



**Research Article** 

# De-oxygenation of CO<sub>2</sub> by using Hydrogen, Carbon and Methane over Alumina-Supported Catalysts

R. Y. Raskar, K. B. Kale, A. G. Gaikwad \*)

CE& PD Division, National Chemical Laboratory, Pune 411 008, India

Received: 6th February 2012; Revised: 23rd April 2012; Accepted: 24th April 2012

# Abstract

The de-oxygenation of CO<sub>2</sub> was explored by using hydrogen, methane, carbon etc., over alumina supported catalysts. The alumina-supported ruthenium, rhodium, platinum, molybdenum, vanadium and magnesium catalysts were first reduced in hydrogen atmosphere and then used for the de-oxygenation of CO<sub>2</sub>. Furthermore, experimental variables for the de-oxygenation of CO<sub>2</sub> were temperature (range 50 to 650 °C),  $H_2/CO_2$  mole ratios (1.0 to 5), and catalyst loading (0.5 to 10 wt %). During the de-oxygenation of CO<sub>2</sub> with  $H_2$  or CH<sub>4</sub> or carbon, conversion of CO<sub>2</sub>, selectivity to CO and CH<sub>4</sub> were estimated. Moreover, 25.4 % conversion of CO<sub>2</sub> by hydrogen was observed over 1 wt% Pt/Al<sub>2</sub>O<sub>3</sub> catalyst at 650 °C with 33.8 % selectivity to CH<sub>4</sub>. However, 8.1 to 13.9 % conversion of CO<sub>2</sub> was observed over 1 wt% Pt/Al<sub>2</sub>O<sub>3</sub> catalyst at 550 °C in the presence of both H<sub>2</sub> and CH<sub>4</sub>. Moreover, 42.8 to 79.4 % CH<sub>4</sub> was converted with 9 to 23.1 % selectivity to CO. It was observed that the de-oxygenation of CO<sub>2</sub> by hydrogen, carbon and methane produced carbon, CO and CH<sub>4</sub>. © 2012 BCREC UNDIP. All rights reserved

*Keywords*: De-oxygenation of carbon dioxide, hydrogen and methane; ruthenium, rhodium, platinum molybdenum, vanadium, magnesium, and alumina — supported catalysts

*How to Cite*: R. Y. Raskar, K. B. Kale, A. G. Gaikwad. (2011). De-oxygenation of CO<sub>2</sub> by using Hydrogen, Carbon and Methane over Alumina-Supported Catalysts. *Bulletin of Chemical Reaction Engineering & Catalysis*, 7 (1): 59-60

Permalink: http://ejournal.undip.ac.id/index.php/bcrec/article/view/1631

# 1. Introduction

In the present environment, high thermal energy required for the reaction of abundant and thermodynamically stable methane and carbon dioxide molecules which are main constituents of green house gases. These green house gases are produced from combustion of bio-fuel and petroleum products. In order to maintain the  $CH_4$ and  $CO_2$  concentration within the threshold value limit in the atmosphere, there is a need to reduce emission of  $CH_4$  and  $CO_2$ . However, required and obtained energy from fossil fuel for daily and long run purposes could not be met from other sources in the present scenario. Therefore, consumption of coal, bio-fuel and petroleum are inevitable. Dry reforming of  $CO_2$  with  $CH_4$  is the promising reaction and also important reaction in view point of reuse of carbon and hydrogen. As results, catalytic conversion of  $CO_2$  and  $CH_4$  into value added molecules is an alternative way to reduce

\* Corresponding Author. *E-mail address*: ag.gaikwad@ncl.re.in (A.G. Gaikwad)

their emission .

In the literature, the conversion of  $CO_2$  by  $H_2$ over y-Al<sub>2</sub>O<sub>3</sub>-supported Rh; SiO<sub>2</sub>-supported Ni, Ru, Co and Fe; nickel oxide doped platinum; and copper-zinc-chromium catalysts were investigated. Thermodynamically reductive conversion of  $CO_2$  by using an excess  $H_2$ ,  $CH_4$  and  $H_2O$  were also investigated [1-14]. In addition, a partial oxidation of methane by nitrous oxide in presence of water was reported over silica supported molybdenum oxide catalyst [15-17]. However, dry reforming of carbon dioxide by methane gave C<sub>2</sub> hydrocarbons and syngas (CO and H<sub>2</sub>). Dimerization of methane was observed during the carbon dioxide activation over Li/MgO catalyst. Dry reforming of CO2 by CH4 simultaneously gave ethylene and syngas. Moreover, catalytic reaction was reported of carbon oxides to hydrocarbon at atmospheric pressure over a ceria promoted copper containing cobalt catalysts [18-20]. However, the detail studies of deoxygenation of  $CO_2$  by using  $H_2$ , carbon and  $CH_4$ are lacking.

Therefore, in this paper, de-oxygenation of  $\rm CO_2$  by either individual or/and combination of hydrogen, carbon and methane over reduced alumina supported ruthenium, rhodium, platinum, molybdenum, vanadium and magnesium catalysts were reported .

### 2. Materials and Method

#### 2.1. Chemicals and apparatus

In the experiments, alumina-supported ruthenium, rhodium, platinum, molybdenum, vanadium. and magnesium catalysts were prepared by using the chemicals ruthenium chloride (ruthenium content 45-55%), rhodium chloride (98%), platinum chloride (99.9+%), (99%), ammonium molybdate vanadate and magnesium nitrate (99%) (Aldrich Chemicals, CO.,) over alumina. In addition, the alumina was prepared by the calcination of support (Böhmite) aluminium oxide hydroxide (y-AlO(OH)) at 500 °C for 1.5 h. Moreover, the high purity hydrogen, carbon dioxide, helium gases (Deluxe India Ltd.) and methane (Alphagaz) were used to explore the activation of carbon dioxide over alumina supported catalysts. The supported catalysts were calcined at 700 °C for 4 h in a furnace (Thermax Co. Ltd.). The reduction of alumina-supported ruthenium, rhodium, platinum, molybdenum, vanadium, and magnesium catalysts were carried out in hydrogen atmosphere. The deoxygenation of CO<sub>2</sub> was carried out in a split (Carbolite USA). Carbon furnace dioxide, hydrogen, carbon monoxide, and methane were

analyzed by using Porapak-Q as column, TCD and FID as detectors equipped with GC (Nucon India Ltd). The reactants and products of the deoxygenation reactions of  $CO_2$  were presented in terms of % conversion and % selectivity, respectively.

#### 2.2. Characterization of catalysts

The alumina supported ruthenium, rhodium, platinum, molybdenum, vanadium and magnesium catalysts were characterized by X-Ray diffraction (Philips Power XRD) for XRD patterns. Particle sizes of catalysts were examined by SEM (QUANTA 200 3D).

#### 2.3. Set up and procedure for the deoxygenation of CO<sub>2</sub>

The de-oxygenation of  $CO_2$  was carried out over the reduced supported ruthenium, rhodium, platinum, molybdenum, vanadium and magnesium catalysts in a split furnace as illustrated in Figure 1. A variable ratio was used of a mixture of carbon dioxide, H<sub>2</sub> or/and CH<sub>4</sub> in helium gas. A quartz fixed bed reactor was used with dimension 6 mm OD. The quartz reactor was modified at the center with dimension 10 mm OD and 10 cm length. In order to make complete set up, 4 mm OD stainless steel tubes, four three ways valves, a gas sampling valve, a carbolite split furnace with temperature



**Figure 1.** The schematic presentation of set up of deoxygenation reaction of  $CO_2$ 

controller, a Nucon GC and flow control valves were used. With four three way valves, flow of hydrogen, helium and carbon dioxide gases were controlled (Figure 1). For flushing a catalyst bed, helium gas was used. For reduction of alumina ruthenium, rhodium, supported platinum. molybdenum, vanadium and magnesium catalyst a gas mixture of hydrogen and helium in 1:1 mol ratio was used at 500 °C for 1 h. De-oxygenation of carbon dioxide was carried out by using H<sub>2</sub>, carbon, or/and CH<sub>4</sub> over reduced alumina supported ruthenium, rhodium, platinum, molybdenum, vanadium and magnesium catalysts at a temperature by keeping a molar ratio of  $CO_2$  and helium 1:1. The analysis of carbon dioxide, hydrogen, methane and carbon monoxide was carried out by pulse technique by using Porapak-Q column with a Nucon GC equipped with TCD and FID (methane) detectors.

The alumina supported ruthenium, rhodium, platinum, molybdenum, vanadium and magnesium catalysts 0.1 to 0.5 gm with particle size -22 to -30 mesh was placed in the quartz reactor at centre with support of quartz wool. A certain temperature of catalyst bed was fixed with a temperature controller. Catalyst bed was flushed with helium gas in order to remove the stresses of other gases. After that, catalyst bed was reduced by using a mixture of hydrogen and helium gases in mol ratio 1:1 at 500 °C for 1 h. Then, catalyst bed was cooled down. The reactions of carbon dioxide were carried out by using hydrogen or/and CH4 at certain temperature by passing a mixture of carbon dioxide and hydrogen or/and CH<sub>4</sub> in presence of helium. Further, the product was analyzed by online GC using a Porapak-Q column and also a thermal conductivity and flame ionization detector (methane). However, the results were confirmed by means of three runs. Furthermore, the results of the de-oxygenation reaction of CO<sub>2</sub> were presented as % conversion for reactants and % selectivity for products.

## 3. Results and discussion

The results of de-oxygenation reaction of carbon dioxide by using hydrogen or/and methane over alumina-supported ruthenium or rhodium or platinum or molybdenum or vanadium or magnesium catalysts are described in the following sections.

# **3.1 Characterization of catalysts**

The catalyst particle size and the crystalline phases are important for the de-oxygenation of  $CO_2$  over supported catalyst. Therefore, the alumina supported ruthenium, rhodium, platinum,

molybdenum and vanadium catalysts were characterized by SEM images and XRD patterns. Characterized the 1 wt% Ru/Al<sub>2</sub>O<sub>3</sub>, 5 wt% Ru/Al2O3, 1 wt% Rh/Al2O3, 4 wt% Rh/Al2O3, 2 wt% Pt/Al<sub>2</sub>O<sub>3</sub>, 4 wt% Pt/Al<sub>2</sub>O<sub>3</sub>, 4 wt% Mo/Al<sub>2</sub>O<sub>3</sub>, 4 wt% V/Al<sub>2</sub>O<sub>3</sub> and 7.5 wt% Mg/Al<sub>2</sub>O<sub>3</sub> catalysts by SEM for particle size (Figure 2 (a-i)). The SEM images clearly show the particle sizes of alumina supported noble metals catalysts. The particle size of catalyst is an important factor the deoxygenation reaction of CO<sub>2</sub> because the reaction of CO2 with hydrogen, methane, carbon and combining the mixture of hydrogen, methane and carbon could occur on the supported catalysts. Therefore, the large number of fine particles in the same amount of catalyst with their uniformity and uniform distribution enhances the de-oxygenation reaction of  $CO_2$  with reactants hydrogen, methane and carbon. Here, the alumina supported ruthenium, rhodium, platinum, molybdenum, vanadium and magnesium catalysts were observed with fine and uniform particles as shown in the Figure 2(a-i). The observed de-oxygenation reactions of CO<sub>2</sub> with reactants hydrogen and methane are efficient (activities of catalysts are good) over alumina supported ruthenium, rhodium, platinum, molybdenum, vanadium and magnesium catalysts in the studied temperature range 500 to 650 °C.

The status of supported catalyst is observed by the XRD pattern of metal catalyst component over the alumina support. In order to identify the crystalline phases of catalysts, the XRD patterns for alumina supported ruthenium, rhodium, platinum, molybdenum, vanadium and magnesium were recorded for different loadings of these metals over alumina (Figures 3-5). In the Figure 3, the patterns for the alumina supported XRD molybdenum, vanadium and magnesium catalysts were recorded. However, the results show that as the loading of ruthenium increases over alumina from the 0.5 to 5 wt.%, the intensities of  $2\theta$  values of ruthenium were increased. The XRD patterns of 4wt.% Pt/Al<sub>2</sub>O<sub>3</sub> and 2 wt.% Rh/Al<sub>2</sub>O<sub>3</sub> were shown in the Figure 4. In the Figures 3-5, it was observed that as the loading of metal catalyst component ruthenium, rhodium, platinum, molybdenum, vanadium and magnesium over the alumina support increases, the crystalline phases of these metal catalyst component increases indicating that the de-oxygenation reaction of  $CO_2$  with hydrogen and methane increases. The results (Figures 3-5) of intensity in the XRD pattern of metal catalyst component increases with the loading of metal catalysts component over the alumina support. However, the uniform distribution of metal



Figure 2. The SEM images of the alumina supported metal catalysts, (a) 1 wt% Ru/Al<sub>2</sub>O<sub>3</sub>, (b) 5 wt% Ru/Al<sub>2</sub>O<sub>3</sub>, (c) 1 wt% Rh/Al<sub>2</sub>O<sub>3</sub>, (d) 4 wt% Rh/Al<sub>2</sub>O<sub>3</sub>, (e) 2 wt% Pt/Al<sub>2</sub>O<sub>3</sub>, (f) 4 wt% Pt/Al<sub>2</sub>O<sub>3</sub>, (g) 4 wt% Mo/Al<sub>2</sub>O<sub>3</sub>



Figure 2. The SEM images of the alumina supported metal catalysts, (h) 4 wt% V/Al<sub>2</sub>O<sub>3</sub>, and (i) 7.5 wt% Mg/Al<sub>2</sub>O<sub>3</sub>



**Figure 3.** The XRD patterns of the (a) 0.5 wt% Ru/Al<sub>2</sub>O<sub>3</sub>, (b) 1 wt% Ru/A<sub>2</sub>O<sub>3</sub>, (c) 2.5 wt% Ru/Al<sub>2</sub>O<sub>3</sub> and (d) 5 wt% Ru/A<sub>2</sub>O<sub>3</sub> catalysts

catalyst component over the alumina support is also an important aspect. The uniform and equal distribution metal catalyst over alumina support was observed in a certain range of metal catalyst loading otherwise metal catalyst component either get coagulated or observed in bulky form. However, the crystalline phase of metal catalyst component is also an important aspect to allow the deoxygenation reaction of  $CO_2$  with hydrogen and methane. The conversion of de-oxygenation reaction of  $CO_2$  was increased over the alumina supported ruthenium, rhodium, platinum, molybdenum, vanadium and (basicity) magnesium catalysts in the studied temperature range.

The acidities of alumina supported ruthenium,



**Figure 4**. The XRD patterns of the alumina supported the (a) platinum and (b) rhodium catalysts

rhodium, platinum, molybdenum, vanadium and (basicity) magnesium oxide catalysts were given in Table 1. Although,  $CO_2$  is an acidic gas, in a certain proportion it is adsorbed over the surface of the metal catalyst ruthenium, rhodium, platinum, molybdenum, vanadium and (basicity) magnesium components. The alumina supported molybdenum, vanadium and (basicity) magnesium catalysts deoxygenate the  $CO_2$  to carbon along with other products. Therefore, alumina supported molybdenum, vanadium and (basicity) magnesium catalysts are highly active for the de-oxygenation reaction of CO<sub>2</sub>. The conversion of de-oxygenation reaction of CO<sub>2</sub> was increased with the increased in



**Figure 5**. The XRD patterns of the alumina supported (a) molybdenum (b) vanadium and (c) magnesium catalysts

the temperature of reaction mixture on catalyst bed from 500 to 650 °C.

# 3.2. The de-oxygenation of CO<sub>2</sub> by using hydrogen.

However, the de-oxygenation reaction of  $CO_2$  to methane is an eight-electron exchange process with the significant kinetic limitations. The deoxygenation of carbon dioxide with hydrogen over catalyst would be given as.

| $\mathrm{CO}_2 + 4\mathrm{H}_2 \rightarrow \mathrm{CH}_4 + 2\mathrm{H}_2\mathrm{O}$ | $\Delta H = -167 \text{ kJ/mol}$ |
|-------------------------------------------------------------------------------------|----------------------------------|
| $CO_2$ + $H_2 \rightarrow CO$ + $H_2O$                                              | $\Delta H = 41 \text{ kJ/mol}$   |
| $CO_2 + 2H_2 \rightarrow C + 2H_2O$                                                 | $\Delta H = 82.4 \text{ kJ/mol}$ |

The de-oxygenation of carbon dioxide by using hydrogen were carried out over 1 wt% Ru/Al<sub>2</sub>O<sub>3</sub>, 1 wt% Rh/Al<sub>2</sub>O<sub>3</sub>, 1 wt.% Pt/Al<sub>2</sub>O<sub>3</sub>, 2 wt% Mo, 7.5 wt% V and 5 wt% Mg catalysts in a temperature range 50 to 650 °C (Figures 6-7). The conversion of CO<sub>2</sub> and selectivity for CO and CH<sub>4</sub> were estimated. The conversion of carbon dioxide was observed 0.1 to 2.6 % in a temperature range from 50 to 300 °C over 1 wt% Ru/Al<sub>2</sub>O<sub>3</sub>, 1 wt% Rh/Al<sub>2</sub>O<sub>3</sub> and 1 wt.% Pt/Al<sub>2</sub>O<sub>3</sub> catalysts. The observed selectivity for methane was from 1.2 to 1.4 % over 1 wt% Rh/Al<sub>2</sub>O<sub>3</sub>. In the temperature range from 50 to 300



Figure 6. De-oxygenation of carbon dioxide by using hydrogen with respect to temperature over the catalysts, 1 wt% Ru/Al<sub>2</sub>O<sub>3</sub>, 1 wt% Rh/Al<sub>2</sub>O<sub>3</sub> and 1 wt% Pt/Al<sub>2</sub>O<sub>3</sub>



**Figure 7.** De-oxygenation of carbon dioxide by using hydrogen with respect to temperature over the catalysts, 2 wt% Mo/Al<sub>2</sub>O<sub>3</sub>, 7.5 wt% V/Al<sub>2</sub>O<sub>3</sub> and 5 wt% Mg/Al<sub>2</sub>O<sub>3</sub>

 $^{\circ}$ C, the activation energy required to activate the catalyst for the de-oxygenation reaction of CO<sub>2</sub> with hydrogen is not enough. Therefore, the conversion of de-oxygenation reaction of CO<sub>2</sub> was observed low.

The conversion of carbon dioxide was increased after the increasing the temperature 400 °C over 1 wt% Ru/Al<sub>2</sub>O<sub>3</sub>, 1 wt% Rh/Al<sub>2</sub>O<sub>3</sub> and 1 wt.% Pt/Al<sub>2</sub>O<sub>3</sub> catalysts. The selectivity to methane was also observed with the increased above 400 °C. The conversion of carbon dioxide and selectivity of carbon monoxide increases from the temperature

550 to 650 °C over 2 wt% Mo, 7.5 wt% V and 5 wt% Mg catalysts. 25.4%  $CO_2$  conversion was observed over 1 wt% Pt/Al<sub>2</sub>O<sub>3</sub> catalyst while the selectivity to methane was 33.8%. However, above the temperature 400 °C, the catalyst get higher energy of activation, therefore, the conversion of deoxygenation reaction of  $CO_2$  by hydrogen was observed higher.

# 3.3. De-oxygenation of $CO_2$ with variation of $H_2/CO_2$ mol ratio

From the above reactions, it can be seen that the  $H_2/CO_2$  mol ratio is an important aspect to explore for the de-oxygenation reaction of  $CO_2$  by hydrogen as the de-oxygenation of  $CO_2$  and the product formation depend on the reaction mixture composition of  $CO_2$  and hydrogen. The described in the de-oxygenation reactions of CO<sub>2</sub> by variation of mol ratio of  $CO_2$  to  $H_2$ , the different products such as C, CO and CH<sub>4</sub> were formed. An effect of H<sub>2</sub>/CO<sub>2</sub> mol ratio in a range from 1.0 to 5 for the deoxygenation of CO<sub>2</sub> by H<sub>2</sub> was studied over 1 wt.% Ru/Al<sub>2</sub>O<sub>3</sub>, 1 wt.% Rh/Al<sub>2</sub>O<sub>3</sub>, 1 wt.% Pt/Al<sub>2</sub>O<sub>3</sub>, 2 wt% Mo, 7.5 wt% V and 5 wt% Mg at the 550 °C. Deoxygenation of CO<sub>2</sub> by H<sub>2</sub> showed the converted 12.1 % carbon dioxide with selectivity 12.5 % to methane over 1 wt.% Ru/Al<sub>2</sub>O<sub>3</sub> catalyst at (H<sub>2</sub>/CO<sub>2</sub>) = 2 mol ratio (Figures 8-9). However, over 1 wt.% Pt/Al<sub>2</sub>O<sub>3</sub>) catalyst at the 550 °C, 9% conversion of  $CO_2$  with 14.6 % selectivity to methane was observed. The results showed that the conversion of carbon dioxide at 2 mol ratios was observed higher along with selectivity to carbon monoxide over 2 wt% Mo/Al<sub>2</sub>O<sub>3</sub> catalyst. Over 7.5 wt%

**Table 1**. Acidity/basicity of Ru/Al<sub>2</sub>O<sub>3</sub>, Rh/Al<sub>2</sub>O<sub>3</sub>, Pt/Al<sub>2</sub>O<sub>3</sub>, Mo/Al<sub>2</sub>O<sub>3</sub>, V/Al<sub>2</sub>O<sub>3</sub> and Mg/Al<sub>2</sub>O<sub>3</sub> catalysts catalysts

| Sr.<br>No | Metal loading,<br>wt % |      | Basicity<br>mmol g <sup>-1</sup> |      |      |      |        |
|-----------|------------------------|------|----------------------------------|------|------|------|--------|
|           |                        | Ru   | Rh                               | Pt   | Mo   | V    | Mg     |
| 1         | 0.5                    | 0.05 | 0.05                             | 0.06 |      |      |        |
| 2         | 1.0                    | 0.06 | 0.06                             | 0.08 | 0.14 | 0.08 | 0.0067 |
| 3         | 1.5                    | 0.07 | -                                | -    | 0.26 | 0.16 |        |
| 4         | 2.0                    | -    | 0.08                             | 0.10 |      |      |        |
| <b>5</b>  | 2.5                    | 0.08 | -                                | -    | 0.66 | 0.57 | 0.010  |
| 6         | 4.0                    | -    | 0.10                             | 0.11 | -    | -    |        |
| 7         | 5.0                    | 0.09 | -                                | -    | 1.2  | 1.06 | 0.020  |
| 8         | 7.5                    |      |                                  |      | -    | -    | 0.045  |
| 9         | 10                     |      |                                  |      |      |      | 0.060  |





Figure 8: De-oxygenation of carbon dioxide by using hydrogen with variation of  $H_2/CO_2$  mol ratio over the 1 wt% Ru/Al<sub>2</sub>O<sub>3</sub>, 1 wt% Rh/Al<sub>2</sub>O<sub>3</sub> and 1 wt% Pt/Al<sub>2</sub>O<sub>3</sub> catalysts at 550 °C

Figure 9. De-oxygenation of carbon dioxide by using hydrogen with variation of  $H_2/CO_2$  mol ratio over the 2 wt% Mo/Al<sub>2</sub>O<sub>3</sub>, 7.5 wt% V/Al<sub>2</sub>O<sub>3</sub> and 5 wt% Mg/Al<sub>2</sub>O<sub>3</sub> catalysts





**Figure 10**. De-oxygenation of carbon dioxide by using hydrogen at 550 °C with variation of loading of Ru, Rh and Pt catalyst over alumina

**Figure 11**. De-oxygenation of carbon dioxide by using hydrogen with variation of loading of Mo, V and Mg catalysts over the  $Al_2O_3$ 

**Table 2**: The reforming of CO<sub>2</sub> by CH<sub>4</sub> at the different mol ratios of CH<sub>4</sub>/CO<sub>2</sub>, catalysts = 2.5 wt% Ru/Al<sub>2</sub>O<sub>3</sub>, 1.0 wt% Rh/Al<sub>2</sub>O<sub>3</sub> and 1.0 wt% Pt/Al<sub>2</sub>O<sub>3</sub>, amount of the catalyst = 0.2 g, the temperature = 550 °C, CO<sub>2</sub> = 10 ml/min, He = 10 ml/min and the methane variable

| Sr.<br>No. | CH4/CO2   | $\mathrm{CO}_2$ c | onversi | on, % | CH <sub>4</sub> con | nversion | , %  | CO selectivity, % |       |      |  |
|------------|-----------|-------------------|---------|-------|---------------------|----------|------|-------------------|-------|------|--|
|            | mol ratio | Ru                | Rh      | Pt    | Ru                  | Rh       | Pt   | Ru                | Rh    | Pt   |  |
| 1          | 0.5       | 8.31              | 2.48    | 8.81  | 8.29                | 2.43     | 8.86 | 5.22              | 1.31  | 6.28 |  |
| 2          | 1.0       | 8.58              | 1.66    | 8.63  | 8.61                | 1.67     | 8.59 | 5.05              | 0.83  | 5.50 |  |
| 3          | 2.0       | 6.69              | 0.43    | 6.82  | 6.66                | 0.39     | 6.85 | 5.25              | 0.21  | 5.19 |  |
| 4          | 3.0       | 5.33              | 0.14    | 5.83  | 5.27                | 0.16     | 5.86 | 4.70              | 0.099 | 4.60 |  |

 $V/Al_2O_3$  and 5 wt% Mg/Al\_2O\_3 catalysts, conversion of carbon dioxide and selectivity to carbon monoxide was higher at 1 mol ratio. However, conversion of carbon dioxide and selectivity to carbon monoxide decreases with the increased in the H<sub>2</sub>/CO<sub>2</sub> mol ratio above 3.

# 3.4. De-oxygenation of CO<sub>2</sub> with variation of catalyst loading

The uniform distribution of total amount of metal catalyst component over the alumina support is an important aspect to explore. The uniform and equal distribution metal catalyst amount over alumina support was observed in a certain range of metal catalyst loading otherwise metal catalyst component either get coagulated or observed in bulky form. De-oxygenation reaction of  $CO_2$  by using  $H_2$  was explored over alumina supported ruthenium, rhodium, platinum, molybdenum, vanadium and magnesium catalysts. Ruthenium, rhodium and platinum loadings over

alumina were varied from 0.5 to 5 wt%. The molybdenum, vanadium and magnesium loadings over alumina were varied from 1.0 to 10 wt.%. In the Figures 10-11, the results were given of conversion of carbon dioxide and selectivity to methane or carbon monoxide. The conversion of carbon dioxide and selectivity to methane was observed in the range 0.4 to 17 % and 0.2 to 18 %, respectively over ruthenium, rhodium and platinum catalysts. The conversions of carbon dioxide and selectivity to carbon monoxide were increased with the increased in the molybdenum, vanadium and magnesium loading from 1.0 to 10.0 wt%. For 10 wt% Mg/Al<sub>2</sub>O<sub>3</sub>, conversion of carbon dioxide and selectivity to carbon monoxide were 12.23 % and 20.73 % respectively.

### 3.5. De-oxygenation of CO<sub>2</sub> by methane

A reforming reaction of  $\text{CO}_2$  with methane could be given as:

**Table 3**: The reforming of  $CO_2$  by  $CH_4$  at different mol ratios of  $CH_4/CO_2$ , catalysts = 2 wt% Mo/Al<sub>2</sub>O<sub>3</sub>, 7.5 wt% V/Al<sub>2</sub>O<sub>3</sub> and 5.0 wt% Mg/Al<sub>2</sub>O<sub>3</sub>, amount of catalyst = 0.2 g, temperature = 550 °C,  $CO_2 = 10$  ml/min, He = 10 ml/min and methane variable

| Sr.<br>No. | CH4/CO,<br>mol ratio | $\mathrm{CO}_2$ | conversi | on, % | $CH_4$ | convers | ion, % | CO selectivity, % |      |       |  |
|------------|----------------------|-----------------|----------|-------|--------|---------|--------|-------------------|------|-------|--|
|            |                      | Mo              | V        | Mg    | Mo     | V       | Mg     | Mo                | V    | Mg    |  |
| 1          | 0.5                  | 2.66            | 2.21     | 1.12  | 3.02   | 3.01    | 1.24   | 0.63              | 0.48 | 0.20  |  |
| 2          | 1.0                  | 1.40            | 1.13     | 1.01  | 2.85   | 2.24    | 0.97   | 0.41              | 0.23 | 0.07  |  |
| 3          | 2.0                  | 1.06            | 1.01     | 0.93  | 1.23   | 1.13    | 0.53   | 0.12              | 0.09 | 0.02  |  |
| 4          | 3.0                  | 0.83            | 0.42     | 0.23  | 0.04   | 0.23    | 0.12   | 0.08              | 0.03 | 0.005 |  |

$$CO_2 + CH_4 \rightarrow 2CO + 2H_2 \qquad \Delta H = 247 \text{ kJ/mol}$$

The de-oxygenation reactions of  $CO_2$  by methane could be given as follows:

 $CO_2 + CH_4 \rightarrow 2 C + 2H_2O$   $\Delta H = 262.6 \text{ kJ/mol}$ 

The product formation of de-oxygenation reaction of  $CO_2$  by methane depends on the composition of  $CO_2$  and methane over the catalyst bed. The results of reforming of  $CO_2$  by methane were given in Tables 2-3 over 2.5 wt% Ru/Al<sub>2</sub>O<sub>3</sub>, 1.0 wt% Rh/Al<sub>2</sub>O<sub>3</sub>, 1.0 wt% Pt/Al<sub>2</sub>O<sub>3</sub>, 2.0 wt% Mo/Al<sub>2</sub>O<sub>3</sub>, 7.5 wt% V/Al<sub>2</sub>O<sub>3</sub> and 5.0 wt% Mg/Al<sub>2</sub>O<sub>3</sub> catalysts at different mol ratios of CH<sub>4</sub>/CO<sub>2</sub>. However, 5.3 to 8.6 % CO<sub>2</sub> conversion, 5.3 to 8.6 %



Figure 12. De-oxygenation of carbon dioxide by using methane at 550 °C (a) in absence of carbon and (b) in presence of carbon (25 wt%) over 1 wt%  $Pt/Al_2O_3$  catalysts

CH<sub>4</sub> conversion and 4.7 to 5.3 % selectivity to CO were observed over 2.5 wt% Ru/Al<sub>2</sub>O<sub>3</sub> catalyst. Moreover, 0.2 to 2.5 %  $CO_2$  conversion, 0.2 to 2.4 % CH<sub>4</sub> conversion and 0.1 to 1.3 % selectivity to CO were observed over 1.0 wt% Rh/Al<sub>2</sub>O<sub>3</sub> catalyst. In addition to this, 5.8 to 8.8 % CO<sub>2</sub> conversion, CH<sub>4</sub> 5.9 to 8.9 % conversion and 4.6 to 6.3 % selectivity to CO were observed over 1.0 wt% Pt/Al<sub>2</sub>O<sub>3</sub> catalyst. Moreover, over 2.0 wt% Mo/Al<sub>2</sub>O<sub>3</sub> catalyst, 0.83 to 2.66 % CO<sub>2</sub> conversion, 0.04 to 3.0 %  $CH_4$ conversion and 0.08 to 0.63 % selectivity to CO were observed. Furthermore, 0.42 to 2.21 % CO<sub>2</sub> conversion, 0.2 to 3.0 % CH<sub>4</sub> conversion and 0.03 to 0.48 % selectivity to CO were observed over 7.5 wt% V/Al<sub>2</sub>O<sub>3</sub> catalyst. In addition to this, the results of 0.23 to 1.12 % CO<sub>2</sub> conversion, 0.12 to  $1.24~\%~CH_4$  conversion and 0.005 to 0.20~%selectivity to CO were observed over 5.0 wt% Mg/Al<sub>2</sub>O<sub>3</sub> catalyst. There is no carbon formation over the alumina supported Ru, Rh, Pt and Mg catalysts, however, there was carbon formation over the alumina supported Mo and V catalysts. However, alumina supported platinum catalyst shows good performance for reforming of  $CO_2$  by CH<sub>4</sub>.

# 3.6. De-oxygenation of $CO_2$ by using $H_2$ and $CH_4$

The composition of reaction mixture during the de-oxygenation reaction of  $CO_2$  over catalyst bed is an important aspect to investigate. De-oxygenation reactions of carbon dioxide by using a mixture of hydrogen and CH<sub>4</sub> over alumina supported ruthenium, rhodium, platinum, molybdenum, vanadium and magnesium catalysts were explored. Hydrogen and methane both de-oxygenate the CO<sub>2</sub> over the alumina supported catalyst. Therefore, the combined effect hydrogen and methane for de-oxygenation of CO<sub>2</sub> was explored. In Tables 4-5, 6.8 to 14.4 % CO<sub>2</sub> conversion, 43.2 to 76.2 % CH<sub>4</sub>

**Table 4**: De-oxygenation of CO<sub>2</sub> by using methane and hydrogen at different mol ratio of CH<sub>4</sub>/CO<sub>2</sub>, catalyst =  $2.5 \text{ wt.\% Ru}/\text{Al}_2\text{O}_3$ ,  $1.0 \text{ wt.\% Rh}/\text{Al}_2\text{O}_3$  and  $1.0 \text{ wt.\% Pt}/\text{Al}_2\text{O}_3$  amount of catalyst = 0.2 g, temperature = 550 °C, H<sub>2</sub> = 20 ml/min and He = 10 ml/min

| Sr.<br>No. | CH <sub>4</sub> /CO,<br>mol ratio | $\mathrm{CO}_2$ conversion, % |      |       | $CH_4$ | conversio | on,%  | CO selectivity, % |       |       |  |
|------------|-----------------------------------|-------------------------------|------|-------|--------|-----------|-------|-------------------|-------|-------|--|
|            |                                   | Ru                            | Rh   | Pt    | Ru     | Rh        | Pt    | Ru                | Rh    | Pt    |  |
| 1          | 0.5                               | 7.96                          | 4.11 | 13.21 | 54.56  | 76.13     | 79.36 | 5.65              | 9.70  | 22.53 |  |
| 2          | 1.0                               | 14.44                         | 6.37 | 13.90 | 49.39  | 65.15     | 66.72 | 10.97             | 12.39 | 23.05 |  |
| 3          | 2.0                               | 8.57                          | 4.19 | 11.01 | 43.21  | 47.43     | 49.74 | 5.98              | 6.48  | 12.27 |  |
| 4          | 3.0                               | 6.82                          | 3.79 | 8.12  | 39.50  | 42.29     | 43.80 | 4.19              | 4.94  | 8.98  |  |

**Table 5**: De-oxygenation of CO<sub>2</sub> by using methane and hydrogen at different mol ratio of CH<sub>4</sub>/CO<sub>2</sub>, catalyst = 2.0 wt.% Mo/Al<sub>2</sub>O<sub>3</sub>, 7.5 wt.% V/Al<sub>2</sub>O<sub>3</sub> and 5.0 wt.% Mg/Al<sub>2</sub>O<sub>3</sub>, amount of catalyst = 0.2 g, temperature = 550 °C, H<sub>2</sub> = 20 ml/min and He = 10 ml/min

| Sr. No. | CH4/CO2,<br>mol ratio | $\mathrm{CO}_2$ | conversio | on, % | $CH_4$ | conversion | CO selectivity, % |      |      |       |
|---------|-----------------------|-----------------|-----------|-------|--------|------------|-------------------|------|------|-------|
|         |                       | Mo              | V         | Mg    | Mo     | V          | Mg                | Mo   | V    | Mg    |
| 1       | 0.5                   | 2.10            | 4.36      | 9.62  | 95.01  | 84.70      | 92.79             | 3.23 | 2.93 | 6.90  |
| 2       | 1.0                   | 6.19            | 9.57      | 11.74 | 57.44  | 53.48      | 68.89             | 9.74 | 9.62 | 19.68 |
| 3       | 2.0                   | 1.63            | 3.66      | 9.08  | 45.76  | 45.72      | 48.05             | 4.46 | 3.38 | 9.65  |
| 4       | 3.0                   | 1.40            | 2.79      | 5.20  | 43.23  | 41.17      | 41.54             | 3.43 | 2.12 | 7.67  |

conversion and 4.2 to 11 % selectivity to CO were observed over 2.5 wt% Ru/Al<sub>2</sub>O<sub>3</sub> catalyst. Moreover, 3.8 to 6.4 % CO<sub>2</sub> conversion, 42.3 to 76.2  $\%~CH_4$  conversion and 5 to 9.7 %~ selectivity to CO were observed over 1 wt% Rh/Al<sub>2</sub>O<sub>3</sub> catalyst. Furthermore, 8.1 to 13.9 % CO<sub>2</sub> conversion, 42.8 to 79.4 % CH<sub>4</sub> conversion and 9.0 to 23.1 % selectivity to CO were obtained over 1 wt% Pt/Al<sub>2</sub>O<sub>3</sub> catalyst. In addition to this, the results observed of conversion of  $CO_2$  and methane without the carbon formation. Moreover, alumina supported platinum catalyst was found to be efficient catalyst for the reactions of CO2. The further studies of deoxygenation reactions of  $CO_2$  by using methane and hydrogen over 2.0 wt% Mo/Al<sub>2</sub>O<sub>3</sub> catalyst show that the 1.4 to 6.2 %  $CO_2$  conversion, 43.2 to 95.0 % CH<sub>4</sub> conversion and 3.2 to 9.7 % selectivity to CO. For the de-oxygenation reactions of CO<sub>2</sub> over 7.5 wt% V/Al<sub>2</sub>O<sub>3</sub> catalyst, 2.8 to 9.6 %  $CO_2$ conversion, 41.2 to 84.7 % CH<sub>4</sub> conversion and 2.1 to 9.6 % selectivity to CO were observed. Furthermore, 5.2 to 11.7 % CO<sub>2</sub> conversion, 41.5 to 92.8 % CH<sub>4</sub> conversion and 6.9 to 19.7 % selectivity to CO were obtained over 5 wt% Mg/Al<sub>2</sub>O<sub>3</sub> catalyst.

# 3.7. De-oxygenation reactions of CO<sub>2</sub> in presence of carbon

The effect of carbon in presence of methane for

the de-oxygenation reaction of  $CO_2$  is also important aspect to explore. The de-oxygenation of  $CO_2$  by using carbon could be given as follows:

$$CO_2 + C \rightarrow 2CO$$
  $\Delta H = 172.5 \text{ kJ/mol}$ 

In the Figure 12, de-oxygenation reactions of  $CO_2$  by using carbon and methane were studied over the 1 wt% Pt/Al<sub>2</sub>O<sub>3</sub> catalyst. The results show that the methane conversion was higher in absence of carbon. The conversions of  $CO_2$  and selectivity to CO trends were observed similar as earlier reported in the reforming of  $CO_2$  by methane.

### 4. Conclusions

The de-oxygenation reactions have been explored of carbon dioxide by using hydrogen, methane and carbon over alumina supported ruthenium, rhodium, platinum, molybdenum, vanadium and magnesium catalysts. De-oxygenation reactions of  $CO_2$  were efficient by using hydrogen or methane and hydrogen and methane over alumina supported ruthenium, rhodium, platinum, molybdenum, vanadium and magnesium catalysts. There was carbon formation during the deoxygenation reactions of CO<sub>2</sub> over Mo and V supported catalysts. However, there is no carbon formation of over alumina supported ruthenium,

rhodium, platinum and magnesium catalysts. It was observed that the de-oxygenation of  $CO_2$  by hydrogen, carbon and methane produced carbon, CO and  $CH_4$ .

#### Acknowledgement

The authors are thankful to the Council of Scientific and Industrial Research, CSIR, New Delhi for the financial support (CSIR Network Project)

#### References

- [1] Jacquemin, M.; Beuls, A.; and Ruiz, P. 2010. Catalytic Production of Methane from  $O_2$  and  $H_2$  at Low Temperature: Insight on the Reaction Mechanism. *Catalysis Today.* 157: 462-466.
- [2] Sodesawa, T.; Dobashi, A.; and Nozaki, F. 1979. Catalytic Reaction of Methane with Carbon Dioxide. *Reaction Kinetic & Catalysis Letters*. 12:107-111.
- [3] Qian, L.; and Yan, Z. F. 2003. Study on the Reaction Mechanism for Carbon Dioxide Reforming of Methane over Supported Nickel Catalyst. *Chinese Chemistry Letters*. 14:1081-1084.
- [4] Dew, J. N.; White, R. R.; and Sliepcevich, C. M. 1955. Hydrogenation of Carbon Dioxide, on Nickel-Kieselguhr Catalyst. Industrial Engineering Chemistry. 47: 140-146.
- [5] Yanbing, L.; Baosheng, J.,; and Rui, X. 2007. Carbon Dioxide Reforming of Methane with a Free Energy Minimization Approach. *Korean Journal of Chemical Engineering*. 24: 688-692.
- [6] Keulen, N. J.; Seshan, K.; Joebink, B.; and Ross, R. H. 1997. TAP Investigations of the CO<sub>2</sub> Reforming of CH<sub>4</sub> over Pt/ZrO<sub>2</sub>. Journal of Catalysis. 166: 306-314.
- [7] Wang, W.; and Gong, J. 2011. Methanation of Carbon Dioxide: An Overview. Frontier in Chemical Science and Engineering. 5:2-10.
- [8] Mills, G.A.; and Steffgen, F.W. 1973. Catalytic Methanation. *Catalysis Review*. 8: 159-210.
- [9] Ibraeva, Z.A.; Nekrasov, N.V.; Gudkov, B.S.; Yakerson, V.I.; Beisembaeva, Z.T.; Golosman, E.Z.; and Kiperman, L.S. 1990. Kinetics of Methanation of Carbon Dioxide on a Nickel Catalyst. UDC, 541.128, (Translatedfrom) Teoreticheskaya i Eksperimental' naya Khimiya, 26: 620-624
- [10] Mohamed, A.R.; Zakaria, Z.; and Zulkali, M.D. 2010. Catalytic Hydrogenation of Carbon Dioxide by Platinum Doped Nickel Oxide Catalysts. *Catalysis World Applied Science Journal.* 8: 490-495.

- [11] Vlasenko, V.M.; Chernobrivets, V.L.; Lunev, N.K.; and Malchevskii, A.I. 1977. Formation of Methane in Methanol Synthesis on Zinc-Chromium Catalysts. *Reaction Kinetic Catalysis Letters*. 6: 195-200
- [12] Ogura, K.; Migita, C.T.; and Fujita, M., 1988. Conversion of Methane to Oxygen-Containing Compounds by the Photochemical Reaction. *Industrial & Engineering Chemistry Research*. 27: 1387-1390.
- [13] Tripol'skii, A.I.; Pavlenko. N.V.: and Odnovolik,V.I. 1996.Mechanism of Hydrogenation of Carbon Dioxide and the Relationships Governing the Selection of Heterogeneous Catalysis for the Reactions. Theoretical and Experimental Chemistry. 32:114-124.
- [14] Stowe, R.; and Russell, W.W. 1954. Cobalt, Iron and Some of Their Alloys as Catalysts for the Hydrogenation of Carbon Dioxide. *Journal of American Chemical Society*. 76: 319-323.
- [15] Liu, H.F.; Liu, R.S.; Liew, K.Y.; Johnson, R.E.; and Lunsford, J.H. 1984. Partial Oxidation of Methane by Nitrous Oxide over Molybdenum on Silica. *Journal of American Chemical Society*. 106: 4117-4121.
- [16] Suzuki, K.; Hayakawa, T.; Shimizu, M.; and Takehira, K. 1995. Partial Oxidation of Methane over Silica Supported Molybdenum Oxide Catalysts. *Catalysis Letters*. 30: 159-169.
- [17] Zhang, X.; Dai, B.; Zhua, A.; Gonga, W.; and Liu, C. 2002. The Simultaneous Activation of Methane and Carbon Dioxide to C<sub>2</sub> Hydrocarbons under Pulse Corona Plasma Over La<sub>2</sub>O<sub>3</sub>/γ-Al<sub>2</sub>O<sub>3</sub> Catalyst. *Catalysis Today*. 72: 223-227.
- [18] Coulter, K., and Goodman, D.W. 1993. The Role of Carbon Dioxide in the Oxidative Dimerisation of Methane over Li/MgO. *Catalysis Letters*. 23: 169-178.
- [19] Hu, C.; Zhang, H.; and Wu, J. 2004. The Co-Activation of CH<sub>4</sub> and CO<sub>2</sub> to Syngas and Ethylene Simultaneously. *Preprints Division of Energy and Fuels American Chemical Society.* 49: 124-125.