web server using the POST method. The
transformation needs the following additional information:

 the name of the HTML form;

 the address of the Web server to which the data
should be sent; and

 the query result page that handles the query.

This transformation puts this information as the
attributes of a HTML form (see the bold texts in Fig. 10) that
encloses the definition of the table of Fig. 9.

FIGURE 9. QUERY FORM PAGE FOR THE EXAMPLE QUERY

Proceedings of The 1st International Conference on Information Systems For Business Competitiveness (ICISBC) 2011

 110

<form name="queryform1" method="POST"

 action="http://web.server.com/

 queryresult1.php">

FIGURE 10. THE HTML FORM OF THE EXAMPLE QUERY FORM

PAGE

B. Transformation T1b

Given a query, transformation T1b produces a query
result page. During execution, this page does the following
activities. First, the query result page receives and handles the
value sent by the query form page. To support this activity,
transformation T1b identifies the variables specified in
where_condition of the query; and generates PHP
variables and their assignments statements. Part 1 of Fig. 11
depicts the source code produced by this transformation for
the example query.

Second, the query result page invokes a Web services
method. To generate the corresponding source code, the
transformation needs the following additional information
(bold text in Part 2 of Fig. 11):

 the address of the target application server; and

 the Web services method to invoke.

Third, the query result page receives the return

value(s) from the method invocation. To support this activity,
transformation T1b identifies the variables specified in
where_condition; and generates a list of parameters to be
passed to the Web services method. This transformation needs
additional information, i.e., the name of the method to invoke.
Part 3 of Fig. 11 depicts the generated source code (additional
information is in bold text).

Fourth, the query result page formats the return values
in a HTML table. Transformation T1b identifies columns
specified in select_expr; and generates a HTML table
whose number of columns is as many as the number of
identified columns. The names of the identified columns are
used as the columns’ headers. The transformation populates
the HTML table using the values returned from the Web
services method invocation. Part 4 of Fig. 11 depicts the
source code produced by this transformation for the example
query.

Execution of the source code results in a HTML table
depicted in Fig. 12. Values 523 and %algorithm% are given

to variables :category and :coursename of the example
query, respectively.

C. Transformation T2

Given a query, transformation T2 produces the source
code of a Web services method that implements the query.
The source code consists of the implementation of a Web
services method and the registration of that implementation to
a Web services container.

For implementing the Web services method, this
transformation needs the following additional information
(bold text in Part 1 of Fig. 13):

 the name of the method,

 the address of the target database server,

 a username and password to access the database, and

 the database name.

// 1. handle data from query form page

$category = $_POST["category"];

$coursename = $_POST["coursename"];

// 2. invoke web services method

require_once('nusoap.php');

$client = new soapclient('http://

app.server.com/example/query1.php');

// 3. receive return values

$result = $client->call('query1', array(

 'category' => $category;

 'coursename' => $coursename));

// 4. format return values in table

echo "<table border='1'>

 <tr>

 <th>course.category</th>

 <th>course.name</th>

 <th>user.name</th>

 </tr>";

while($row = mysql_fetch_array($result)) {

 echo "<tr>";

 echo "<td>" . $row[0] . "</td>";

 echo "<td>" . $row[1] . "</td>";

 echo "<td>" . $row[2] . "</td>";

 echo "</tr>";

 }

echo "</table>";

FIGURE 11. WEB SERVICES METHOD IMPLEMENTATION OF THE

EXAMPLE QUERY

FIGURE 12. TABLE PRESENTING THE RESULT OF THE EXAMPLE

QUERY

Transformation T2 then constructs a proper query by
replacing the variables in where_condition of the given
query with the corresponding PHP variables.

For registering the method, this transformation needs
the following additional information (bold text in Part 2 of
Fig. 13):

 the target namespace, and

 the name of the method.

V. DISCUSSION

Given a valid query, our transformation framework
can produce the source code of a three-tier Web application in
seconds. The query form and query result pages of the
presentation tier are very basic. A Cascaded Style Sheet
(CSS) can be used to make the presentation more attractive.

Proceedings of The 1st International Conference on Information Systems For Business Competitiveness (ICISBC) 2011

 111

A survey that studied five research projects and 47
development tools for data-intensive Web applications [1]
grouped the tools into six categories: (1) visual editors and
site managers; (2) Web-enabled hypermedia authoring tools;
(3) Web and database integrators; (4) Web forms editor,
report writers, and database publishing wizards; (5)
multiparadigm tools; and (6) model-driven application
generators. We consider that our framework is in category 4
and 6. Tools in category 4 aim at increasing productivity to
rapidly deploy Web applications. Tools in category 6 provide
highest level of support to the development of Web
applications, from conceptualization to automatic generation
of the implementation.

Some of the studied tools allow automatic code
generation from a design specification, e.g. models in visual
notation or database schema (tables or views). Procedural
scripts need to be included manually to the models or to the
generated Web applications. Our transformations receive a
SQL statement and some additional information to generate
ready-to-deploy source code of a Web application. No
procedural script needs to be included manually.

The difference between declarative (SQL statement)
and procedural paradigms increases the development time of
and limit optimization opportunities in a Web application. For
this reason, a language called Hilda was introduced to design
data-intensive Web applications [23]. An automatic tool
generates a relational database and Java servlets from a design
specification in Hilda. Another language called WebML was
introduced to specify Web applications [24]. A developer
specifies visually the content of a Web application page and
how it should be rendered. Such a non-standard language
might be effective for code generation, but it might hinder
developers from using it because of interoperability issues.

// 1. Method implementation

function query1($category, $coursename) {

 $con = mysql_connect("db.server.com",

"username", "password");

 mysql_select_db("database", $con);

 $query = "SELECT course.category,

 UCASE(course.name), user.name

 FROM course, user

 WHERE course.category = " . $category . "

 AND course.name LIKE '%" . $coursename .

 "%' AND SUBSTR(course.id, 1,9) = user.id

 ORDER BY course.fullname ASC";

 $result = mysql_query($query);

 mysql_close($con);

 return $result;

}

// 2. Registration of Web services method

require_once("nuSOAP/lib/nusoap.php");

$server = new soap_server();

$namespace = "http://example.com/webapp1";
$server->wsdl->schemaTargetNamespace =

 $namespace;

$server->configureWSDL("query1");

$server->register('query1');

FIGURE 13. WEB SERVICES METHOD IMPLEMENTATION OF THE

EXAMPLE QUERY

A number of researches developed transformation
from or to SQL, e.g., generation of SQL and stored procedure
from the mapping between data sources and data warehouse
[25]; transformation of SQL data definition language (DDL)
to ontology in order to support semantic Web [26]; and
transformation of entity-relationship query language to SQL
[27]. Our transformation differs from those researches, i.e.,
SQL data manipulation language (DML) as input and the
source code of a three-tier Web application as outputs, which
need different methods.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a framework for rapid development
of OLTP information systems as three-tier Web applications.
This framework includes transformations of SQL statements
to Web applications using the MDE approach. In this way, the
framework offers better implementation quality at a reduced
cost and development time, which will ultimately increase
business competitiveness of an enterprise.

The transformations receives a SQL statement and
results in a query form page, a query result page, and a Web
services method implementing the business logic. To produce
ready-to-deploy source code, the transformations need
additional information, e.g., server name, database name,
method name, and form name.

In this paper, we focus on the transformation of
SELECT statement. Our future work will transform INSERT,
UPDATE and DELETE statements in order to fully support
the rapid development of three-tier OLTP Web applications.
Furthermore, we will extend our framework so that it can
integrate several SQL statements into a complete web
application with minimal intervention from developers. This
framework should be able to receive a business process model
(e.g., in BPMN [28]), whose activities include SQL
statements, and to automatically generate a business process
implementation. Such a business process model defines
navigation constraints between pages.

Our transformations are implemented in Java. A
simple custom-made parser is developed to identify parts of a
query. Although the parser is sufficient for handling queries
with simple or medium complexity; it is not robust enough to
handle queries with higher complexity, e.g., a SELECT
statement whose where_condition contains another
SELECT statement. We are considering using ANTLR [29]
to improve our parser.

Proceedings of The 1st International Conference on Information Systems For Business Competitiveness (ICISBC) 2011

 112

REFERENCES

[1] P. Fraternali, “Tools and Approaches for Developing Data-Intensive
Web Applications: A Survey,” ACM Computing Survey (CSUR), vol.
31, no. 3, 1999, pp. 227-263.

[2] B. Furht, C. Phoenix, J. Yin and Z. Aganovic, “An Innovative Internet
Architecture for Application Service Providers,” Proc. 33rd Annual
Hawaii Intl. Conf. on System Sciences, 2000, pp. 1-10.

[3] A.O. Ramirez, “Three-Tier Architecture,” Linux Journal, no. 75, 2000.

[4] S. Kent, “Model-Driven Engineering,” Integrated Formal Methods,
LNCS, vol. 2335, 2002, pp. 286-298.

[5] D.C. Schmidt, “Model-Driven Engineering,” IEEE Computer, vol. 39,
no. 2, 2006, pp. 25-31.

[6] OMG, “Model Driven Architecture (MDA),” ormsc/2001-07-01, 2001.

[7] OMG, “MDA Guide version 1.0.1,” omg/2003-06-01, 2003.

[8] I. Manolescu, M. Brambilla, S. Ceri, S. Comai and P. Fraternali,
“Model-Driven Design and Deployment of Service-Enabled Web
Development,” ACM Trans. Internet Technology (TOIT), vol. 5, no. 3,
2005, pp. 439-479.

[9] S. Ceri, P. Fraternali and M. Matera, “Conceptual Modeling of Data-
Intensive Web Applications,” IEEE Internet Computing, vol. 6, no. 4,
2002, pp. 20–30.

[10] S. Ceri, F. Daniel, M. Matera and F. M. Facca, “Model-Driven
Development of Context-Aware Web Applications,” ACM Trans.
Internet Technology (TOIT), vol. 7, no. 1, 2007, pp. 1-32.

[11] S. Melia, A. Kraus and N. Koch, “MDA Transformations Applied to
Web Applications Development,” Web Engineering, LNCS, vol. 3579,
2005, pp. 883-905.

[12] J. Gomez, C. Cachero and O. Pastor, “Extending a Conceptual
Modelling Approach to Web Application Design,” Advanced
Information Systems Engineering, LNCS, vol. 1789, 2000, pp. 79-93.

[13] N. Koch and A. Kraus, “The expressive Power of UML-based Web
Engineering,” Proc 2nd Intl. Workshop on Web-oriented Software
Technology, 2002, pp. 105-119.

[14] S. Melia and J. Gomez, “The webSA Approach: Applying Model-
Driven Engineering to Web Application,” J. of Web Engineering, vol.
5, no. 2, 2006, pp. 121-149.

[15] P. Fraternali and P. Paolini, “Model-driven Development of Web
Applications: the AutoWeb System,” ACM Trans. Information
Systems (TOIS), vol. 18, no. 4, 2009, pp. 323–382.

[16] J. Gomez “Model-Driven Web Development with VisualWADE,”
Web Engineering, LNCS, vol. 3140, 2004, pp.611-612.

[17] ASNA, “ISDL Home,” http://isdl.ctit.utwente.nl/

[18] K. Baina, B. Benatallah, F. Casati and F. Toumani, “Model-Driven
Web Service Development,” Advanced Information Systems
Enginering, LNCS, vol. 3084, 2004, pp. 290–306.

[19] T. Dirgahayu, D. Quartel, and M. van Sinderen, “Development of
Transformations from Business Process Models to Implementations by
Reuse,” Proc. 3rd Intl. Workshop on Model-Driven Enterprise
Information Systems, 2007, pp. 41-50.

[20] T. Dirgahayu, D. Quartel, and M. van Sinderen, “Transforming
Internal Activities of Business Process Models to Services
Compositions,” Proc. 4th Intl. Workshop on Model-Driven Enterprise
Information Systems, 2008, pp. 56-63.

[21] NuSOAP, “SOAP Toolkit for PHP,” http://nusoap.sourceforge.net/

[22] MySQL, “MySQL 5.0 Reference Manual – SELECT Syntax,”
http://dev.mysql.com/ doc/refman/5.0/en/select.html

[23] F. Yang, J .Shanmugasundaram, M. Riedewald and J. Gehrke, “Hilda:
A High-Level Language for Data-Driven Web Applications,” Proc.
22nd Intl. Conf. on Data Engineering, 2006, pp. 32-43.

[24] S. Ceri, P. Fraternali and A. Bongio, “Web Modeling Language
(WebML): A Modeling Language for Designing Web Sites,”
Computer Networks, vol. 33, no. 1-6, 2000, pp. 137-157.

[25] R. Rifaieh and N.A. Benharkat, “Query-based Data Warehousing
Tool,” Proc. 5th ACM Intl. Workshop on Data Warehousing and
OLAP, 2002, pp. 35-42

[26] S.H. Tirmizi, J. Sequeda and D. Miranker, “Translating SQL
Applications to the Semantic Web,” Database and Expert Systems
Applications, LNCS, vol. 5181, 2008, pp. 450-464.

[27] U. Hohenstein, “Automatic Transformation of an Entity-Relationship
Query Language into SQL,” Proc. 8th Intl. Conf. on Entity-
Relationship Approach to Database Design and Querying, 1990.

[28] OMG, “Business Process Model and Notation version 2.0,”
formal/2011-01-03, 2011.

[29] T.J. Parr and R.W. Quong, “ANTLR: A Predicated-LL(k) Parser
Generator,” Software: Practice and Experience, vol. 25, no. 7, 1995,
pp. 789–810.

