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Abstract— A direct modeling for three-phase distribution line 

is employed for unbalance power flow calculation. The 

effectiveness of the model is demonstrated by the needless of 

decoupling the system into symmetrical components or 

individual phases. A suitable method for unbalance power flow 

analysis may then be used. This paper proposes Forward-

Backward Propagation for the power flow. The equivalent 

injection current method is employed to represent the loads 

and shunt admittances. The algorithm offers robust and good 

convergence characteristics for radial distribution system. The 

algorithm is presented for the IEEE 34-bus system. The 

unbalance level of the system is also analysed.  
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I.  INTRODUCTION 

Power flow calculation is backbone of power system 
analysis and design. It is essential for analysis of any power 
system in the operational as well as planning stages. The 
calculation is initially carried out by formulating the network 
equation. Node-voltage method, which is the most suitable 
form for many power system analyses, is commonly used. 
Mathematically, power flow problem requires solution of 
simultaneous nonlinear equations and normally employs an 
iterative method, such as Gauss-Seidel and Newton-
Raphson. 

Power flow calculation is normally performed by 
simply considering that the system under study is balance. 
Hence, the calculation is carried out for single phase 
assuming that the other two phases are exactly the same but 
with the 120 degrees phase difference. The asymmetry in 
lines and loads produces a certain level of unbalance in real 
power system and this is considered as disturbance whose 
level should be controlled to maintain the electromagnetic 
compatibility of the system [1].  

For distribution system, in particular, the system is 
inherently unbalanced, due to factors such as the unbalance 
of customer loads, the presence of unsymmetrical line 
spacing, and the combination of single, double and three-
phase line sections. Therefore, three-phase power flow is 
necessary to accurately simulate the unbalance system. 

Inclusion of unbalance increases the dimension of 
problem as all the three phases need to be considered instead 
of single phase balanced representation. On the other hand, 

distribution system commonly constructed as radial system 
with high R/X ratio may cause the sophisticated power flow 
algorithms fail to converge. The robust algorithm for three-
phase power flow is therefore needed. 

In order to simplify the problem, some approaches 
have been carried out for three-phase power flow problem. 
Decomposition of the coupled unbalance system into 
positive, negative and zero symmetrical components is the 
most popular approach used for the problem [2, 3]. This 
eliminates the mutual coupling between phases so a three-
phase power flow can be run three times, once for each 
phase. However, if the coupling between sequences occurs, 
then there is no real advantage in decomposing the system 
into the symmetrical components. Furthermore, this may 
result in significant error in calculation. 

Another approach is decoupling the three-phase 
system into individual phases by introducing compensation 
current injections [4-7]. Therefore, a three-phase power flow 
can be solved independently for every phase without 
utilization of symmetrical components. All components are 
modeled by phase voltages, admittances and independent 
current sources. This approach will work well as long as 
every component can be modeled in the admittance matrix or 
can be converted into equivalent injection current. 

The methods for three-phase distribution networks 
can be basically divided into two classes, Gauss-Seidel [4, 8] 
and Newton-Raphson [5, 9, 10]. Gauss-Seidel method needs 
much iteration and is known to be slow. Newton-Raphson 
has good convergence characteristic, but the Jacobian that 
needs to be partially or totally calculated in every iteration 
makes this approach unattractive. 

This paper presents three-phase power flow for 
unbalance distribution system using forward-backward 
propagation technique. The algorithm works directly on the 
system without any modification. Therefore, there is no need 
to decompose the system into symmetrical components as 
well as to decouple the system into individual phases. 
However, the conversion of load and shunt element into their 
equivalent injection current is necessary. Distribution line 
charging is usually too small to be included [5]. The 
algorithm is implemented on IEEE 34-bus system including 
asymmetrical lines and unbalance loads. The level of system 
unbalance is investigated using quantitative voltage 
unbalance analysis. 

 

mailto:agus_ulinuha@ums.ac.id


Proceedings of The 1st International Conference on Information Systems For Business Competitiveness (ICISBC) 2011 

 62 

II. . SYSTEM MODELLING  

A. Line Modelling  

The accuracy of three-phase power flow results 
greatly depends on the line impedance model. Therefore, an 
exact model of a three-phase line section needs to be firstly 
developed. The model of distribution line feeder in [11] will 
be developed and used in this paper. An equivalent circuit 
for a three-phase line section is shown in Fig. 1.  
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FIGURE 1.  THREE-PHASE LINE MODEL 

The modelling of three-phase lines starts with 
determination of self and mutual impedances of a line 
section which are functions of the conductors and the 
spacing between conductors on the pole or underground. The 
“modified” form of Carson’s equations [11] are used to 

determine the self and mutual impedances (/mile) of this 
model and are given by the following equations: 

 934.7)/1ln(12134.00953.0  iiii GMRjrz  (1) 

 934.7)/1ln(12134.00953.0  ijij Djz  (2) 

Where ri is the conductor resistance (/mile), GMRi 
is the conductor geometric mean radius (ft), and Dij is the 
spacing between conductors i and j (ft). Application of (1) 
and (2) to the three-phase line indicated in Fig. 1 results in a 

44 “primitive impedance matrix”: 
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By applying Kron reduction [11], this matrix may be 

reduced into 33 “phase impedance matrix” whose elements 
are determined by the following equation: 

nnnjinijij zzzzZ 
 (4) 

And the resulted “phase impedance matrix” is: 
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B. Load Modelling 

The load (balance and unbalance) is represented by its 
equivalent injection current. The load modeling in [4] is 
adopted in this paper. For three-phase loads connected in 
wye or single-phase loads connected line to neutral, the 
equivalent injection currents at k

th
 bus are determined by the 

following equation:  
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Where Pm, Qm, Vm
*
 denote real power, reactive power, 

and complex conjugate of the voltage phasor for each phase, 
respectively. For three-phase loads connected in delta or 
single-phase loads connected line to line, the equivalent 
injection currents at the k

th
 bus are determined by the 

following equations: 
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Where Pn, Qn, n  [ab, bc, ca], represents the real and 
reactive load connected between the respective phases, and 

Vm
*
 , m  [a, b, c] denotes the complex conjugate of the 

voltage phasor for each phase, respectively. 
 

C. Shunt Admittance Modelling 

Three phase shunt capacitors can also be represented 
by equivalent injection currents [4]. Assuming that the 
capacitor bank has an ungrounded wye connection, the 
current injection in each phase can be expressed by: 
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0
 is the nominal reactive 

power per phase and |V
0
| is the magnitude of the nominal 

voltage each phase. If the capacitor bank has a grounded wye 
connection, then the injection current is: 
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III. FORWARD-BACKWARD ALGORITHM 

Power flow is calculated by initially mapping the 
distribution network to determine forward and backward 
propagation paths followed by branch current calculation and 
bus voltages calculation. 

A. Branch Current Calculation 

Following the backward propagation path, branch 
current can be calculated using the equivalent bus injection 
currents. The branch current is successively calculated for 
the network ends toward the source (swing). The voltage at 
each bus therefore needs to be firstly determined. For the 
first iteration, the voltage at each bus is set to 1.0 pu with the 
angle of 0, -120 and 120 degrees for phase a, b, and c, 
respectively. These voltages are updated during the iteration 
and therefore the injection currents will also change.  
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FIGURE 2.  PART OF A DISTRIBUTION SYSTEM 

Fig. 2 indicates a part of distribution system and bus 
injection currents. The relationships between branch currents 
and injection currents are: 

kjk II   

ljl II   (10) 

kjljkij IIII   

Where Ijk is the branch current between bus j and bus 
k, and Ij injection currents at bus, respectively. 

 

B. Bus Voltage Calculation 

Following the forward propagation path, the voltage 
at each bus is calculated using the obtained branch currents 
and line impedance. The voltages are consecutively 
calculated from the source (swing) toward the network ends. 

The voltage of swing bus is kept constant at 1.00
0
 pu, 

1.0-120
0
 pu, and 1.0120

0
 pu for phase a, b, and c, 

respectively. For the part of system indicated in Fig. 2, the 
bus voltages can be calculated as follows: 
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Where Vj is the voltage at bus j and Zjk is the impedance of 
line section between bus j and k. The updated bus voltages 
are then used to calculate the bus injection currents. It should 

be noted that all calculations are carried in the three-phase 
frame. 
 

C. Convergence Criteria 

The outlined steps for branch currents and bus 
voltages calculations are invoked during the power flow 
iteration. The iteration converges if the different of bus 
voltages for the consecutive iterations is equal to or less than 
the prescribed tolerance. The voltage mismatch of bus j at 
the n

th
 iteration is given by:  

1 n
j

n
j

n
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 )(Re n
jV ;  j  all buses (12) 

 )(Im n
jV ;  j  all buses 

Where  is the prescribed tolerance. If these equations are 
satisfied, then the iteration stops. Otherwise, iteration process 
is repeated. Once the load flow iteration converges all the 
branch currents and voltage at each bus are known. The real 
and reactive power loss can therefore be calculated. The 
flowchart of unbalance power flow using Forward-Backward 
Propagation is given in Fig. 3.  
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FIGURE 3.  THE FLOWCHART FOR THREE-PHASE POWER 

FLOW CALCULATION USING FORWARD-BACKWARD 

PROPAGATION ALGORITHM 
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D. Unbalance Analysis 

The system is unbalance if quantities of negative and 
zero sequence voltages can be observed in the system [1, 
12]. Therefore, the level of unbalance may be measured 
using quantitative unbalance of voltage [9]. This can be 
calculated using the following equation:  
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Where )(0 jMV  and )(2 jMV is the measurement of zero- 

and positive-sequence voltage with respect to the positive 
sequence voltage at bus j. The sequence component of 
voltage at bus j can be calculated by: 
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Where T is transformation matrix for symmetrical 
components.  
 

IV. SIMULATION 

A. System Data 

The simulation is carried out for the IEEE 34-bus 
system [12] indicated in Fig. 4. The system includes balance 
and unbalance loads. A minor modification has been done 
for the system to only include three phase asymmetrical 
lines. However, the load data and the capacitor data are 
remain the same. The system data and conductors spacing 
are given in Appendix. 
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FIGURE 4.  THE IEEE 34-BUS SYSTEM USED FOR 

SIMULATION 

B. Simulation Results 

The system is run using the algorithm presented in 
Fig. 3. For the system of Fig. 4, the three-phase power flow 
calculation takes 5 iterations to converge. This iteration 
number is fairly small indicating that the algorithm is robust 
for unbalance power flow calculation. The results of 
simulation including magnitude and angle of voltage at every 
phase are given in Table 1. The simulation also indicates the 
real and reactive power losses of 8.2 kW and 3.4 kVAr, 
respectively.  
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TABLE I.  SIMULATION RESULTS OF THE IEEE 34-BUS UNBALANCE 

SYSTEM 

bus 

no 

Volt at phase 

c 

Volt at phase c Volt at phase c 

mag Angle mag Angle Mag Angle 

800 100 0.00 100 -120.00 100 120.00 

802 99.93 -0.01 99.94 -120.01 99.94 119.99 

806 99.88 -0.02 99.89 -120.02 99.90 119.98 

808 99.01 -0.22 99.19 -120.17 99.17 119.80 

810 99.01 -0.22 99.18 -120.18 99.17 119.80 

812 97.99 -0.45 98.38 -120.35 98.35 119.58 

814 97.18 -0.64 97.75 -120.49 97.70 119.41 

816 97.17 -0.64 97.74 -120.49 97.69 119.41 

818 97.14 -0.64 97.74 -120.49 97.69 119.41 

820 96.32 -0.66 97.84 -120.49 97.66 119.49 

822 96.11 -0.67 97.88 -120.49 97.65 119.52 

824 97.02 -0.69 97.50 -120.54 97.47 119.33 

826 97.02 -0.69 97.49 -120.54 97.48 119.33 

828 97.01 -0.69 97.48 -120.54 97.46 119.32 

830 96.72 -0.81 97.08 -120.63 97.01 119.17 

832 96.20 -1.02 96.36 -120.79 96.19 118.88 

834 96.07 -1.08 96.17 -120.84 95.97 118.80 

836 96.05 -1.08 96.15 -120.84 95.94 118.80 

838 96.04 -1.08 96.14 -120.84 95.94 118.80 

840 96.05 -1.08 96.15 -120.84 95.94 118.80 

842 96.07 -1.08 96.17 -120.85 95.97 118.80 

844 96.07 -1.09 96.16 -120.86 95.96 118.79 

846 96.08 -1.11 96.15 -120.87 95.97 118.77 

848 96.08 -1.11 96.16 -120.87 95.97 118.77 

850 97.18 -0.64 97.75 -120.49 97.70 119.41 

852 96.20 -1.02 96.36 -120.79 96.19 118.89 

854 96.71 -0.81 97.07 -120.63 97.00 119.16 

856 96.71 -0.81 97.06 -120.63 97.00 119.16 

858 96.14 -1.05 96.27 -120.82 96.09 118.85 

860 96.06 -1.08 96.16 -120.84 95.95 118.80 

862 96.05 -1.08 96.15 -120.84 95.94 118.80 

864 96.14 -1.05 96.27 -120.82 96.09 118.85 

888 96.20 -1.02 96.36 -120.79 96.19 118.89 

890 96.18 -1.02 96.34 -120.79 96.17 118.89 

The analysis of system unbalance is carried out by 
measuring the quantitative unbalance of voltage. The ratio of 
the zero- and negative-sequence voltages with respect to the 
positive-sequence voltage is calculated using Equation (13) 
and related results are given in Table 2. It may be observed 
that the unbalance level of the simulated system is fairly low. 
This is indicated by small quantities of zero- and negative-
sequence voltages. Therefore, three-phase power flow 
enables measuring the unbalance level of the system studied. 
The unbalance assessment is useful for the purpose of 
maintaining the system balance level not to exceed the 
maximum allowable level.  

TABLE II. QUANTITATIVE VOLTAGE UNBALANCE OF THE IEEE 34-BUS 

UNBALANCE SYSTEM 

bus no V0/V1(%) V2/V1 (%) 

800 0 0 

802 0.0009 0.0037 

806 0.0015 0.0062 

808 0.0495 0.0730 

810 0.0495 0.0703 

812 0.1062 0.1652 

814 0.1519 0.2395 

816 0.1524 0.2403 

818 0.1641 0.2492 

820 0.5016 0.5007 

822 0.5989 0.5622 

824 0.1087 0.2293 

826 0.1039 0.2286 

828 0.1061 0.2286 

830 0.0670 0.2131 

832 0.1625 0.1871 

834 0.2026 0.1805 

836 0.2066 0.1830 

838 0.2066 0.1842 

840 0.2059 0.1831 

842 0.2027 0.1804 

844 0.2033 0.1799 

846 0.2052 0.1777 

848 0.2051 0.1776 

850 0.1519 0.2396 

852 0.1625 0.1871 

854 0.0670 0.2127 

856 0.0626 0.2120 

858 0.1806 0.1843 

860 0.2088 0.1805 

862 0.2066 0.1831 

864 0.1806 0.1844 

888 0.1625 0.1871 

890 0.1623 0.1870 

 

V. CONCLUSION 

Three-phase power flow for an unbalance distribution 
system is carried out using Forward-Backward Propagation 
Technique. The IEEE 34-bus unbalance system is used for 
simulation. The main conclusions are:  

 The implemented algorithm works directly on the 

simulated system and, therefore, there is no need to 

transform the system into the symmetrical components as 

well as to decouple the three-phase into individual 

phases;  

 The algorithm is robust for the radial unbalance 

distribution system with good convergence characteristic; 

 The unbalance level of three-phase system may only be 

assessed by performing three-phase power instead of 

single-phase (balance) power flow.  
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 APPENDIX 

TABLE A. SHUNT CAPACITOR OF IEEE 34-BUS SYSTEM 

Bus# Connection 
Phase A Phase B Phase C 

(kVAr) (kVAr) (kVAr) 

844 Y 100 100 100 

848 Y-grd 150 150 150 

 

TABLE B.  BALANCE LOADS OF IEEE 34-BUS SYSTEM 

Bus 

# 
 

Phase A Phase B Phase C 

kW kVAr kW kVAr kW kVAr 

860  19.91 15.94 19.91 15.94 19.91 15.94 

840  8.86 7.09 8.86 7.09 8.86 7.09 

844  133.444 106.83 133.444 106.88 133.444 106.88 

848  19.45 15.57 19.45 15.57 19.45 15.57 

890  27 21.62 27 21.62 27 21.62 

 

 

 

 

TABLE C. UNBALANCE LOADS OF IEEE 34-BUS SYSTEM 

Bus

#  

Phase A Phase B Phase C 

kW kVAr kW kVAr kW kVAr 

806  0 0 31.22 16.14 26.07 13.84 

810  0 0 15.88 8.21 0 0 

820  33.9 17.52 0 0 0 0 

822  135.5

3 
70.07 0 0 0 0 

824  0 0 0.39 0.2 0 0 

826  0 0 41.93 21.68 0 0 

828  0 0 0 0 2.78 1.44 

830  6.18 3.2 0 0 0 0 

834  3.99 2.06 12.55 6.49 12.82 6.63 

836  27.37 14.15 10.55 5.45 42.05 21.74 

838  27.61 14.27 0 0 0 0 

840  17.49 9.04 21.81 11.27 0 0 

842  0 0 0 0 0 0 

844  9.12 4.71 0 0 0 0 

846  0 0 24.59 12.71 22.23 11.49 

848  0 0 22.62 11.7 0 0 

856  0 0 3.71 1.92 0 0 

858  6.68 3.45 1.08 0.56 5.35 2.77 

860  15.66 8.09 20.86 10.78 111.15 57.46 

862  0 0 0 0 0 0 

864  0.63 0.33 0 0 0 0 

Swing : bus 800; MVA base: 2.5 MVA 
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FIGURE A. OVERHEAD LINE SPACING OF IEEE 34-BUS SYSTEM 
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TABLE D. BRANCH DATA OF IEEE 34-BUS SYSTEM 

Bus 

Bus 
Configuration 

length  Line Conductor Neutral Conductor 

From To (ft) R (/mi)   GMR (ft) R (/mi) GMR (ft) 

800 802 BACN 2580 1.69 0.00418 1.69 0.00418 

802 806 BACN 1730 1.69 0.00418 1.69 0.00418 

806 808 BACN 32230 1.69 0.00418 1.69 0.00418 

808 810 BCAN 5840 2.55 0.00452 2.55 0.00452 

808 812 BACN 37500 1.69 0.00418 1.69 0.00418 

812 814 BACN 29730 1.69 0.00418 1.69 0.00418 

814 850 BACN 10 1.69 0.00418 1.69 0.00418 

816 818 ABCN 1710 2.55 0.00452 2.55 0.00452 

816 824 BACN 10210 1.69 0.00418 1.69 0.00418 

818 820 ABCN 48150 2.55 0.00452 2.55 0.00452 

820 822 ABCN 13740 2.55 0.00452 2.55 0.00452 

824 826 BCAN 3030 2.55 0.00452 2.55 0.00452 

824 828 BACN 840 1.69 0.00418 1.69 0.00418 

828 830 BACN 20440 1.69 0.00418 1.69 0.00418 

830 854 BACN 520 1.69 0.00418 1.69 0.00418 

832 858 BACN 4900 1.69 0.00418 1.69 0.00418 

832 888 BACN 100 1.69 0.00418 1.69 0.00418 

834 860 BACN 2020 1.69 0.00418 1.69 0.00418 

834 842 BACN 280 1.69 0.00418 1.69 0.00418 

836 840 BACN 860 1.69 0.00418 1.69 0.00418 

836 862 BACN 280 1.69 0.00418 1.69 0.00418 

842 844 BACN 1350 1.69 0.00418 1.69 0.00418 

844 846 BACN 3640 1.69 0.00418 1.69 0.00418 

846 848 BACN 530 1.69 0.00418 1.69 0.00418 

850 816 BACN 310 1.69 0.00418 1.69 0.00418 

852 832 BACN 10 1.69 0.00418 1.69 0.00418 

854 856 BCAN 23330 2.55 0.00452 2.55 0.00452 

854 852 BACN 36830 1.69 0.00418 1.69 0.00418 

858 864 ABCN 1620 2.55 0.00452 2.55 0.00452 

858 834 BACN 5830 1.69 0.00418 1.69 0.00418 

860 836 BACN 2680 1.69 0.00418 1.69 0.00418 

862 838 ACBN 4860 1.69 0.00418 1.69 0.00418 

888 890 BACN 10560 1.12 0.00446 1.12 0.00446 

 

 


